

Matrices From mod to matrix

Matrix algebras and fit indexes

Sören Möller moeller@health.sdu.dk

Epidemiology, Biostatistics and Biodemography, Institute of Public Health, University of Southern Denmark, Denmark

June 2014

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

What is a matrix?

Matrices

From mod to matrix

Fit indices

A retangular array of numbers

- Usually enclosed in some sort of brackets
- With specified number of rows and columns (dimensions)

$$A = {}_{2}A_{2} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
$$B = {}_{3}B_{2} = \begin{pmatrix} 1 & 2 & -5 & -5 \\ 3 & 4 & 4 & 2 \\ 1.2 & 1.1 & -5 & -5 \end{pmatrix}$$
$$C = {}_{1}C_{3} = \begin{pmatrix} 1 & 2 & -5 \end{pmatrix}$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Use of matrices in statistics

Matrices

From mod to matrix

Fit indices

Data matrices

Rows are subjects/observations, columns are measures/variables

$$_{n}A_{m} = (a_{ij})_{i=1,\ldots,n,j=1,\ldots,m}$$

- n number of subjects/observations
- *m* number of measures/variables
- Variance-covariance matrices
 - Describe variance/covariance between variables of a model
 - Correlation matrices are normalized by variances
- Model parameter matrices
 - Entries are parameters of a model
 - Useful for concise representation of models
 - Can make model calculations very efficient (for computers)

ション ふゆ く 山 マ チャット しょうくしゃ

Example: Data matrix

Matrices

From mode to matrix

Fit indices

##		pair	Sex	Zyg	bmi	age	twin
##	1	100001	male	DZ	26.33289	57.57974	1
##	2	100001	male	DZ	25.46939	57.57974	2
##	3	100002	male	MZ	28.65014	57.04860	1
##	5	100003	male	DZ	28.40909	57.67830	1
##	7	100004	male	DZ	27.25089	53.51677	1
##	8	100004	male	DZ	28.07504	53.51677	2
##	9	100005	male	DZ	27.77778	52.57495	1
##	11	100006	male	DZ	28.04282	52.57221	1
##	12	100006	male	DZ	22.30936	52.57221	2
##	13	100007	male	DZ	28.06642	52.49007	1

Example: Covariance and correlation matrix

Matrices

From mode to matrix

Fit indices

##		bmi1	age1	bmi2	age2
##	bmi1	13.140030	7.723399	6.155991	7.723399
##	age1	7.723399	60.949171	7.589034	60.949171
##	bmi2	6.155991	7.589034	12.662559	7.589034
##	age2	7.723399	60.949171	7.589034	60.949171

##		bmi1	age1	bmi2	age2
##	bmi1	1.0000000	0.2729144	0.4772424	0.2729144
##	age1	0.2729144	1.0000000	0.2731756	1.000000
##	bmi2	0.4772424	0.2731756	1.0000000	0.2731756
##	age2	0.2729144	1.0000000	0.2731756	1.000000

Example: Model parameter matrices

Matrices

From mode to matrix

Fit indices

For a twin model we could assume the covariance matrices to be

$$Cov(\epsilon_1, \epsilon_2)_{MZ} = \begin{pmatrix} \sigma_1^2 & \rho_{MZ}\sigma_1\sigma_2 \\ \rho_{MZ}\sigma_1\sigma_2 & \sigma_2^2 \end{pmatrix}$$
$$Cov(\epsilon_1, \epsilon_2)_{MZ} = \begin{pmatrix} \sigma_1^2 & \rho_{DZ}\sigma_1\sigma_2 \\ \rho_{DZ}\sigma_1\sigma_2 & \sigma_2^2 \end{pmatrix}$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

with parameters $\sigma_1, \sigma_2, \rho_{MZ}$ and ρ_{DZ} .

