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1. Introduction

Revisions made : 1978-11-02 , 1979-04-23, 1979-11-09, 1983-01-18, 1984-08-06, 1988-11-21,
1991-01-14, 1997-06-13, 1999-10-23, corr. 2019-5-4.

MOLVIB is a Fortran program for the calculation of harmonic force fields and vibrational
modes of molecules with up to 30 atoms (standard version).

Normal coordinate analysis is nowadays commonly employed as an aid in the interpretation
of the vibrational spectra of large molecules. In order to get meaningful results, a knowl-
edge of the vibrational force field is necessary. Since the number of force constants grows
quadratically with the number of atoms, one has to employ many approximations in the
calculation of harmonic force fields even for moderately large molecules.

To overcome this difficulty one can determine a force field for a set of related molecules using
the so-called overlay method introduced by Snyder and Schachtschneider in the 1960’s [17].

About 1970 Gwinn developed a program for normal coordinate analysis using mass-weighted
cartesian coordinates [8], which eliminates the redundancy problems arising when internal
valence coordinates are used, as in Wilson’s GF-method. MOLVIB is based on the same
fundamental idea, but differs from similar programs in many respects. The program was
first described by Sundius [20], and a more recent description by the same author can be
found in ref [21].

In addition to free molecules, crystals can also be treated. In this case, up to 50 atoms
divided between 11 sub-units can be handled. All the calculations are performed in terms of
mass-weighted cartesian coordinates, instead of internal coordinates as in the conventional
GF-method. This makes it possible to overcome problems with redundant coordinates. The
force field is refined by a modified least squares fit of the observed normal frequencies, as
described by Sundius [22]. Beginning with version 6 of the program, it is possible to change
several of the maximum array dimensions, and create executables, which can handle larger
molecules (or force fields).

The program is user-friendly, and can be easily adopted to different force fields. It is also
possible to express the force field in the CFF notation (see the book by S.R. Niketi¢ and Kj.

Rasmussen [13]). This makes it possible to use it in combination with the CFF program (or
other molecular mechanics programs) for conformational analysis of flexible molecules.

2. Theoretical background

In the following, we will give a short description of theoretical foundations of the program.

2.1 Classical theory of molecular vibrations

The potential energy of a molecule with N atoms can be expressed as an analytical function
in 3N cartesian atomic coordinates Ry, Rs, ..., R3gn:

V(R) = V(Ry,Ra,..., Ran).

Let us now assume that the atomic nuclei perform small oscillations about their equi-
librium positions (large amplitude motion is not considered here), defined by the vector



2

R = (RY,RY,...,R3y). Then the potential energy V(R) may be expanded in a power

series in terms of the cartesian displacement coordinates x; = R; — RY (i =1,2,...,3N):
ov 1 0%V
V(R)=V(R° — ) x4 = L) sz
(R)=V(E)+ 3 (5) o+ P> (e ). o+

We now consider the equilibrium energy V(R") as a zero point of energy and use the con-
dition of equilibrium

<6V) =0, i=12,...,3N.
8$i 0

In the harmonic approximation, when all terms of the third order or higher are neglected,
the potential energy may thus be expressed as

1
V=3 Z fijzizs,
.7

where the coefficients f;;, the second order partial derivatives of the potential energy in
equilibrium, form a square-symmetric matrix of order 3N (called the force constant matrix

In the classical description, the total kinetic energy of the N atomic nuclei may be written
1 .9
T=3 > M.
i

Substituting the expressions for the potential and kinetic energies into Lagrange’s equations

oV d [OT ‘
axﬁdt((%i)o (i=1,2,...,3N),

we get the classical Newton equations of motion:
Mg+ fijz; =0  (i=1,2,...,3N).
J
These equations have the periodic solutions
z; = 2 sin(wt + §) (t=1,2,...,3N).

Substituting the solutions back into the equations of motion we find a new set of equations,
from which the amplitudes z¥ and the normal frequencies w may be determined:

3 fija) = Mw?a)  (i=1,2,...,3N).
J

This set of equations is equivalent with the eigenvalue equation for the force constant matrix
F.



Often it is more convenient to use mass weighted cartesian displacement coordinates than
ordinary displacement coordinates. The mass weighted coordinates are defined by the rela-
tions

fi:\/Mi-Ti (i:1,2,...73N>.

The above equations can then be written in the form

S (MM TR0 =w?) (i=1,2,...,3N),

J

which is equivalent with the eigenvalue equation for the dynamical matriz
D=MPFM?

where M~1/2 is a diagonal matrix containing the reciprocal square roots of the atomic
masses.

This matrix, which is of fundamental importance in the theory of lattice vibrations, is very
convenient to use in the normal coordinate analysis of isotopically substituted molecules,
because it includes the atomic masses in an explicit manner. The eigenvalue equation for
the dynamical matrix can be expressed in matrix form as

UDU = A,

where A is a diagonal matrix consisting of the eigenvalues \; = w? (i=12,...,3N)

i
and U is an orthogonal matrix containing the normalized eigenvectors.

Because a molecule in three-dimensional space has 3N — 6 degrees of freedom, six of the
eigenvalues of the dynamical matrix will usually be zero (a proof can be found, e.g., in
Califano [5], Ch. 2.6). This is a very useful test of the accuracy of the calculations.

If the atomic masses are expressed in atomic mass units, the frequencies in cm ™!, and the

energy in the unit aJ (= 10718J), then it can be shown that the relation between the normal
frequency of vibration and the corresponding eigenvalue of the dynamical matrix is

v; = 1302.79v/\;.

The orthogonal transformation U defines a new set of coordinates, called normal coordinates
(or normal modes) @Q; (i =1,2,...,3N):

£=UQ, Q=U¢

In terms of these coordinates the potential and kinetic energies are diagonal :

1. 1 1~ - 1~
V = S&Fz = 5ED¢ = JQUDUQ = 5QAQ
1- . 1~. 1= ~ . 1~ .

Frequently the force constants f;; are not defined in terms of cartesian coordinates, but are
rather expressed in internal coordinates [23] (or their linear combinations), which are more
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natural from a chemical point of view, because they can be directly related to molecular
bond lengths and bond angles.

The relation between the internal coordinates s; and the cartesian displacement coordinates
xz; can be expressed in matrix form as

s = Buz.

Usually the matrix B is rectangular, because the number of internal coordinates is seldom
identical to the number of cartesian displacement coordinates. This means that it is im-
possible to invert the transformation matrix. A method to overcome this problem will be
presented in sect. 2.8.

If the matrix F' is expressed in terms of internal coordinates, the potential energy may be
expressed

1.~ 1
V= 5.%BFSB$ = §§FSS,

and the dynamical matrix thus assumes the form

D=M"'Y2BF,BM~'/2.

The normal modes can be conveniently characterized with the L—-matrix, which gives the
transformation from normal to internal coordinates. With the aid of the B-matrix and the
eigenvector matrix U the L-matrix can be calculated according to the formula

L =BM Y.

To facilitate the interpretation of the normal modes, the columns are sometimes normalized
to 1.

The normal modes can also be characterized by means of the potential energy distribution
(P.E.D.), which is calculated from the L-matrix and the F-matrix in internal coordinates
according to the formula

Py = (Lji)*Fjj/ M.

The P.E.D., which gives the fractional contribution of the diagonal matrix elements of F' to
the normal modes, is used for a complete symmetry classification of the normal vibrations
of the molecule.

In MOLVIB these matrices are constructed for each molecule (and a set of symmetry co-
ordinates) in turn. When isotopically substituted molecules are considered, the symmetry
coordinates are input only for the normal molecule, since the symmetry coordinates and the
F-matrices are the same for the isotopic analogues (cf. sect. 3.3.3).



2.2 Construction of the force constant matrix F.

We shall now describe, how the force constant matrix is constructed for some commonly

used model potentials. Let us first introduce a new notation for the F-matrix, which is used
in MOLVIB.

Any force constant matrix may be expressed in the form

F=0f=) C®f,
k

where f(f = (f1, fa,- .., fm)) denotes a set of force constants (force constant vector) and C =
(C(l), c®, ..., C(m)) is a row ”vector” of coefficient matrices. This method of expressing
the F-matrix is very convenient in practical force constant calculations, as we shall see later
on (see also the book by Califano [5], sect. 8.6).

The C-matrices describe the dependence of the force field on the internal (or symmetry)
coordinates. This notation has the advantage that it is very easy to apply linear constraints
on the force constants. Assume, e.g., that the matrix F is diagonal with respect to three
force constants f1, fo and f3, and that the relation

fs=afi+8f

holds. In coefficient matrix form, the F-matrix may then be expressed
fi 0 0 fi O 0 1 0 0 0 0 0
0 fo O = 0 fo 0 =10 0 O0]fi+10 1 0] fo
0 0 fs 0 0 afi+8f 0 0 « 0 0 B

Depending on the type of model potential used, it may be more convenient to express the
force constant matrix in cartesian than in internal coordinates. As mentioned previously,
the translations and rotations of the molecule as a whole will give rise to six normal fre-
quencies, which have the magnitude zero. This means that the redundant coordinates need
not to be eliminated before diagonalization, if the eigenvalue problem is solved in carte-
sian coordinates. This is one of the advantages with force field calculations in cartesian
coordinates.

Assume now (as before) that the internal coordinate vector s is linearly related to the
cartesian vector x through the matrix relation

s = Bx
(i.e., we neglect all higher order terms). We then find that

F=BF,B=BC,fB=>Y» BCMBf,
k

which means that we can write

F=0f=) C¥f,
k

where the transformed matrices C*) are given by

c® — Be®p



or explicitly

k
O =37 BB (C9)im.
Im

As we have mentioned earlier, the normal vibrations and normal modes are found by di-
agonalization of the dynamical matrix D, which in the coefficient matrix notation may be
written

D= M71/2FM71/2 — M71/2CfM71/2.

The eigenvalue equation may then be resolved in the following set of linear equations:

(OMY2CPMY20) 5 = X (i =1,2,...,3N).

NE

k=1

In order to calculate the F-matrix elements, there are several potential models to choose
between. The most commonly used models are the simple valence force field (SVFF), the
(simplified) general valence force field (GVFF), the Urey-Bradley force field (UBFF) and
the local symmetry force field (LSFF) (see sect. 2.4).

Obviously, the most general harmonic potential function in terms of internal coordinates
can be expressed as

1
V = 5 lzj: fijSiSj.

This is a GVFF which includes interactions between all the internal coordinates.

