

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liabilit threshold model for censored data

Practicals

Appendix: Methodology

Analysis of Twin Data: Time to Event Models

J. Hjelmborg, T. Scheike, K. Holst and S. Møller

Epidemiology, Biostatistics and Biodemography, Institute of Public Health, University of Southern Denmark, Denmark

May 2015

Prologue

Effect?

$\mathsf{Exposure}{\rightarrow}\mathsf{Outcome}$

Worked example: Prostate cancer

Aims of

Multivariate Analysis

- The Liabilit threshold model for censored data
- Practicals
- Appendix: Methodology

- Outcome: Time to occuence of event. Event may not occur can be censored at follow-up.
- What is the contribution of genetic and environmental factors to the variation in risk of outcome?

 $\left\{ \begin{array}{l} Y = {\rm Genes} + {\rm Environment} \\ \Sigma_Y = \Sigma_{{\rm Genes}} + \Sigma_{{\rm Environment}} \end{array} \right.$

- What kind of genetic and environmental influences to expect?
- How does this influence vary with time?

Outline

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liabilit threshold model for censored data

Practicals

- Introduction
- case-study: cancer diagnosis
- cumulative incidence.
- liability-threshold model extended.
- concordance and competing risks.
- practicals using R package 'mets'.

Time in Twin studies

- Suppose we're studying a dichotomous trait; Disease is present or not.
- Suppose data is complete in the sense that status of disease does not change anymore.
- Analysis: prevalence, concordance, correlation and biometric measures Yes, We Can!
- Example: Stuttering in childhood (questionnaire answered by adults).
- at least we do not hesitate to assume complete status.

Table: Genetic influence on Stuttering

	Liability	threshold model		
	prevalence	concordance	tetrachorics	heritability (95% CI)
MZ females	.04	.47 (.38,.59)	.81 (.71,.87)	.78 (.68,.85)
DZ females	.04	.08 (.04,.16)	.17 (02,.35)	AE model
MZ males	.08	.54 (.46,.62)	.79 (.72,.85)	.75 (.66,.82)
DZ males	.08	.10 (.062,.16)	.07 (07,.23)	AE model

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liabilit threshold model for censored data

Practicals

Appendix: Methodology

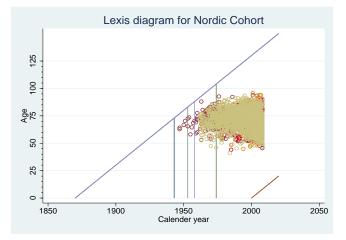
(Fibiger et al. 2008)

Time in twin studies

Aims of Multivariate Analysis

- Worked example: Prostate cancer
- The Liability threshold model for censored data
- Practicals
- Appendix: Methodology

- Fabulous Nordic data!
- Time: traits may change hence results depend on time of observation.
- Can you think of a study, ie. trait and design, that is not governed by this?
- Fabulous Nordic data often contain registration of time of events!


Lexis diagram - Nordic data on prostate cancer

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liabilit threshold model for censored data

Practicals

- More than 70% are alive without cancer at follow-up.
- -also, delayed entry due to initiation of cancer registration.

Time in Twin studies

Aims of Multivariate Analysis

Worked example: Prostate cancer

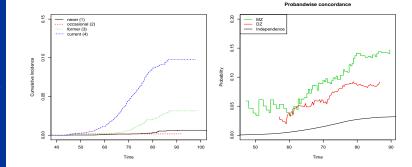
The Liability threshold model for censored data

Practicals

- We borrow methods from survival analysis.
- The Zoo: events, censorings, competing risks,...
- -a classic dichotomous trait is now an event.
- There may be multiple outcomes at each time point:

Time in Twin studies

Goals


Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liability threshold model for censored data

Practicals

- The cumulative incidence: *Risk of event before time t*
- The casewise concordance: *Risk of event in twin before time t given event in co-twin before time t*

Summary of sources of bias									
	prevalence	concordance	probandwise						
All complete data (1)	biased (low or high)	biased	biased						
All data (2)	too low	too low	biased						
-and modelling censorings (3)	ok	ok	ok						

- In case (1) all complete data at follow-up is used, that is, censored data is excluded.
- In case (2) all observed data is used including censored observations at follow up, that is, censored observations are ignored.
- In case (3) censorings and competing events (eg. death before cancer) are modelled.

