COSMOLOGY I

Homework 3

Due on Monday September 23 by 14.00.

- 1. **Redshift.** Derive the relation between the scale factor and redshift using conformal time.
- 2. Einstein–de Sitter model. Consider the case $a \propto t^{2/3}$ and K = 0. (This corresponds to a spatially flat universe filled with non-relativistic matter.)

a) Calculate the age-redshift relationship t(z) and the angular diameter distance $D_A(z)$. (Express the age and distance in units of the Hubble time H_0^{-1} .)

b) What is the particle horizon today in units of H_0^{-1} ? (Defined as the proper distance to $z = \infty$.)

c) What is the age of the universe (in years) today and at z = 1090 if $H_0 = 70$ km/s/Mpc?

d) What is the angular diameter distance (in Mpc) to redshift z=1090 if $H_0=70~\rm km/s/Mpc?$

e) The function $D_A(z)$ has a maximum. At which redshift is it?

3. Continuity equation. Derive the continuity equation

$$\dot{\rho} = -3(\rho + p)\frac{\dot{a}}{a}$$

from the Friedmann equations. What does this equation say about conservation of energy?