For polyatomic molecules, this potential is, however, impractical or even impossible to use
as such, because the number of force constants increases quadratically with respect to the
number of internal coordinates, which is of the same order of magnitude as the number of
normal frequencies. Even if we use the frequencies of deuterated or isotopically substituted
molecules in the force constant calculations, the determination of a complete GVFF remains
an unattainable goal for most larger molecules.

The simplest possible valence force field is obtained by retaining only the diagonal terms of
the GVFF:

V= %Zfisf.

This is called the simple valence force field, which was introduced already in the first normal
coordinate calculations by Bjerrum in 1914 [4].

In this case the number of force constants is equal to the number of internal coordinates,
which often makes it possible to determine the force constants from the observed frequencies.
However, it is very crude, because it does not contain any interactions.

The SVFF may be improved in many ways. One method is to include interactions between
neighbouring internal coordinates, such as stretch-stretch, stretch-bend and bend-bend in-
teractions. We then get what is sometimes called a simplified GVFF. Many molecules have
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been treated successfully by this method during the last 20 years. As an example, we could
mention the extensive force field calculations on the alkanes performed by Schachtschneider
and Snyder [17]. The local symmetry force field, which was introduced by Shimanouchi [18],
will be described later in connection with coordinates.

The question is, however, how to choose the interactions that are to be included. In addition,
it may be difficult to give the force constants a physical interpretation, since the interac-
tions usually involve several atoms. In this respect the Urey-Bradley force field means an
improvement. It was introduced by Urey and Bradley in 1931, and later on improved by
Shimanouchi and his coworkers [18].

In its usual formulation, the UBFF includes interactions between atoms bonded to a common
atom (the so-called 1-3 interactions) in addition to the diagonal valence force field terms.
This means that the interactions are localized and interpretable in terms of an atom-atom in-
teraction potential. In the UBFF, the forces between non-bonded atoms usually are assumed
to be repulsive and inversely proportional to a power of the distance between the atoms.
The F-constants of the Urey-Bradley force field, which are associated with the interactions
between every two atoms bonded to a common atom, are defined by the bending coordinate
of the angle between two bonds. The elimination of the redundant Ag-coordinates is done
in MOLVIB by the subroutine UREY, which is presently restricted to treat only geminal
(1,3) interactions. If NBTYP=0, the F’-constants of the Urey-Bradley field can be varied
independently from the F-constants. With NBTYP=1, the ratio F’/F is assumed to be
fixed.

In molecular mechanics calculations, the force field (potential energy) is parametrized in
terms of analytical functions of suitably chosen internal coordinates. The potential energy
terms can be expressed in atomic cartesian displacement coordinates as explained, for in-
stance, in the book by Niketi¢ and Rasmussen [13]. A force field parametrized in this way
can be also be treated by MOLVIB. In this case the dynamical matrix is expressed directly
in cartesian coordinates by a second-order expansion of the potential energy.

2.3 Special interactions.

As mentioned previously, overlay force field calculations are based on the transferability of
force constants between similar atomic groups in the same or different molecules. To make
such calculations meaningful, the interactions have to be chosen in a reasonable way.

This means that small and insignificant force constants, which cannot be well determined
by least squares methods, should be omitted. How can we choose the interaction constants
in a consistent way 7

Usually the interactions between neighbouring atomic groups are the most important ones.
When the F-matrix is given in internal coordinates, this fact can be expressed as follows:
”Interactions between coordinates having no common atoms are usually omitted”.

A similar principle was already mentioned in the pioneering work by Schachtschneider and
Snyder [18]. According to them, "no attempt was made to determine interaction constants
between co-ordinates centered on carbon atoms further removed than second nearest neigh-
bors”.



The principles for choosing the significant interaction constants are not always explicitly
stated. However, Abe and Krimm [1] give the following simple rules to choose the interac-
tions:

a) Interactions between the bond stretching coordinates for a pair of bonds which share a
common atom:

V(’I“l, 7‘2) = f(Tl, TQ)A’/‘lA’f‘Q

b) Interaction between the bending coordinate for a bond angle and the stretching coordinate
for a bond attached to the apex atom of the angle:

V(r,0) = f(r,0)ArAf

c) Interaction between the bending coordinates for a pair of bond angles:

V(01,02) = f(61,02) A0, A0,

d) Interaction between the out-of-plane bending coordinates for a pair of trigonal planar
groups, or between the bending coordinate for a bond angle and the out-of-plane bending
coordinate for a planar group which share a common bond and/or a common apex atom;

V(wl,wg) = f(wl,wg)AwlAwg
V(0,w) = f(0,w)A0Aw

e) Interaction between the torsional coordinate for a bond and an out-of-plane bending
coordinate for a group attached to the bond:

V(w,t) = f(w,t) AwAt

These are the definitions for the interaction force constants of the peptide force field de-
veloped by Krimm and his coworkers in the University of Michigan. The principles are, of
course, quite general, and can be applied to any molecule containing planar groups. All of
the special interactions discussed above can be generated by the programme MOLVIB.

To make it easier to define transferable force constants, one can apply certain general rules
due to Hollenstein and Giinthard [9]. They suggest a scheme of dividing the atoms of a
molecule into subsets according to the following principles:

To(s) denotes the set of atoms involved in the internal coordinate s,

T;(s) contains the atoms bonded to the atoms in Ty(s),

Tk (s) are the atoms that are bonded to the atoms in Tj_1(s), and so forth.

Analogously Ty(s, s’') denotes the set of atoms involved in at least one of the coordinates s
and ¢, i.e., To(s,s") = To(s) UTp(s').

A force constant connected with an internal coordinate s is then considered transferable, if
the atom configurations of the corresponding sets Ty(s), T1(s) and T5(s) in the molecules
are the same, and the types and directions of the bonds connecting the sets T5(s) and T3(s)
are similar. To simplify the force field, one may perhaps remove some of the conditions.

An interaction constant associated with the internal coordinates s and s’ is considered
transferable, if the atom configuration of the corresponding sets Ty(s,s’) and Ti(s, s’) are
almost the same. This rule can also be made less strict by removing the condition on T7.



2.4 Choice of internal coordinates in force field calculations

In overlay calculations, transferability of the force constants of similar atomic groups between
different molecules is assumed. Although the force constants of one group may be somewhat
affected by the neighbouring groups, the work of Snyder, Schachtschneider, Shimanouchi
and others [17-19] have shown this assumption to be reasonably true.

These overlay calculations have been based on various types of force fields. Many years
ago, a new force field concept was introduced by Shimanouchi and his coworkers [18]. This
force field, which is called the local symmetry force field (LSFF), is based on the following
principles: a) The symmetry coordinates for the atomic groups (CHs, CHs ,...) are used
as basic coordinates, and the force constants are expressed in terms of these coordinates.
Force constants expressed in symmetry coordinates are usually not as much correlated as
force constants expressed in internal coordinates, if the redundancies are properly removed.
b) Only the interaction constants between nezt-neighbouring groups are taken into account,
if there are no special reasons to include interactions between groups further away.

The definitions of the local symmetry coordinates are based on certain conventions. Thus
the signs of all non-terminal groups in the molecule will be positive, if the molecule is viewed
from left to right according to the molecular formula. This is to ensure that the interaction
constants will have the proper signs.

Shimanouchi’s local symmetry coordinates are very similar to the set of internal coordinates,
called natural coordinates that were introduced by Pulay and his coworkers in 1979 [14] for
ab initio vibrational studies. These coordinates are based on three principles: locality, local
pseudosymmetry and elimination of redundancy. Locality implies (approximate) local sym-
metry. Pseudosymmetry around center atoms is used to define composite angle deformation
coordinates. Special coordinates have been introduced for rings, relative torsion around a
bond is described by the arithmetic mean of the torsion angles involved, and so on. Such
coordinates have to be explicitly defined in the MOLVIB program, using a simple syntax
for constructing linear combinations, as will be described later.

Many molecular organometallic complexes (metallocenes, e.g.) involve carbon rings, which
interact with the metal atoms by translation or bending of the ring as a whole. As discussed
by Doman et al. [7], these motions can be described by substituting the ring with a dummy
atom, situated in the ring center. Force constants are then assigned to the metal-dummy
stretches, metal-dummy bends, and so on. All of the forces associated with the dummy
atom become, however, distributed among the atoms that define the dummy, leaving no
residual forces on the dummy atom. This method of defining ligand coordinates has been
implemented in MOLVIB (see sect. 3.3.1 and 3.3.1.2).

2.5 Optimization of force constants in MOLVIB.

As was previously shown, the eigenvalue equation of the dynamical matrix can be expressed
as a set of linear equations:

m

S (OM WM f =N (i=1,2,...,3N).

k=1

Provided that the orthogonal transformation U is known and that m < 3N —6 (the number
of non-zero eigenvalues in the general case) these equations can, in principle, be solved by
the method of linear least squares.
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However, the matrix U is usually not known, and consequently these equations have to
be solved repeatedly by making approximations to the force constants that reproduce the
observed frequencies with increasing accuracy. How can this be done in practice 7

The problem would be much simplified, if the above-mentioned equations could be used to
relate the changes in the force constants to changes in the eigenvalues. Actually it is possible
to approximate the above equation with the much simpler linear relation

S (OMPCWMTVPU) AL, & AN,
k=1

Strictly speaking, this approximation is valid only when the calculated and observed eigen-
values are "almost” coincident. However, it is commonly used also in the beginning of the
iteration process, when the changes in the force constants may be quite large, and conse-
quently can produce large changes in the eigenvalues and eigenvectors. As can be shown by
practical calculations, it is usually more efficient to use some kind of damped least squares
procedure instead of trying to use a more accurate non-linear relationship to compute the
changes in the force constants. These methods will be discussed next.

In order to apply the method of least squares to the force constant calculations, we have
to define a quadratic function (also called objective function) that is to be minimized with
respect to the force constants. This goodness-of-fit function is defined as follows:

SA) = A =XTW (A= \%

where A\? denotes a set of observed eigenvalues (including one or several molecules), ) is the
corresponding calculated eigenvalue vector, and W is a diagonal weight matrix.