Sources of bias - breast cancer

Aims of Multivariate Analysis

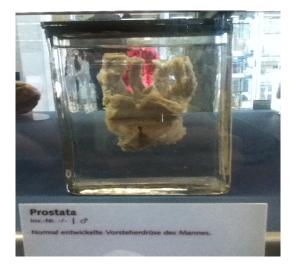
Worked example: Prostate cancer

The Liability threshold model for censored data

Practicals

Summary of sources of bias								
prevalence concordance proband								
All complete data (1)	biased (low or high)	biased	biased					
All data (2)	too low	too low	biased					
-and modelling censorings (3)	ok	ok	ok					

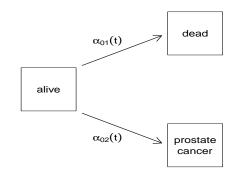
Br						
	Preva	Probandwise (concordance			
	MZ twins DZ twins					
Complete data (1)	0.090 (0.005)	0.080 (0.004)	0.33 (0.04)	0.21 (0.03)		
All data (2)	0.032 (0.002)	0.035 (0.001)	0.21 (0.03)	0.13 (0.02)		
-and modelling censorings (3)	0.11 (0.004)	0.11 (0.004)	0.25 (0.04)	0.16 (0.03)		


Example - Prostate cancer in twins

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liability threshold model for censored data


Practicals

Methods - Competing risks

- 'the individual can experience more than one type of event?.
- 'when time to event is not independent of censoring-mechanism?.
- 'when other events precludes or interacts with event of interest?.

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liability threshold model for censored data

Practicals

R Kioski - Package 'mets'

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liabilit threshold model for censored data

Practicals

#Date: 2012-11-24

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liability threshold model for censored data

Practicals

Appendix: Methodology #Author: Klaus K. Holst, Thomas Scheike and # Jacob Hjelmborg #Modified 2015-05-24

library(etm)

Loading required package: survival

library(prodlim)
library(mets)

Loading required package: timereg
Warning: package 'timereg' was built under R
version 3.1.3
Loading magnimed machage: Laws

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liability threshold model for censored data

Practicals

Appendix: Methodology data(prt) # simulated prostate cancer data
head(prt)

##		country	time	status	zyg	id	cancer
##	31	Denmark	96.98833	1	DZ	1	0
##	32	Denmark	80.88885	1	DZ	1	0
##	39	Denmark	68.04498	1	DZ	3	0
##	40	Denmark	61.45903	1	DZ	3	0
##	51	Denmark	78.78068	1	DZ	5	0
##	52	Denmark	90.36252	1	DZ	5	0

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liability threshold model for censored data

Practicals

Appendix: Methodology

kable(with(prt, table(status,country)))

	Denmark	Finland	Norway	Sweden	
0	7300	2533	3102	8348	
1	2223	1209	876	2689	
2	148	184	129	481	

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liability threshold model for censored data

Practicals

Appendix: Methodology

kable(with(prt, table(cancer,zyg)))

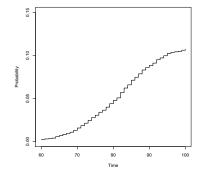
	DZ	MZ
0	17408	10872
1	583	359

out <- lm(cancer~-1+zyg,prt) # lifetime risk (!).
kable(summary(out)\$coef, digits=2)</pre>

	Estimate	Std. Error	t value	Pr(> t)
zygDZ	0.03	0	24.61	0
zygMZ	0.03	0	19.18	0

Prostate cancer in twins - cumulative incidence

Aims of Multivariate Analysis


Worked example: Prostate cancer

The Liability threshold model for censored data

Practicals

Appendix: Methodolog

plot(pcif,multiple=1,se=0,uniform=0,ylim=c(0,0.15))

Prostate cancer in twins - cross odds ratio

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liability threshold model for censored data

Practicals

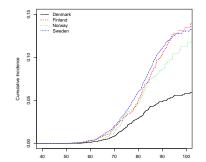
Appendix: Methodology

```
theta.des <- model.matrix("-1+factor(zyg),data=prt) ## design for MZ/DZ status
or1 <- or.cif(cifmod,data=prt,cause1=2,cause2=2,theta.des=theta.des,
    same.cens=TRUE, score.method="fisher.scoring") # see help(or.cif)
summary(or1)</pre>
```

OR for dependence for competing risks
##
OR of cumulative incidence for cause1= 2 and cause2= 2
log-ratio Coef. SE z P-val Ratio SE
factor(zyg)DZ 0.80 0.221 3.61 3.01e-04 2.22 0.492
factor(zye)MZ 2.09 0.276 7.56 4.13e-14 8.07 2.230

or1**\$**score

[,1] ## [1,] 6.417230e-09 ## [2,] 1.197999e-07


Prostate cancer in twins - cumulative incidence

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liability threshold model for censored data

Practicals

Appendix: Methodolog

Prostate cancer in twins - concordance

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liability threshold model for censored data