Matrix operations

 Matrices can be added, subtracted and multiplied by numers entrywise, if they have the same dimensions

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix} = \begin{pmatrix} 1+3 & 2+1 \\ 3+5 & 4+2 \end{pmatrix} = \begin{pmatrix} 4 & 3 \\ 8 & 6 \end{pmatrix}$$

 Matrices can be multiplied, if the left matrix has the same number of colums as the right one has rows

$$({}_{m}A_{n} \cdot {}_{n}B_{p})_{i,j} = \sum_{k}^{n} a_{ik} \cdot b_{kj}$$

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix} = \begin{pmatrix} 1 \cdot 3 + 2 \cdot 5 & 1 \cdot 1 + 2 \cdot 2 \\ 3 \cdot 3 + 4 \cdot 5 & 3 \cdot 1 + 4 \cdot 2 \end{pmatrix}$$

$$= \begin{pmatrix} 13 & 5 \\ 29 & 11 \end{pmatrix}$$

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ● のへで

Matrices

From mod to matrix

Fit indices

Special matrices

Matrices

From mod to matrix

Fit indices

Identity matrix (1 on diagonal, 0 everywhere else)

$$I = egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}$$

Zero matrix (0 everywhere)

$$O = egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Excercise

Assume our model is

Matrices

From mod to matrix

Fit indices

$$Y_{i} = \mu_{i} + \epsilon_{i}, \qquad i = 1, 2$$

$$Cov(\epsilon_{1}, \epsilon_{2})_{MZ} = \begin{pmatrix} \sigma_{1}^{2} & \rho_{MZ}\sigma_{1}\sigma_{2} \\ \rho_{MZ}\sigma_{1}\sigma_{2} & \sigma_{2}^{2} \end{pmatrix}$$

$$Cov(\epsilon_{1}, \epsilon_{2})_{MZ} = \begin{pmatrix} \sigma_{1}^{2} & \rho_{DZ}\sigma_{1}\sigma_{2} \\ \rho_{DZ}\sigma_{1}\sigma_{2} & \sigma_{2}^{2} \end{pmatrix}$$

and we observe

$$Cov(\epsilon_1, \epsilon_2)_{MZ} = \begin{pmatrix} 4 & 3 \\ 3 & 4 \end{pmatrix}$$
$$Cov(\epsilon_1, \epsilon_2)_{MZ} = \begin{pmatrix} 4 & 1 \\ 1 & 4 \end{pmatrix}$$

Determine the values of ρ_{MZ} and ρ_{DZ} :

Solution

Matrices

From mode to matrix

Fit indices

- From the diagonals we must have $\sigma_1^2 = \sigma_1^2 = 4$ for both MZ and DZ
- Hence $\sigma_1 = \sigma_2 = 2$ for both MZ and DZ

• So
$$\rho_{MZ} = \frac{3}{2 \cdot 2} = \frac{3}{4}$$

• So
$$\rho_{DZ} = \frac{1}{2 \cdot 2} = \frac{1}{4}$$

- This indicates some genetic effect as $\rho_{MZ} > \rho_{DZ}$
- In reality these numbers would not be so nice, and we would have to find statistical optimal soulutions, instead of exact solutions.

From model to matrix

Matrices

From model to matrix

Fit indices

- We often specify models by path diagrams
 Rectangular boxes are observed variables
- Circles are unobserved latent variables
- Twoheaded arrows indicate correlations, numbers on arrows specify the coefficient of linear correlation
- Oneheaded arrows indicate assumed direction of causality

X

 ϵ

Example: Univariate linear model

Matrices

From model to matrix

Fit indices

$$Y = \beta_X \cdot X + \epsilon$$
$$Cov(\epsilon, \epsilon) = \sigma^2$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example: Simple twin model

Matrices

From model to matrix

Fit indices

$$Y_{i} = \beta_{X,i} \cdot X_{i} + \epsilon_{i}$$
$$Cov(\epsilon_{1}, \epsilon_{2}) = \begin{pmatrix} \sigma_{1}^{2} & \rho\sigma_{1}\sigma_{2} \\ \rho\sigma_{1}\sigma_{2} & \sigma_{2}^{2} \end{pmatrix}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへ⊙

Excercise

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Specify this model as matrix equations

Solution

Matrices

From model to matrix

Fit indices

$$Y_{i} = \beta_{X,i} \cdot X_{i} + \tau_{i}Z + \epsilon_{i}$$
$$Cov(\epsilon_{1}, \epsilon_{2}) = \begin{pmatrix} \sigma_{1}^{2} & \rho\sigma_{1}\sigma_{2} \\ \rho\sigma_{1}\sigma_{2} & \sigma_{2}^{2} \end{pmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What is a fit index?