Sometimes the goodness-of-fit function is defined as a function of the normal frequencies
v;, and the weights are applied to the frequencies. However, if the observed and calculated
frequencies are close to each other, which is the case in the neighborhood of a minimum,
the two ways of defining S will give essentially the same results, if the weights are chosen
appropriately. From the relation between the normal frequencies and the eigenvalues (see
p. 3), and the definition of S we find (k = 1302.79 cm™1)

S =K1 Z wi[v? — (V)2 ~ 4k~ Z w; (V)2 (v — vY)?,
i i
which shows that the choice w; = (A)~! is approximately equivalent to giving all the
frequencies equal weights.
Because the eigenvalues are related to the force constants, S will also be related to the force

constants: S(A(f)) = S(f). The least squares solution can then be found from the condition
that the gradient vector of .S in the force constant space vanishes:

Assume now, that f’ is a force constant vector close to the optimal value f. If the gradient
VS(f) is expanded in a Taylor’s series around f, we get

VS(f) =VS(f)+ VSN =)+ ..,
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where VV.S(f’) denotes the Hessian of S(f’).

Differentiating the eigenvalue equation of the dynamical matrix and assuming that the
orthogonal transformation U is approximately independent of f (see, however, the comments
at the beginning of this section) we find the elements of the Jacobian matrix J:

OA\;

~ (UM~Y2CO =120, = J;
afj (U c U) JJ)

or, in matrix notation, VA = J.
The gradient and Hessian of S(f’) can be expressed as

(VAU NTWAS) =A%)

2
2(VAS)TWVAS) + (VYA N AS) =A%),

9]

VVS(f')

If we now assume that the residuals have a random distribution, and that the second order
derivatives of the eigenvalues with respect to the force constants do not vary much, the
second order terms in the Hessian can be neglected. We then get the following approximate
expressions for the gradient and the Hessian

VS(f) = 2JW (N — %)
VVS(f) = 2(VANITWVAS) = 2JW J.

This leads to a solution technique for the least squares equations known as the Gauss—Newton
method. Obviously, it is strictly valid only close to a local minimum of S.

In this approximation the higher derivatives vanish, and the minimum condition for S gives:
JWI(f = ) = =JW\ = \°).

The corrections to the force constants are then found by repeated application of the formula
Af=-A"ly,

where A = JW.J and y = JW (X — \°).

In the neighborhood of a local minimum of S, A is always positive semi-definite. However,
if the matrix A is nearly singular (det A =~ 0), the changes in the force constants may
become too large and the iteration process diverges. This happens far from the minimum
or when the force constants are strongly correlated (e.g., when the force constants are not
independent or when the number of degrees of freedom is too small). As we already noted,
the Gauss-Newton method is not valid far from the minimum. However, inclusion of the
second order terms in the Hessian will usually only speed up the iteration process in the
beginning.

In such cases, a damped least squares method should be used. This means that the last
mentioned equation is replaced by

Af = 7A*y7

where A* is a ”generalized inverse” of A. There are several methods for defining A*.
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One method, originally due to Levenberg [11] and later on modified by Marquardt [12], has
been much used in force field calculations, and is implemented in MOLVIB (option MARQ).
In this method, A* = (A+3B)~!, where 3 is a positive number and B is a diagonal matrix of
the same order as A. In Levenberg’s method, B is the identity matrix, whereas Marquardt
chose the elements of B equal to the diagonal elements of A. By a suitable choice of j,
A + BB will become positive definite and the force constants calculated from the above
equation will lead to a decrease in S. The strategy usually adopted is to increase 3 by a
factor ky if S increases, but to decrease 8 by a factor ko if S decreases. Marquardt suggested
k1 = 2 and ko = 10. However, it seems that k; = 10 is too large in practical calculations,
and therefore ko = 3 has been used in the MOLVIB implementation.

A very interesting method for the automatic determination of 5 has been suggested by
Davies and Whitting [6], who express § in the form

8=9yB""y/S.
This strategy is also implemented in MOLVIB (option MMARQ).

A generalized inverse of A can also be constructed by a modified Gauss method (MOLVIB op-
tion MGAUS). According to this method, the matrix A is first diagonalized by an orthogonal
transformation V:

VAV =T.

Here I' denotes the diagonal eigenvalue matrix defined by I';; = 7;6;;. Obviously, A can then
be expressed as

A=VIV,
and the inverse matrix is given by the analogous formula
ATt =VvTY.

However, if A is singular, or nearly singular, this equation cannot be used, because some of
the eigenvalues may become zero or very small. A generalized inverse can then be defined
by

A* = VIV,

where I'* is a diagonal matrix, whose elements -; are related to the corresponding eigenvalues
of A. A simple method to choose the elements 7; has been found by the author [22], and

has been implemented in MOLVIB. This method gives often rise to faster convergence than
the Marquardt method if the force constants are correlated.

The calculation of the goodness-of-fit function .S implies a proper assignment of the observed
eigenvalues to the calculated normal modes. This can be achieved as follows. Assume that
Uy is an orthogonal matrix that diagonalizes the dynamical matrix for a certain molecule
calculated with a given set of force constants fq (called a reference point), and that that U
is another orthogonal matrix that diagonalizes the dynamical matrix for the same molecule
calculated with another set of force constants f . The matrix V = UpU is then constructed
and the element of largest modulus V;;, in each row is determined. If the index j,, = i,
then the column vectors of U correspond exactly to those of Uy (i.e., the assignment is
preserved). If j,, # i, an interchange of the columns has occurred, and the new order is
recorded. During the course of refinement, it may happen that the force constants change
so much that the eigenvectors become badly mixed. Several elements in the same row of V
can then be of the same order of magnitude, and it is possible, that the index j,, has been
recorded previously. If this is the case, the second largest element in the row is determined,
and the above procedure is repeated.
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2.6 The theory of lattice vibrations.

A crystal can be considered as an infinite three-dimensional lattice, which is described by a
primitive unit cell that generates the lattice by simple translations.

The translational symmetry means that the Hamiltonian of the crystal will be invariant with
respect to a translation vector (or lattice vector) n, defined by

n = nity + naty + nsts,

where the n;:s are arbitrary inte-

gers and the ¢;:s are three non-co-
/ planar basis vectors of the unit cell.
This vector indicates the origin of
any cell with respect to a reference
unit cell. The position of each atom
k with respect to the origin of the
cell is denoted r),. Using the trans-
lation vector the position of this
atom with respect to the reference
cell can be expressed r, = n+ 1,
(see the figure).

Tk

To each set of basis vectors one can add a set of three reciprocal vectors, defined by the
equation ¢; - u; = 0;; . Naturally, if all ¢;:s are mutually orthogonal, they will coincide with
the reciprocal vectors. Generally the vectors u; are said to span the reciprocal lattice. A
lattice translation vector in reciprocal space can be defined by

k = hiuy + houy + hsus,

where the h;:s are integers. Thus the scalar product
k-n=kihy + koho + kshg

is also an integer.

To explore translational symmetry further let us consider an arbitrary function f of the
lattice translation vector n. Because of the translational symmetry, we must have

fn+n) = f(n)
for all vectors n' . Especially we will get

ezm‘kn _ eQm‘k n+n o2rikm e2m‘k~n
- b

) — e
where k is a wave vector (associated with phonons, the quanta of lattice-vibrational energy).

Summing over all the lattice vectors n, we then get

. . f .
E ezmk-n _ e27mk-‘n E 627mk~‘n7
n n
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which shows that

. ’
e27rzk-n =1

and that k-n' = ¢ (¢ is any integer). Because n’ is assumed to be a translation vector, k
must be a reciprocal translation vector (with integral components).

The vector k = 0 (corresponds to optically active vibrations) is, of course, also a valid
reciprocal translation vector. If k =0 then

Z o2rikm _ Zeo — N,
n n

where N denotes the number of unit cells in the crystal. This formula can also be interpreted
as the orthogonality condition of two plane waves with wave vectors k and k'

1 kn —onik'- 1 i(k—k)-
N Ze2mkne 2mik’ m _ Ne%m(k kHn _ (5(’6 . k/),
n
where the §-function has the special meaning that it is equal to zero unless k — kK is a
reciprocal lattice vector (i.e., expressible as ). hiu;).

An arbitrary function of a lattice vector n can be expanded in plane waves:
f(n) = N~1/2 / g(k)e~2mik gy
Using the orthogonality condition, one can easily find the inverse transformation:
Z f(n)ezmkn — N2 Z/g(k’)e*%ik/'nezmk'ndk’
n n

_ N_l/z/dk/g(k’) Zezm(k—k')n
n

= N1/2/dk/g(k’)5(k—k’),

so that

g(k) _ N71/2 Zf(n)e%rik-n.
n

Assume now that there are o molecules in each unit cell. Then, using the translational
symmetry, the position of each molecule in the crystal can be uniquely specified by giving
the lattice vector m and the number ¢ (i = 1,2,...,0) that determines the position of the
molecule in the unit cell, i.e. the site.

To simplify matters we shall now assume that the vibrations of the N’ atoms in the j:th
unit cell can be alternatively described by 3NN cartesian displacement coordinates collected
in a vector x; , or by 3V independent internal coordinates collected in a vector s; . Let n;
denote the translation vector of this unit cell.
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Instead of using the ordinary cartesian and internal displacement vectors, we shall introduce
the so-called phonon coordinate vectors:

X(k) = N~1/2 ijezmkn,-
J
S(k) = N-1/2 Z sje%m'knj

J

The next problem to be solved is to find the relation between the internal and the cartesian
coordinates. Using Wilson’s method the internal coordinate vector s; can be expressed as

8 = B,mzj,m + ...+ B,1$j,1 + Bozj + B+1$j+1 +...+ Bm$j+m
m
= Z Bz,

l=—m

where z;;; denotes the cartesian vector of a unit cell, [ units apart from the n-th cell.
Transforming this equation to phonon coordinates, we find

S(k) = N~1/2 Z ZBlszezmk»nj
il

= N2 ek S g ik i)
l j

=" B kX (k).
l

This means that the relation can be written as

On the other hand, the potential energy of the crystal is given by
_ i
W=D ) 8 Fsy
P

However, the translational symmetry requires that F)j;» should only depend on the difference
|7 —j'| =1, thus F};; = F;. From this follows

2V = Z ZS}ESj+l.
P

By insertion of the inverse transformation

s =N"1? / S(k)e k™ gk
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we find

=N / / ST (k)e2 kM 7,8 (k) e~ 2m K - 410) g i
7 l
=> / / St (k) Fre= 27K TSk Vo (k — K )dkdk
l
= / S'k)> Fre=2 k™5 (k) k.
l

Introducing the notation

F(k) — ZF‘ZG_Qﬂ'ik'nlu
l

the expression for the potential energy can be written in the simple form

2V = / S' (k) F (k)S(k)dk.