Practicals

Appendix: Methodology ### ignoring country
marginal cumulative incidence of prostate cancer##'
outm <- prodlim(Hist(time,status)~+1,data=prt)</pre>

times <- 60:100
cifmz <- predict(outm,cause=2,time=times,newdata=data.frame(zyg="MZ")) ## cause is 2 (second cat
cifdz <- predict(outm,cause=2,time=times,newdata=data.frame(zyg="DZ"))</pre>

concordance for MZ and DZ twins
cc <- bicomprisk(Event(time,status)~strata(zyg)+id(id),data=prt,cause=c(2,2),prodlim=TRUE)</pre>

Strata 'DZ' ## Strata 'MZ'

cdz <- cc\$model\$"DZ" cmz <- cc\$model\$"MZ"

cdz <- casewise(cdz,outm,cause.marg=2)
cmz <- casewise(cmz,outm,cause.marg=2)</pre>

Prostate cancer in twins - concordance

plot(cmz,ci=NULL,ylim=c(0,0.6),xlim=c(60,100),legend=TRUE,col=c(3
par(new=TRUE)
plot(cdz,ci=NULL,ylim=c(0,0.6),xlim=c(60,100),legend=TRUE)

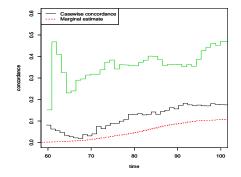


Figure: Casewise concordance

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liability threshold model for censored data

Practicals

Prostate cancer in twins - Concordance

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liability threshold model for censored data

Practicals

Appendix: Methodology

More information from

summary(cmz)
summary(cdz)

Further, Relative recurrence risk, multiple locus index and other measures can be obtained.

Time to event - biometric modeling?

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liability threshold model for censored data

Practicals

Appendix: Methodology

The New England Journal of Medicine

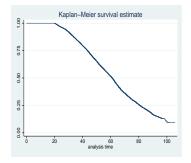
AND KARI HEMMINKI, M.D., PH.D.

- NEJM 2000 landmark paper report heritabilities for all cancer sites.
- Prostate cancer: case-wise concordance rates (MZ; DZ) of 0.20; 0.09, and a heritability of 0.42 (0.29; 0.50).
- Biometric model: Liability threshold (ignoring censored data, ~70%).
- Let's take censoring into account Aim for NorTwinCan Study.

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liability threshold model for censored data


Practicals

Appendix: Methodolog Genetic influence on risk scale, how about heritability?

• Liability-threshold polygenic ADCE model.:

probit($P(\text{twin j gets cancer}|X_j, Z)$) = $X_j^T \beta + Z, \ j = 1, 2$

• Extension: Weights from inverse probability of censoring:

Liability threshold model with IPW

- Liability model with Inverse Probability Weighting and adjusting for covariates
 - Probabilities of being censored we weight complete observations with these. In analogy with missing data analysis assuming missing at random (MAR). Probability weights based on Aalen's additive model

- Aims of Multivariate Analysis
- Worked example: Prostate cancer
- The Liability threshold model for censored data
- Practicals
- Appendix: Methodology

Liability threshold: Eq. marginals for twins

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liability threshold model for censored data

Practicals

```
bp.flex <- twinlm.time(cancer~country,zyg="zyg",
    DZ="DZ",id="id",
    cumulative = TRUE, binary=TRUE,
    type="flex",data=prt,
    cens.formula=Surv(time,status==0)~1+zyg+country,
    breaks=Inf,
    control=list(refit=TRUE))
round(summary(bp.flex)$coef,2)
```

##				Estimate	$\operatorname{Std}.\operatorname{Err}$	2.5%	97.5%
##	Tetrachoric	correlation	ΜZ	0.70	0.05	0.58	0.78
##	Tetrachoric	correlation	DZ	0.27	0.06	0.14	0.39

Liability threshold: Eq. marginals for twins MZ and DZ

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liability threshold model for censored data

Practicals

```
bp.u <- twinlm.time(cancer~country,zyg="zyg",
DZ="DZ",id="id",
cumulative = TRUE, binary=TRUE,
type="u",data=prt,
cens.formula=Surv(time,status==0)~1+zyg+country,
breaks=Inf,
control=list(refit=TRUE))
```

```
round(summary(bp.u)$coef,2)
```

##				Estimate	Std.Err	2.5%	97.5%
##	Tetrachoric	correlation	ΜZ	0.69	0.05	0.58	0.78
##	Tetrachoric	correlation	DZ	0.28	0.07	0.14	0.40

Liability threshold: Eq. marginals for twins MZ and DZ

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liability threshold model for censored data

Practicals

Appendix: Methodology

We can compare above models directly since nested:

compare(bp.u,bp.flex)

```
##
##
## - Likelihood ratio test -
##
## data:
## chisq = 19.8361, df = 4, p-value = 0.000538
## sample estimates:
## log likelihood (model 1) log likelihood (model 2)
## -8323.003 -8313.085
```