- Matrices From mod
- to matrix
- Fit indices

- A fit index is a measure for how good a model fits to the data
- We use it to compare different models fits to **the same** data
- We can normally not compare fit to different data sets
- In some cases we can not only determine, which model fits better, but also if it fits significantly better
- Fit indices can be utilized to choose the appropriate model
- Finding the right balance between being simple and describing the observed data well

(Log-)likelihood

The likelihood of model parameters $\boldsymbol{\theta}$ if we observed the data \boldsymbol{x} is given by

$$L(\theta \mid x) = P(x \mid \theta),$$

where $P(x \mid \theta)$ is the probability of observing x if the true parameters are θ . A higher likelihood indicates a better fit. Many statistical algorithms try to maximize the likelihood. For practical reasons we often consider the log-likelihood

$$logL(\theta \mid x) = log(L(\theta \mid x))$$

instead. A higher log-likelihood indicates a better fit. The (log)-likelihood is only useful for comparing nested models.

Matrices From mode to matrix

Fit indices

Example: Log-likelihood

Matrices

From mod to matrix

Fit indices

```
fitAge=twinlm(bmi~age,data=d,id="pair",zyg="Zyg")
fitAgeSex=twinlm(bmi~age+Sex,data=d,id="pair",zyg="Zyg")
```

```
logLik(fitAge)
```

```
## 'log Lik.' -22138.46 (df=5)
```

```
logLik(fitAgeSex)
```

```
## 'log Lik.' -22019.54 (df=6)
```

The higher likelihood of fitAgeSex indicates that this model fits the data better.

Testing for model differences

Matrices From mod to matrix

Fit indices

• We can test if one model fits the data **significantly** better than another by using log-likelihood

$$-2 log L_1 - (-2 log L_2) \sim \chi_j^2$$

where j is the number of additional parameters in model 1This only works for nested models!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

```
lrtest(fitAgeSex,fitAge)
## Likelihood ratio test
##
## Model 1: bmi ~ age + Sex
## Model 2: bmi ~ age
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 6 -22020
## 2 5 -22138 -1 237.83 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1</pre>
```


AIC (Akaike information criterion)

Matrices From mod

Fit indices

AIC is defined by

$$AIC = 2 \cdot k - 2 \cdot logL$$

where k is the number of free parameters in the model

- Smaller AIC indicates a better fitting model
- AIC penalizes overfitting data with too many parameters
- AIC can be used to compare non-nested models
- Hence very useful when comparing different path models
- But we can not test for significance of the difference

Example: AIC

	<pre>fitSex=twinlm(bmi~Sex,data=d,id="pair",zyg="Zyg")</pre>
Matrices	
From model to matrix	AIC(fitAge)
Fit indices	## [1] 44286.91
	AIC(fitSex)
	## [1] 44477.94
	AIC(fitAgeSex)
	## [1] 44051.08

The lower AIC of fitAgeSex indicates that this model fits the data best.

Fit indices

BIC (Bayesian information criterion)

BIC is defined by

$$BIC = k \cdot \log(n) - 2 \cdot \log L$$

where k is the number of free parameters in the model and n is the number of observations.

- Penalizes heavier for overfitting than AIC
- Motivated by good predictive properties of models
- Useful in high-dimensional (i.e. genetic) data
- We mainly use AIC in twin studies

```
BIC(fitAge)
## [1] 44318.71
BIC(fitSex)
```

[1] 44509.74