In a similar way one can show that the F-matrix expressed in cartesian displacement coor-
dinates F, (k) is given by

F.(k) = B () F(k)B(k)
and that the dynamical matrix D(k) can be expressed as

D(k) = M~Y2FE, (k)M /2
= M~V?2BYk)F(k)B(k)M~'/2.

2.7 The calculation of crystal normal coordinates.

In general, the dynamical matrix D(k) will be a complex matrix of order n. The diagonal-
ization of this matrix does not, however, present any problem, because it can be shown to
be equivalent with a real matrix of order 2n.

Expressing the matrix D in the form D = D, + iD, and the eigenvector x as x, + ixs we
find that the eigenvalue equation may be written in the form

(Dy +iDs)(z +ixs) = Az, + i)

which leads to the following two equations (one for the real part and one for the imaginary
part):

D,x, — Dsxs = Az,
D,x, + D,z = Axs.

These equations can be combined into a single matrix eqaution:

Dr *Ds Ty _)\ Ly
Ds D, s ) T \xs )’
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which shows that the real matrix
Dr *Ds
Ds; D,
has the same eigenvalues and eigenvectors as the complex matrix D.

Writing the matrix D as
D(k) = ZDze*ik'"’ = Dicos(k-n)+i)  Dysin(k-n)
l 1 1

we find that the real matrix corresponding to D(k) is

<Zl Dycos(k-n;) —>, Dysin(k-m) )
Y Disin(k-ny) >, Dicos(k-my) )’

A very important case is when k = 0, which corresponds to the optically active vibrations.
In this case the D-matrix is real. Thus the above mentioned augmentation of the matrix
need not be done, which saves computer memory space and computation time.

In this case the D-matrix may be factorized into blocks which are associated with symmetry
species. This can be found in the following way. Assume that each unit cell can be subdivided
into m asymmetric units. Then the structure of the B(0) matrix can be described as follows:

X100 X50)... X0
51(0) B11(0) Bi2(0)... Bin(0)
S3(0)  Bsi(0) By(0)... Byn,(0)

50 Bpi(0) Bus(0)... Byum(0)

B;;(0) denotes the B-matrix which connects the internal coordinates S;(0) of the i:th asym-
metric unit with the cartesian coordinates X;(0) of the j:th asymmetric unit.

Let T}, denote a 3 x 3 matrix whic moves the p:th asymmetric unit into the same orientation
as the first asymmetric unit. 7}, can obviously be written in the form of a rotation matrix.
Assuming that there are m’ atoms in the asymmetric unit, we can define a transformation
matrix U, which transforms the cartesian displacement coordinates of the first asymmetric
unit into those of the p:th asymmetric unit:

U, X1 = X,.

This matrix can be expressed as as the direct product of a unit matrix I,,,» of order m’ and
the matrix T),:

T, 0 0 ... 0
U—tyer,~| 0 T 0 0
0 0 0 ... T

The B-matrix associated with a certain symmetry species I' can then be expressed as

m

BI) =Y ¢,(1) By, (0)T,

p=1
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where ¢,(I") denotes a coefficient found from a point group character table.

The F-matrix Fs(0) has the corresponding structure:

S1(0)  S5(0) Sim(0)
S10) Fii(0) Fis(0)... Fin(0)
S5(0)  For(0)  Fyp(0)... Fo(0)

5(0) F1(0) Fps(0)... Fpm(0)

Here the diagonal terms Fj;(0) arise from the intramolecular terms of the potential energy
in the ¢:th asymmetric unit, and the off-diagonal terms F;;(0), which are symmetric, are due
to the interactions between the i:th and j:th asymmetric units.

The potential energy matrix with respect to the symmetry species I' can be expressed as
m
F(L) =) ¢(I)F1,(0),
p=1

and the corresponding dynamical matrix as

D) = M~Y2B(T)F(T)BI)M~'/2,

A similar description can be found in the paper by Kobayashi [10].

2.8 Scaling factor calculations in MOLVIB

In a scaling factor calculation by MOLVIB, the scaling factors are treated as ordinary force
constants. They are thus calculated from a least squares fit of the calculated and observed
frequencies, as described previously. These scaling factors can also be applied to a group of
similar force constants.

To perform the scaling factor calculations, the program needs the atomic coordinates, and
the cartesian force constants from an ab initio calculation. An auxiliary program (rdarch)
that extracts these data from the archive part of a Gaussian log file has been written. In
addition, it can also extract the dipole derivatives and the polarization derivatives.

MOLVIB will convert the Gaussian force constants, which are expressed in atomic units,
into those used by MOLVIB. Pulay has used what he calls a ’reference’ geometry, which is
close to the experimental geometry, but presently MOLVIB can only calculate frequencies
for a molecule in an equilibrium geometry (as the Gaussian program does). It is always
good to start with an initial calculation, where all the scaling factors have been set to 1,
and check if one can reproduce the frequencies calculated by the ab initio program.

In the scaling factor calculations, three methods can be used, as defined by the value of
the option SCALF. Two of them are based on Pulay’s method [15], according to which the
internal force constants f;; are transformed according to

fij = \/SiS;jfij,

(geometric mean scaling) where S; denotes a scaling constant (usually less than 1).
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A strict application of this method would mean that the non-diagonal terms in the potential
energy will depend nonlinearly on the scaling factors:

V=) Sifudiai+ DD /95 fitia;

A

In the simplest method (SCALF = 1), the factor ,/5;5; that occurs in front of the non-
diagonal force constant is therefore fixed during the iteration, which means that the calcu-
lation has to be repeated. In this case the frequency fit usually converges in four or five
iterations, and often just a few repetitions are necessary. The initial values for the scaling
factors are set to 1.

One can also use a variant of this method (SCALF=2), where the scaling factors associated
with the non-diagonal force constants are updated during each iteration, but this produces
usually a large number of non-zero C—matrix elements. On the other hand, the calculation
needs not to be repeated, and is thus easier to use than the first method.

Lastly, it is also possible to use individual scaling factors for the non-diagonal force constants
(SCALF=3). In this case, scaling factors should be associated both with diagonal and non-
diagonal terms. Similar ideas have been proposed by Blom and Altona [3]. As is easy to
understand, one should not use too many different scaling factors in this case, but instead
group similar factors together, so that the total number of scaling factors is not more than
about 10. Too many scaling factors can also give rise to large correlations.

Setting the initial values of the scaling factors to 1 usually leads to fast convergence, and
the problems discussed in connection with ordinary force constant calculations (correlation,
for instance) are not so important in scaling factor calculations, as long as the number of
them is small. The Gauss-Newton method seems also to be quite adequate (cf. ref. [15b]),
especially when it is combined with some kind of damping (modified Gauss or Marquardt).
A more complicated algorithm is described in the paper by Allen [2].

The internal force constants, which are needed in the scaling, are found by the following
coordinate transformation. According to definition, the internal coordinates of a molecule
can be expressed in terms of cartesian coordinates as

s = Bz.

Usually the number of internal coordinates (m) is not equal to the number of cartesian
coordinates (n). Thus the B—matrix is rectangular, and cannot be inverted in the usual
way. If Bt denotes a pseudo-inverse of the B-matrix:

BT =(B'B)"'P,

we can write

x = BTs,

and the internal force constant matrix can then be found from a similarity transformation
of the ab initio force constant matrix (the Hessian):

F,=B"F,B".
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Usually the scaling factors are applied to force constants expressed in local symmetry co-
ordinates (Pulay uses 'natural’ coordinates [14], which are similar), but the choice of the
coordinates is not very crucial, provided that they are independent and form a complete
set (redundant coordinates omitted). Observe, that we actually scale the internal force
constants, not the cartesian force constants (Pulay has explained this in some detail in his
papers). Using the PED option of the MOLVIB program, it is possible to get a list of the
scaled internal force constants, and also the new cartesian force constants after scaling of
the internal ones.

The program needs, of course, also the observed frequencies of the considered molecules
(usually also some deuterated species are included, if frequencies are available). Ideally one
should use harmonic frequencies, since the ab initio calculations are assumed to converge
towards the harmonic frequencies. But if we wish to apply the scaled force field to some
larger molecules for which no harmonic frequencies are available, the observed frequencies
can be used. Pulay has remarked that in this case the scaling factors will also include some
anharmonic effects, but such scaling factors may still be transferable to similar molecules.
Of course, Fermi resonance causes a problem. This is the reason why the CH stretching
frequencies, for instance, never are very well reproduced.

2.9 Intensity calculations in MOLVIB

The integrated molar absorption coefficient Ay of the k:th vibrational mode @) can be
expressed as

2

Ap = N”Z’ Op [km /mol]
g

- 47T6() 302 an

2
o
= 974.86277) | =
=l

where the dipole derivatives are expressed in units of ew /2 (summation is over the com-
ponents of degenerate vibrations).

The components of the derivatives 22 are found from [24]

0Qk

i _ Z Opi ug i
an 3 8.73,5 \/mg

where g“T‘; are the cartesian dipole derivatives, obtained from the Gaussian archive file

(no final normalization is needed, see footnote 3 in ref. [16]). In the archive file, the
dipole derivatives are listed in such an order that the components w.r.t. the space-fixed
coordinates are changing most rapidly. The transition moments are also calculated from the
dipole derivatives w.r.t. the normal coordinates.

In a similar way the polarizability derivatives w.r.t. the normal coordinates Q are found
from the cartesian polarizability derivatives [25]:

80zij _ Z 8@@‘ UpB,k .
0Qr 3 Oxg N

The mean polarisability is calculated from

_ 1 Oair  Oaga 6a33>
=3 + + ;
473 2 (aczk 9Qr  9Qy

k
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and the anisotropy is found from
2 1 (30411 B 8@22)2 L (8(X11 B 8a33>2 L (30422 _ 66¥33>2
B2 RN 0Qn 0Qr ~ 9Qx

Oaqa 2 Oaqs 2 Oas 2
<3Qk> +(3Qk> +<8Qk> H

The Raman activity can then be expressed as

+6

4
(if) (45G% + 792) = 0.0784163 - (450> + 72),

and the depolarization degree as

372

T 45a2 + 492
MOLVIB expresses the infrared and Raman intensities in the same units as the Gaussian
program.

p
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3 Program manual

Beginning with version 6.0 of the program, it is possible to change several of the array
dimensions and create larger (or smaller) executables. These dimensions are defined by
PARAMETER statements in five INCLUDE files. Their default values are listed in the
following table:

File name Parameter Value Description
MOLATM.INC MAXAT 50 Max. number of atoms (including crystal atoms)
MOLDAT.INC MAXDAT 1000 Max. number of frequencies included in fit
MOLGEO.INC MAXCOR 200 Max. number of (dependent) internal coordinates
MOLMAT.INC NCMAX 100000 Max. number of cartesian C-matrix elements

15000 in the MS Fortran version

MAXDIM 150 Max. number of cartesian (or int.) coordinates
100 in the MS Fortran version

MOLPAR.INC NPMAX 100 Max. number of potential parameters

INTMAX 1000 Max. number of defined force field interactions

The following disk files are used by the program:

Unit 9: A scratch file used by EVFIT and PED.

Unit 10: File cmatrix for storing the C-matrices.

Unit 11: File bmatrix for storing the B-matrices and geometrical information.

Unit 12: Scratch file used for the calculation of the B-matrix (MOLIN), the parameter error
correlation matrix (MOLFIT), and the F-matrix (PED).

Unit 13: Scratch file used in the calculation of the C-matrices (MOLIN), and to store the
symmetry transformation matrices (PED).

Unit 14: File umatrix for storing the eigenvectors and eigenvalues of the dynamical matrices.
Unit 15: File vibpot for storing force constant values and definitions.

Unit 16: File cartfc for storing cartesian force constants for scaling factor calculations (if
SCALF > 1).

Unit 20: File logfile for storing logging information.

Unit 21: File pedout (real name is determined by the run script) for storing potential energy
distributions.

Data is normally read from standard input (unit 5). In addition, a file may be specified for
input of atomic coordinates and internal coordinates (control parameter: DATFIL). The unit
number can be chosen by input.
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Most of the printout from the program is directed to standard output (unit 6). However, the
P.E.D. matrices generated by PED (using the control parameter FILPED) will be written to
the file pedout on unit 21. Before a MOLVIB run is finished, logging information is written
to the file logfile on unit 20.

For input, a free-format alphanumeric code is used, which will be described in the following.

3.0 Installation of the program

The program package contains detailed instructions for installation on different systems.
Here some of the points are being discussed.

On a Unix system, MOLVIB can be installed by compiling all the subroutines with a Fortran
(77 or 90) compiler and storing them in an object library 1ibmolvib.a. A script file mvblib
shows how this is done (for the f77 compiler).

Then the main program molvib.for is compiled and linked together with the library to
create an executable molvib (see the script file mvblink). If the free compiler g77 is used (in
Linux, for instance) on should remember to use the option -ffloat-store when the main
program molvib.for is compiled. To run the program, a script file mvb is used.

On a PC one can install the program under DOS (or Windows, under the command
prompt) in similar way by first compiling the subroutines and then creating an object li-
brary MOLVIB.LIB. The file MVBLIB.BAT shows how this is done using the MS FORTRAN
compiler.

The main program MOLVIB.FOR is then linked with the library to create an executable
MOLVIB.EXE (see MVBLINK.BAT). A batch file MVB.BAT is provided for running the program.

Older versions of the MS FORTRAN compiler cannot use extended memory, and the pro-
gram dimensions must therefore be small enough, so that the program runs in primary
memory (cf. the table in the beginning of this chapter). However, using the Windows ver-
sion of g77 the memory restrictions can be eliminated, and it is then possible to use the
same dimensions as in the Unix version of the program. Precompiled executables (both for
MS FORTRAN and G77) have been provided in the program package.

A few of the routines are system dependent. These are DATUM. FOR, TIME . FOR and MVBEND . FOR.
The Unix Fortran and MS FORTRAN versions of the main program are also slightly dif-

ferent. Using the VAX versions of these routines, it is also possible to run MOLVIB under
VMS.

3.1 General Structure of the Input Data

1) A title line. The first column should contain a %-sign (the %-sign will be omitted from
the output). Input lines are skipped until a title line is found.

2) Line(s) of input with values of the control parameters (read by the main program).
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3) Lines of data (read by the subroutines, in the order they are called).

Data for several calculations may be added after each other, provided that the first line is a
title line (see above).

3.2 Control Parameters
Twenty-two control parameters are presently recognized by the program :

NRCALC, NBTYP, NMOLE, BMAT, BTRANS, PRINT, DATFIL, NEWPAR, NRITER, WEIGHT, MARQ, MMARQ,
GAUSS, MGAUSS, SAVASS, PED, FILPED, UNITS, JACOB, SCALF, ZMAT and INTENS.

The value of a parameter is specified by setting it equal to an integer number. Only the first
three characters in a parameter name are necessary.

Example : NRITER = 10.

If the value is 1, only the name of the parameter need to be specified. The parameters and
their values are listed in arbitrary order separated by commas. The end of the list is indicated
by a semicolon (;). An omitted parameter is assumed to have the value 0 (the default value).

Example of a list of parameters:

NMOLE = 5, NBTYP =2, MGAUSS ,WEIGHT;
In the output, the parameters will listed together with their values. These parameters will

be described in the following:

NRCALC = 0 : No calculation (call of MOLFIT) performed. Can be used for testing, or
when the B- and C-matrices are constructed separately, and saved on disk
files for subsequent calculations. Previously this was sometimes necessary in
order to save computing time.

>0 :n calculations are performed (MOLFIT called n times).

NBTYP

I
o

: Urey-Bradley non-bonded (geminal) interactions are expressed in the har-
monic approximation as f(Ar)? + 2f'rAr , where f and f’ are two in-
dependently variable force constants, and Ar is the geminal displacement
coordinate (cf. sect. 2.2).

= 1 : The ratio between f’ and f is assumed constant (c), so that the interaction
can be expressed as f[(Ar)? + 2crAr]. In this case the initial value of f’ is
substituted by ¢ in the list of force constant definitions input to MOLIN.

> 1 : Non-bonded interactions are treated as in the CFF-program (ref. 13) by
computing the second-order derivatives of the potential energy terms. All the
standard types of bonded diagonal terms (stretch, bend, out-of-plane bend,



NMOLE

BMAT

BTRANS

PRINT =—-2

DATFIL

NEWPAR

0

1
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and torsion) can be treated by the program. For the non-bonded interactions
Lennard-Jones (L-J) functions plus Coulomb terms are assumed.

: The L-J function is assumed to be of the form: a(r/2)~12 — b(r/2)~°

: The L-J function is assumed to be of the form: a[(r/ro) ™2 — 2(r/ro) 7] ,
where rq is fixed.

: Files 10 and 11 are assumed to exist (The B- and C-matrices have been
constructed separately, so MOLIN needs not to be called).

: Input data for n molecules is considered, and the files will be constructed.
: The B-matrix will be generated by the program.

: The B-matrix is given on input.

: No cartesian basis transformation.

: A new basis is constructed from the eigenvectors of M ~1/2B'BM~1/2. This
usually leads to a smaller number of non-zero cartesian C-matrix elements,
and can therefore sometimes be useful (NB: the molecular geometry should
be fully three-dimensional).

: Smallest possible printout (output given only from MOLFIT and PED).
: No molecular input data will be printed, i.e. no output from MOLIN.

: The non-zero elements of the B- and C-matrices will not be printed, and
the eigenvectors from the diagonalization will not be printed in cartesian
coordinates.

: The non-zero elements of the B-matrix and the C-matrices (expressed
in internal coordinates) will be printed. If NBTYP is greater than 1, the C-
matrices are calculated directly in cartesian coordinates, and thus only the
B-matrices will be printed.

: The non-zero elements of the C-matrices (expressed in cartesian coordi-
nates) will be printed.

: The molecular data are read from standard input (unit number 5).

: The molecular data are input from a file on unit n (16, or any other unused
unit number).

: The force constants are read from file vibpot, but not updated.

: The force constants are read from file vibpot, and are updated.



NRITER =—1
=0
=n

WEIGHT = 0
=1
=2

MARQ = 1
MMARQ = 1
GAUSS = 1

MGAUSS = 1

SAVASS = 0
=1

PED = 1
=2

FILPED = 1
=2
=3
=4

UNITS = n
JACOB
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: If the observed frequencies are given, the force constant correlation matrix
will be printed (by subroutine MOLFIT).

: No fit is done.

(> 0): Number of iterations wanted .

: The observed eigenvalues are equally weighted.
: The observed eigenvalues are weighted as 1/y .
: The observed eigenvalues are weighted as 1/y? .

: The original version of Marquardt optimization method: The initial value
of X\ is computed once, and is either divided by 3 or multiplied by 2 in
subsequent iterations (see sect. 2.5).

: Modified Marquardt : The value of A is computed automatically according
to a formula before each iteration.

: Conventional Gauss method (only to be used close to a minimum).

: Modified Gauss method (with parameter constraints).

: No attempt to preserve original order of the eigenvectors.

: Program attempts to preserve the order of the eigenvectors (see sect. 2.5).
: Calculation of potential energy distributions (requires NRCALC > 0).

: The P.E.D. is expressed only in terms of internal coordinates (i.e., no sym-
metry coordinates are read).

: The PED w.r.t. force constants will be output in reduced form to a disk
file (pedout). Only contributions larger than 5 % are taken into account.

: The most significant (normalised) PED contributions are written to the
disk file pedout.

: The most significant (unnormalised) PED contributions are written to the
disk file pedout.

: A complete (unnormalised) PED is written to the disk file pedout.

: Number (m) of molecular asymmetric units (sub-units), used in crystal
calculations. If n < 1, it will be automatically substituted by 1.

: Indicates how the Jacobian matrix is treated (MOLFIT).
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: The Jacobian matrix elements will be printed.

: The wave-number changes corresponding to a 10 % increase in the force
constants will be printed.

: The P.E.D. in terms of the force constants will be printed, and also written
to a separate file (pedout) in a more convenient form.

: As JACOB=2, but the P.E.D. will also be written to the file pedout.
: Used in scaling factor calculations (see sect. 2.8).

: The scaling factors will be computed according to Pulay’s method (the
scaling factors of the non-diagonal force constants are not varied during the
calculation).

: The scaling factors will be computed according to Pulay’s method (and all
the scaling factors are varied during the calculation).

: Separate scaling factors for diagonal and non-diagonal force constants are
to be computed.

: The atomic coordinates are specified using a Z-matrix (instead of using
cartesian coordinates, see sect. 3.3.1).

: The intensities will be calculated, and listed (MOLFIT).

: Transition moments w.r.t. normal coordinates are printed.

3.3 Structure of the Data Input to the Subroutines

General :

The sets of data should be input in the following order:

1) Data read by MOLIN.

2) Data read by MOLFIT.

3) Data read by PED.

Numerical parameters are expressed in a free format, ( e.g., 1 = 1. = 1.E0) and are separated
by at least one space. Non-numeric characters, except 4+, —, ., E , and space, are assumed to
indicate the end of the numerical information.
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3.3.1 Input Data for MOLIN

1) Input force constant, or scaling factor definitions (see sect. 3.3.1.1) . End of input is
indicated by a blank line or a semicolon on the last line.

Data sets 2) - 6) are repeated if several molecules ( or molecular blocks ) are considered . If
DATFIL is greater than 0 (see sect. 3.2), they are read from a file.

2) Name of the molecule (maximum 80 characters).

3) Dimensions in the format
N1 N2 N3

where the numerical parameters N1-N3 have the following meanings:

N1 = number of atoms in the molecule ( < 30).

N2 = 1 : linear molecule.

N2 = 2 : planar molecule.

N2 = 3 : a three-dimensional molecule (general case).

N3 = 1 : denotes isotopically substituted molecule (else this parameter is omitted).

s« If the dimension line is blank, control will be transferred to the main program (indicates
end of data).

4) Masses of the atoms in free format :
M1 M2 M3 M4 M5 M5 ...

The masses may be listed on several consecutive lines (not more than 20 on each).

xx If N3 =1 on the dimension line, data sets 5) and 6) will be skipped.

s« If BUAT = 1, data set 5) is included, otherwise 6a) and 6b) .

5) The B-matrix input directly: Insert one or several lines with a list of the names of the
internal (or symmetry coordinates) in the format

COORD1, COORD2, COORD3 , COORDA ,..., COORDN :
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where COORD1,COORD2 etc are symbols separated by commas. Only the 8 left-most
characters are considered by the program. The set of coordinate names is concluded by a
colon (:). The list of coordinate names is followed by the values of the non-zero B-matrix
elements. The line format is

11 J1 B112 J2 B2 13 J3 B3 ..

where B1 denotes the value of the B-matrix element B(I1,J1) etc. Not more than about
6 matrix elements should be listed on each line. The set of matrix elements is concluded
by a blank line.

The B-matrix is generated by the program : 1) ZMAT=0: The cartesian coordinates of the
atoms are input in the following format:

ATOM1 : XY Z N1

where ATOM1 denotes the symbolic name of an atom, and X, Y, and Z denote their carte-
sian coordinates (usually expressed in Angstroms, 0.1 Nm) . Only the first 6 characters
of the name of the atom are considered by the program. N1 is an integer parameter,which
is usually omitted, except in the treatment of ’dummy atoms’ (associated with ligands in
complexes), or 'equivalent’ atoms. Equivalent (or extra) atoms are used in crystal calcu-
lations to define interactions between different asymmetric units. In this case N1 denotes
the sub-unit index of the equivalent atom, and N2 is the number of the corresponding
atom in the main unit). The sub-unit index of the main unit is 0, the other units being
consecutively numbered 1, 2, 3, ... etc. The atomic coordinates are given on subsequent
data lines, and the order of the atoms has to be the same as the order of the atomic
masses (data set 3)).

If NBTYP is greater than 1, the input format is assumed to be :

ATOM1 : XY ZCN1

where ATOM1, X, Y, Z, and N1 have the same meanings as before, and C denotes the
(partial) charge on ATOMI1 , expressed in elementary charge units.

2) ZMAT > 0: The atomic coordinates are given as a numerical Z-matrix, in the general
format

ATOMI1 NUM1 R1 NUM2 A2 NUM3 D3

where ATOM1 denotes the symbolic name of an atom (see above), whose position is
defined by three previously defined atoms as follows. ATOM1 is bonded to NUM1 with
the bond length R1, which is bonded to NUM2, so that the bond angle between ATOM1,
NUMI1 and NUM2 is A2. Finally NUMS3 is bonded to NUM2, so that the dihedral angle
between ATOMI1, NUM1, NUM2 and NUMS3 is D3. It is equivalent with the definition of
a Z-matrix in the Gaussian program manual.
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6b) Input of internal coordinate information (cf. sect. 3.1.2) This data set is concluded by a
blank line or a semicolon as the last character on the last line.

7) In order to calculate the B-matrix for optically active crystal vibrations (cf. sect. 2.6 and
2.7), the following input must be provided:

a) The non-zero elements of the T),-matrix are input in the format
IMJ1T112J2T213J3 T3 ...

where T1 = Ty 1, T2 = Tra j2, etc. Only the non-zero matrix elements need to be
given, and the element list for each asymmetric unit is finished by a semicolon (;) as
the last character on the line. The T),-matrices are given for each asymmetric unit in
succession, except that the T)-matrix for the main unit is omitted (since it equals the
identity matrix).

b) After this the c¢,-coefficients for each symmetry block (I') are listed successively, sepa-
rated by blanks. The list of coefficients for each symmetry block is finished by a semicolon
(;), and a blank line indicates the end of input of the combination coefficients.

3.3.1.1 Input of Force Constant Definitions

The force constants are defined by specifying a set of interactions between internal (or
symmetry) coordinates or atoms (non-bonded interactions). At most 1000 interactions and
100 force constants can be handled by the program (these dimensions can, however, be
changed, as explained in the beginning of the program manual).

In scaling factor calculations, scaling factors for force constants are specified in a similar
way, by listing the internal coordinates (and interactions, if SCALF=3) that define the corre-
sponding force constants.

A special alpha-numeric code is used to specify the interactions. Each input line is divided
into string elements of the form:

< Interaction > (constant) < delimiter >

where the delimiter may be one of the following characters:

- indicates a pair of interacting coordinates.

, is used to combine interactions having common force constants.
ends a list of bonded interactions.

/ ends a list of non-bonded interactions.
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A string beginning with a %’ in the first column is treated as a comment by the program.

Between the interaction name and the delimiter, a numerical constant may be inserted
within parentheses, indicating the value of the constant by which the interaction term in the
potential energy has to be multiplied. If omitted, its value is assumed to be 1. Upto eight
characters in the coordinate names are considered by the program.

When NBTYP is greater than 1, the constant associated with stretch and bend parameters is
interpreted as the CFF parameters by and 6, resp. For torsional parameters it is interpreted
as the angle multiplicity (’k’). For the out-of-plane terms, this constant is zero.

For valence force fields, it is possible to define special coordinate interactions (see sect.
2.3) by enclosing a type number within parentheses after the minus sign denoting a pair of
interacting coordinates.

Example :
CH-(21)CCH : 0 0.05
A list of the recognized type numbers follows :

10 : Stretch-stretch interaction (bonds with no common atoms but connected via a common
bond).

11 : Stretch-stretch interaction (bonds with common end atoms).

20 : Stretch-bend interaction (bond and angle having common end atoms).

21 : Stretch-bend interaction (bond end atom common with angle center atom).

22 : Stretch-bend interaction (bond included in angle).

30 : Bend-bend interaction (center atoms of the angles connected via a common bond).
31 : Bend-bend interaction (angles having two common end atoms).

32 : Bend-bend interaction (center atom of one angle common with one end atom of the
other angle, no common bond).

33 : Bend-bend interaction (angles with common center atoms, no common bond).

34 : Bend-bend interaction (angles with common center atoms and a common bond).

Bend-bend interaction (center atom of one angle common with one end atom of the other
angle and a common bond):

35 : Anti- (trans-) interaction.
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36 : Gauche- (cis-) interaction.

37 : Arbitrary positions of the end atoms.

45 : Interaction between a bond angle and an out-of-plane bend having a common bond.
50 : Interaction between two out-of-plane bend coordinates with one bond in common.

65 : Interaction between a bond angle and a torsion angle having one bond in common.
70 : Interaction between an out-of-plane bend and a torsion with a common central bond.

After the end character, initial values for the associated force constants and their variation
ranges should be given in a free format, separated by spaces. One force constant is assumed
to be associated with a bonded interaction and two or three with a non-bonded one (see
below and the description of the parameter NBTYP ).

The force constant units should be chosen so that the potential energy will be expressed in
units of 1 attojoule (1 mdynA). If the force constants are related to energies expressed in
kecal/mol, as in the CFF program, they should be divided by the conversion factor 143.9412.

Examples:

NH : 1. 0

defines a diagonal bonded force constant which is assumed to have the fixed value 1 .
NCH/ 0.5 1 -1 0

denotes a Urey-Bradley term whose f-constant has the initial value 0.5 and the variation
range 1. The ratio f’/f is assumed to have the fixed value —1.

If NBTYP = 2, the three parameters associated with a non-bonded interaction coordinate are
interpreted as the two Lennard-Jones parameters and the inverse of the dielectric constant
in the pair potential

A(r/2)712 — B(r/2)7% 4+ 2.30713 Cejear—!

where 7 is the non-bonded distance (computed by the program) and e; and e are the charges
on the interacting atoms (cf. ref.13).

If NBTYP = 3, A and B denote the two parameters in the second form of the Lennard-Jones
potential :

Al(r/B)~"* = 2(r/B)~°]

In this case, B is assumed to be given in Angstrém units and cannot be varied.
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Example (NBTYP = 3 ) :
X++xX / 0.00208 .001 3.5 0 .333333 0

If SCALF > 0, the force constant definitions are treated as definitions of scaling factors
associated with the corresponding internal coordinates (which usually are local symmetry
coordinates.

The cartesian force constants in the Gaussian output format (lower triangle) will be read
from file 16 (cartfc), and transformed into MOLVIB units. Then the cartesian force con-
stants are converted into internal coordinates, and the scaling factors are applied.

3.3.1.2 Input of Internal Coordinate Information

The internal coordinates are also specified by a special alphanumeric code. Each input line
consists of a sequence of string elements in the following format:

< Item >< delimiter >

The ’item’ is an alphanumeric symbol. Only the six left-most characters of this symbol are
considered by the program. This symbol defines the name of the internal coordinate or atom.
The ’delimiter’, which determines the type of the item can be one of the following:

- is used to connect the atoms involved (the coordinate type is determined from the number
of atoms connected).

indicates a common name for a group of related coordinates.

/ denotes a torsional , out-of-plane bend coordinate, or non-bonded interaction coordinate
(for NBTYP > 1)

, ends information on each independent coordinate.
(or ,) ends information on each group of related coordinates.

; 1s used to separate group names, if several group coordinate names are to be listed in the
same line.

! denotes an ’extra’ stretch coordinate used to indicate a bond (sometimes useful in the
construction of crystal B-matrices, for instance). Such a coordinate will be omitted from
the list of internal coordinates.

After the delimiters '+, ’,” , and ’.” it is possible to insert the value of a constant by which all
the preceding coordinates in the same line are assumed to be multiplied. If the constant is
omitted, it is assumed to have the value 1. The coordinate information should be continued
on a new line. The maximum number of related coordinates is 200. MOLVIB knows all the
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standard internal coordinates (cf. ref. 5). Symmetry coordinates are constructed from linar
combinations of the internal coordinates, as shown in the examples.

Examples:

NH : N-H1, N-H2 , N-H3

defines the group name of three N-H stretch coordinates.
HCCH/ H1-C1-C2-H3 + H1-C1-C2-H4 + .25
H2-C1-C2-H3 + H2-C1-C2-H4 . .25

denotes the mean of four torsional coordinates.

Observe that the names of the atoms occurring in the coordinate definitions should be the
same as those previously defined, and that the names of the coordinates or group coordinates
should be consistent with the force constant definitions given earlier.

A special type of coordinate is used to define a dummy atom as a linear combination of a
set of given atoms (the centroid of a ring, for instance). Example:

X1: C1, C2, C3, C4, C5. 0.2

This means that the contributions to the dummy atom X1 in the B—matrix will be divided
by 5, and distributed equally among the five carbon atoms (cf. end of sect. 2.4).

The notation used for the internal coordinates is the following:

Stretch coordinate: XYs : X1-Y2 .
Bend coordinate: XYZb: X1-Y2-Z3 .

‘Middle’

Out-of-plane bending coordinate: XYob: X1-Y2-7Z3-Z4 .

74

X1-Y2 <

73

Torsion: XYt : Z1-X2-Y3-Z4 .
74
X2-Y3 /

71/

Observe that the out-of-plane bend coordinates should be oriented in a consistent way !
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3.3.2 Input Data for MOLFIT

If NEWPAR = 0, data set 1) is skipped.

1) If updating is wanted, the force constant numbers (N), their new values (P) and variation
ranges (D) are input in the following order :

N1 P1 D1 N2P2D2N3P3D3 ..

End of information is indicated by a semicolon (;) or a blank line.

2) The observed normal frequencies of the molecules are input in the following format:
X1 M1 N1 X2 M1 N2 ...

Here X1 denotes a frequency (in cm~!), M1 is the molecule (dynamical matrix) number,
and N1 is the corresponding eigenvalue number. The eigenvalues are counted according
to their order of magnitude, starting with the null frequencies. Before a frequency fit is
attempted, a test diagonalization (using NRCALC > 0) should be performed to assure a
proper assignment of the frequencies. The maximum number of frequencies is 1000. As
explained in the introduction, this dimension can be changed.

Example:
267 1 7 273.8 1 8 312 19 387 1 10 623.6 1 11...

End of information is indicated by a semicolon (;) or a blank line.

If SCALF > 0, and a blank line was encountered after the cartesian force constants in file 16
(cartfc), the rest of the file is supposed to contain the dipole derivatives (three per line).
Isotopically substituted compounds are assumed to have the same dipole derivatives. Infrared
intensities will then be calculated from the dipole derivatives, as explained in sect. 2.9. If a
line starting with the word POLAR, is encountered in file 16 after the dipole derivatives, the
following lines in the file are supposed to contain polarization derivatives (used to compute
Raman activities).

For several (not isotopically substiuted) molecules the data sets have to be repeated in the
mentioned order. The last line may be blank.
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3.3.3 Input Data for PED

The elements of the symmetry transformation matrices of all the molecules (except for the
isotopically substuted ones) should be given on input.

The format of the symmetry coordinate names is as follows:
SCOOR : 11 U112 U213 U3 ...

Here SCOOR denotes a symmetry coordinate name (observe that upto eight characters are
considered), I1, 12, and I3 denote internal coordinate numbers and Ul, U2, and U3 are the
corresponding matrix elements.

If several symmetry coordinates are listed on the same line, the data sets should be separated
by commas (,).

Example:
ADS1: 213 -1, BDS1 : 5616 -1,

Symmetry coordinates which are identical to internal coordinates need not to be listed.
Observe also that the normalization of the symmetry coordinates is automatically done by
the program! If the force field calculation has been done in symmetry coordinates, or if the
P.E.D. in terms of internal coordinates is preferred, one should use the control parameter
value PED= 2 to suppress some unnecessary output.

N.B. If the force field is of the CFF type (NBTYP > 1), the force field will first be transformed
from cartesian coordinates into internal coordinates, by calculating the pseudo-inverse of
the B-matrix (cf. sect. 2.8). By a further transformation of the force field into symmetry
coordinates, and by computing the L-matrix in symmetry coordinates, the P.E.D. can be
expressed in symmetry coordinates. Using the control parameter FILPED, the P.E.D. can be
written to a separate disk file (pedout), as explained in sect. 2.

If SCALF > 0 the force constants will be output (after scaling) in cartesian coordinates.



4 Input examples

(additional examples can be found among the test inputs)

4.1 Test Example 1 : The Ethane Molecule

*x* First part of standard M 0 L V I B test:

% GVFF for ethane (C2H6) -- initial calculation
NRC, JACO=1,NMOL=3,PRINT=1;

*

* Valence force field for ethane

*

CH: 4.8 .1

CC: 4.5 .1

CH-(11)CH : 0 .1

CH-CC : 0 0

HCH : 0.5 .1

CCH : 0.7 .1

CH-(22)HCH : 0.1 .05

CC-CCH : 0.3 .05

CH-(22)CCH : 0 .05

HCH-(34)HCH : .05

CCH-(34)CCH : 0

HCH-(34)CCH :
CCH-(35)CCH : 0.1 .05

CCH-(36)CCH : .05

HCCH : 0.05 .01 ;

CH3CH3 --- Struct. CH=1.095,CC=1.531,HCH=107.4 (Kuchitsu)
8 3

12.011 1.008 1.008 1.008 12.011 1.008 1.008 1.008

Ci: 000

H1: 1.019013 0 -.400795

H2: -.509507 .882491 -.400795

H3: -.509507 -.882491 -.400795

C2: 0 0 1.531

H4: -1.019013 0 1.931795

H5: .509507 -.882491 1.931795

H6: .509507 .882491 1.931795
CH:C1-H1,C1-H2,C1-H3,C2-H4,C2-H5,C2-H6.

CC:C1-C2.
HCH:H1-C1-H2,H2-C1-H3,H3-C1-H1,H4-C2-H5,H5-C2-H6 ,H6-C2-H4.
CCH:C1-C2-H4,C1-C2-H5,C1-C2-H6,C2-C1-H1,C2-C1-H2,C2-C1-H3.
HCCH/ H1-C1-C2-H4+H2-C1-C2-H4+H3-C1-C2-H4+ .1111111
H1-C1-C2-H5+H2-C1-C2-H5+H3-C1-C2-H5+ .1111111
H1-C1-C2-H6+H2-C1-C2-H6+H3-C1-C2-H6. .1111111;

CH3CD3

831

12.011 1.008 1.008 1.008 12.011 2.0141 2.0141 2.0141
CD3CD3

8§31

12.011 2.0141 2.0141 2.0141 12.011 2.0141 2.0141 2.0141

O O O OO



**x* Second part of standard M O L V I B test:

% GVFF for ethane (C2H6) -- frequency fit and PED
NRCA,NMOLE=0, JACO=2,PRINT=0,NRIT=20,WEIGHT,SAV,MGAUSS,PED;
280 1 7821188211999 110 1183 1 11 1183 1 12

1379 1 17 1388 1 18 1469 1 15 1469 1 16 1472 1 13 1472 1 14
2896 1 19 2954 1 20 2969 1 23 2969 1 24 2985 1 21 2985 1 22
263 27 678 2 8 678 2 9 904 2 10 1066 2 11 1066 2 12

1115 2 13 1115 2 14 1122 2 15 1387 2 18 1471 2 16 1471 2 17
2090 2 19 2240 2 20 2240 2 21 2912 2 22 2976 2 23 2976 2 24
200 3 7 594 3 8 594 3 9 843 3 10 970 3 11 970 3 12 1041 3 13
1041 3 14 1081 3 15 1081 3 16 1077 3 17 1155 3 18 2083 3 20 2087 3 19
2225 3 23 2225 3 24 2234 3 21 2234 3 22;

ADS1: 21 3 -1, BDS1: 516 -1,

ADD1: 10 1 8 -1, BDD1: 13 1 11 -1,

ARO1: 18 1 19 -1, BRO1: 151 16 -1,

ADS2: 1 2 2 -1 3 -1, BDS2: 4 25 -1 6 -1,

ADD2: 9 2 8 -1 10 -1, BDD2: 12 2 11 -1 13 -1,

ARO2: 17 2 18 -1 19 -1, BR0O2: 14 2 15 -1 16 -1,
ASS: 112131,BSS: 415161,

ASB: 819110117 -1 18 -1 19 -1,

BSB: 11 1 12 1 13 1 14 -1 15 -1 16 -1;



4.2 Test Example 2 : The B-matrix of crystalline polyethylene.

% B-MATRIX FOR POLY-ETHYLENE CRYSTAL -- MOLVIB TEST
NMOLE,UNIT=4,PRINT;

* POLY ETHYLENE *

13 3

12.01115 1.007825 1.007825 12.01115 12.01115 1.007825
1.007825 12.01115 1.007825 1.007825 1.007825 1.007825
1.007825

CO: .3337705 .2901423 -.6254364

HOA: 1.3615136 .0389284 -.6254364

HOB: .2280360 1.3428456 -.6254364

C1’: -.3337705 -.2901423 -1.8763091 1 1

Cl: -.3337705 -.2901423 .6254364 1 1

H1A: -1.3615136 -.0389284 .6254364 1 2
H1B: -.2280360 -1.3428456 .6254364 1 3
C0’: .3337705 .2901423 1.8763091 0 1

H3B: 3.8085357 1.0901540 -.6254364 2 3
H4A’: 2.2189861 2.4719283 .6254364 3 2
H4B: 3.3524636 -1.0901540 .6254364 3 3
H4A: 2.2189861 -2.3940709 .6254364 3 2
H1B’: -.2280360 3.5231536 .6254364 1 3

CC: C0-C1,C1’-CO!.

CH2S: CO-HOA+CO-HOB. .7071068

CH2A: CO-HOA+ .7071068

CO-HOB. -.7071068

CCC: C1’°-C0-C1+ .9128709
HOA-CO-HOB+C1-CO-HOA+C1-CO-HOB+C1’-CO-HOA+C1’-CO-HOB. -.1825742
CH2B: HOA-CO-HOB+ .8944272
C1-C0-HOA+C1-CO-HOB+C1’-C0O-HOA+C1’-CO-HOB. -.2236068

CH2W: C1-CO-HOA+C1-CO-HOB+ .5

C1’-CO-HOA+C1’-CO-HOB. -.5

CH2R: C1-CO-HOA+C1’-CO-HOA+ .5

C1-C0-HOB+C1’-CO-HOB. -.5

CH2T: C1-CO-HOA+C1’-CO-HOB+ .5

C1-C0-HOB+C1’-CO-HOA. -.5

CCTR/ HOA-CO-C1-H1A+HOA-CO-C1-H1B+HOA-CO-C1-CO’+ .1111111
HOB-CO-C1-H1A+HOB-CO-C1-H1B+HOB-CO-C1-CO’+ .1111111
C1’-C0-C1-H1A+C1’-C0-C1-H1B+C1’-C0-C1-CO’>. .1111111

HxxH: HOA-H4A’ ,HOA-H4A,HOA-H4B,HOB-H4A’ ,HOA-H3B,HOB-H1B’. ;
11-1.22-1.331.;
111.22-1.3
11-1.221.3
1. 1. 1. 1.
1
1
1

’

3 1.
31. ;
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4.3 Test Example 3: A CFF calculation for ethane

% ETHANE ... 9 torsions ... PEF 303(opt) ... Trial NCA calculation
NBTYP=2,NMOLE,PRINT,NRCALC;
*

* PEF 303 (opt) converted to MOLVIB units . TS 86-03-06

CH(1.099) : 4.65468 0

CC(1.5157): 3.91186 0

CCH(1.910633): .649572 0

CCC(1.910633): .989621 0

HCH(1.910633): .519657 0

HCCH(3.): .00098860 0

Cx*xH,H*+C/ .151864 0 .015862 0 .333333 0
Cx*C/ .530237 0 .038632 0 .333333 0
Hx*H/.043495 0 .00651314 0 .333333 0

ETHANE 00 01
8 3
12.0110 1.0079 1.0079 1.0079 12.0110

1.0079 1.0079 1.0079

C 1: 0.0000000 -0.0000000 0.7644474 0.0

H 2: 0.0596614 1.0312498 1.1456282 0.0

H 3: -0.9229192 -0.4639566 1.1456282 0.0

H 4: 0.8632578 -0.5672932 1.1456282 0.0

C 5: -0.0000000 -0.0000000 -0.7644474 0.0

H 6: -0.8632578 0.5672932 -1.1456282 0.0

H7: -0.0596614 -1.0312498 -1.1456282 0.0

H 8: 0.9229192 0.4639566 -1.1456282 0.0

CH:C 1-H 2,C 1-H 3,C 1-H 4,C 5-H 6,C 5-H 7,C 5-H 8,

CC:C 1-C 5,

HCH:H 2-C 1-H 3,H 2-C 1-H 4,H 3-C 1-H 4,H 6-C 5-H 7,H 6-C 5-H 8,
H 7-C 5-H 8,

CCH:C 5-C 1-H 2,C 5-C 1-H 3,C 5-C 1-H 4,C 1-C 5-H 6,C 1-C 5-H 7,
C 1-C 5-H 8

H7-C 5-C 1-H 3,H 7-C 5-C 1-H 4,H 8-C 5-C 1-H 2,H 8-C 5-C 1-H 3,

H 8-C 5-C 1-H 4,

H*xH/H 2-H 6,H 2-H 7,H 2-H 8,H 3-H 6,H 3-H 7,H 3-H 8,H 4-H 6,H 4-H 7,
H 4-H 8,



4.4 Test Example 4 : The Formaldehyde Molecule
(scaling factor calculation)

% Scaling factor test for FORMALDEHYDE * TS 1997-5-9, 1999-10-23
NRCA, JACO=1,NMOLE=2,PRINT,SCALF=2,ZMAT, INTEN,NRIT=10,MGAUS ,WEIGHT, SAVA;
S1,S4 : 1 0.05

S2 : 1. 0.05
S3,S5: 1. 0.05
S6 : 1. 0.05;

Formaldehyde, becke3lyp/6-31g**, frequencies and dip.derivs.
4 3

15.99491 12 1.00783 1.00783

01

C2 1 1.20678664

H3 2 1.11032398 1 122.37705146

H4 2 1.11032398 1 122.37705146 3 180.

S1: C2-H3 + C2-H4. .707107

S2: C2-01.

S3: H3-C2-H4 + .816497

H3-C2-01 + H4-C2-01. -.408248

S4: C2-H3 + .707107

C2-H4. -.707107

S5: H3-C2-01 + .707107

H4-C2-01. -.707107

S6: 01-C2-H4-H3. ;

D2C0

431

15.99491 12 2.0141 2.0141

1191 1 7 1287.7 1 8 15662.6 1 9 1763.7 1 10 2944.3 1 11 3008.7 1 12
955 2 7 1014.3 2 8 1139.6 2 9 1716.7 2 10 2143.5 2 11 2254.5 2 12 ;
* "harmonized" freq. from Duncan & Mallinson

Ab initio force constants and dipole derivatives for formaldehyde

0.07368201

0. 0.01901460

0. 0. 0.89884867

-0.10776412 0. 0. 0.58164862

0. -0.05758915 0. 0. 0.17426055

0. 0. -0.81484215 0. 0.

1.01577283

0.01704105 0. -0.01837269 -0.23694225 0.
-0.07591285 0.23894077

0. 0.01928728 0. 0. -0.05833570

0. 0. 0.01949797

-0.03660268 0. -0.04200326 -0.08095982 0.
-0.10046534 0.10592402 0. 0.13205032
0.01704105 0. 0.01837269 -0.23694225 O.
0.07591285 -0.01903957 0. 0.01163849 0.23894077
0. 0.01928728 0. 0. -0.05833570

0. 0. 0.01955046 0. 0.

0.01949797



0.03660268 0. -0.04200326 0.08095982 0.
-0.10046534 -0.01163849 0. 0.01041828 -0.10592402
0. 0.13205032

-0.4247792 0. O.

0. -0.3116738 0.

0. 0. -0.8608323
0.8605767 0. O.

0. 0.1796489 0.

0. 0. 0.9888199
-0.2178988 0. -0.1143274
0. 0.0660125 0.
-0.1071656 0. -0.0639938
-0.2178988 0. 0.1143274
0. 0.0660125 0.
0.1071656 0. -0.0639938

42



4.5 Test Example 5: Li-cyclopentadienyl complex
(scaling factors and dummy atom)

% Scaling factors for Li-cyclopentadienyl (test)
NRCALC,NMOLE=1,PRINT=1, JACOB=1,SCALF;
LiX: 1. 0.
CR12,CR23,CR34,CR45,CR51: 1. O.
CRH1,CRH2,CRH3,CRH4,CRH5: 1. O.
CA1,CA2,CA3,CA4,CA5: 1. O.
CBH1,CBH2,CBH3,CBH4,CBH5: 1. O.
LiXC: 1. 0.
CGH1,CGH2,CGH3,CGH4,CGH5: 1. O.
CT12,CT23,CT34,CT45,CT51: 1. 0.;

* CBH5-Li, geometry from HF/6-31G*
12 3

7.016 12 12 12 12 12

1.00783 1.00783 1.00783 1.00783 1.00783 1
Li : 0.000000 0.000000 0.000000
Cl : 1.199438 0.000000 1.762044
C2 : 0.370666 1.140718 1.762044
C3 : -0.970326 0.705011 1.762044
C4 : -0.970333 -0.704990 1.762044
C5 : 0.370655 -1.140711 1.762044
H6 : 2.273130 -0.000004 1.762044
H7 : 0.702459 2.161859 1.762044
H8 : -1.838959 1.336115 1.762044
H9 : -1.838971 -1.336086 1.762044
H10 : 0.702440 -2.161853 1.762044
X : 0.000000 0.000000 1.762044 1
LiX: Li-X.

XC: X-C1!,X-C2!,X-C3!,X-C4!,X-C5!.
X: C1,C2,C3,C4,C5. 0.2

CRH1: C1-H6.

CRH2: C2-HT7.

CRH3: C3-HS8.

CRH4: C4-H9.

CRH5: C5-H10.

CR12: C1-C2.

CR23: C2-C3.

CR34: C3-C4.

CR45: C4-C5.

CR51: C5-C1.

CAl: C5-C1-C2,

CA2: C1-C2-C3,

CA3: C2-C3-C4.

CA4: C3-C4-C5.

CA5: C4-C5-C1.

CBH1: H6-C1-C2+ 0.5

H6-C1-C5. -0.5

CBH2: H7-C2-C3+ 0.5

H7-C2-C1. -0.5

CBH3: H8-C3-C4+ 0.5



H8-C3-C2. -0.5

CBH4: H9-C4-C5+ 0.5
H9-C4-C3. -0.5

CBH5: H10-C5-Cl+ 0.5
H10-C5-C4. -0.5

LiXC: Li-X-C1, Li-X-C2,
Li-X-C3, Li-X-C4, Li-X-C5,
CGH1: H6-C1-C2-C5.
CGH2: H7-C2-C3-C1.
CGH3: H8-C3-C4-C2.
CGH4: H9-C4-C5-C3.
CGH5: H10-C5-C1-C4.
CT12/ H7-C2-C1-H6+ 0.5
€3-C2-C1-C5. 0.5

CT23/ H8-C3-C2-H7+ 0.5
C4-C3-C2-C1. 0.5

CT34/ H9-C4-C3-H8+ 0.5
C5-C4-C3-C2. 0.5

CT45/ H10-C5-C4-H9+ 0.5
C1-C5-C4-C3. 0.5

CT51/ H6-C1-C5-H10+ 0.5
C2-C1-C5-C4. 0.5;
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