Liability threshold: ACE with IPW

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liability threshold model for censored data

Practicals

Appendix: Methodology

```
score(bp.ace)
```

[1] 1.089056e-04 3.706803e-05 2.993500e-05 -2.206747e-06

```
round(summary(bp.ace)$coef,2)
```

##				Estimate	Std.Err	2.5%	97.5%	
##	A			0.67	0.05	0.58	0.77	
##	С			0.00	0.00	0.00	0.00	
##	Е			0.33	0.05	0.23	0.42	
##	ΜZ	Tetrachoric	Cor	0.67	0.05	0.56	0.76	

Liability threshold: ADE with IPW

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liability threshold model for censored data

Practicals

```
bp.ade <- twinlm.time(cancer~country,zyg="zyg",
DZ="DZ",id="id",
cumulative = TRUE, binary=TRUE,
type="ade",data=prt,
cens.formula=Surv(time,status==0)~1+zyg+country,
breaks=Inf,
control=list(refit=TRUE))
```

```
round(summary(bp.ade)$coef,2)
```

##				Estimate	Std.Err	2.5%	97.5%
##	A			0.42	0.27	-0.11	0.95
##	D			0.27	0.28	-0.29	0.83
##	Е			0.31	0.05	0.21	0.41
##	MZ	Tetrachoric	Cor	0.69	0.05	0.58	0.78
##	DZ	Tetrachoric	Cor	0.28	0.07	0.14	0.40

Liability threshold: ACE versus ADE

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liability threshold model for censored data

Practicals

Appendix: Methodology

We can compare above models via the Akaike Information Index:

AIC(bp.ace, bp.ade) ## df AIC ## bp.ace 6 16662.82 ## bp.ade 6 16658.01

Liability threshold: Stratified analysis

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liability threshold model for censored data

Practicals

```
bp.ace.strata <- twinlm.time(cancer~strata(country),zyg="zyg",
    DZ="DZ",id="id",
    cumulative = TRUE, binary=TRUE,
    type="ace",data=prt,
    cens.formula=Surv(time,status==0)~1+zyg+country,
    breaks=Inf,
        control=list(refit=TRUE))
```

##	Strata	'Denmark'
##	Strata	'Finland'
##	Strata	'Norway'
##	Strata	'Sweden'

```
summary(bp.ace.strata)
```

##		
##	Strata	'Denmark'
##		
##	Strata	'Finland'
##		

Liability threshold: Cumulative heritability

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liability threshold model for censored data

Practicals

```
bp.ace.cum <- twinlm.time(cancer~country,zyg="zyg",
    DZ="DZ",id="id",
    cumulative = TRUE, binary=TRUE,
    type="ace",data=prt,
    cens.formula=Surv(time,status==0)~1+zyg+country,
    breaks=seq(60,90, by=2),
        control=list(refit=TRUE))
names(bp.ace.cum)
bp.ace.cum$summary
summary(bp.ace.cum)
```


Prostate cancer in twins - casewise concordance

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liability threshold model for censored data

Practicals

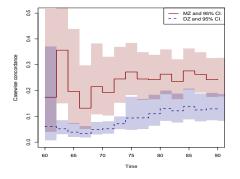

Appendix: Methodology

Figure: Casewise concordance

Prostate cancer in twins - heritability

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liability threshold model for censored data

Practicals

Appendix: Methodology

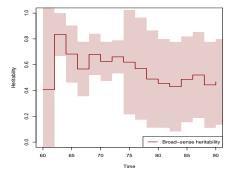


Figure: Cumulative heritability

Exercise

- Aims of Multivariate Analysis
- Worked example: Prostate cancer
- The Liability threshold model for censored data

Practicals

- Create above plots of cumulative casewise concordance and heritability from the liability threshold ADE model with IPW for censoring.
- What does the above stratified analysis add?

Exercise

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liability threshold model for censored data

Practicals

- What would happen if time to event was ignored?
- This can be investigated by repeating the analysis without IPW.
- See the following slides for implementation.

Liability threshold: Saturated model - ignoring time

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liability threshold model for censored data

Practicals

Appendix: Methodology

bp() <- bip	robit	(cancer~country data=prt)	+	<pre>cluster(id)+strata(zyg),</pre>	
			*			
##	Strata	'DZ'				
##	Strata	, MZ,				

summary(bp0)

##		
##	Strata	'DZ'
##		
##	Strata	'MZ'

Liability threshold: Eq. marginals - ignoring time

bp1 <- bptwin(cancer~country,zyg="zyg",DZ="DZ",id="id", binary=TRUE, type="u",data=prt)
summary(bp1)\$probMZ</pre>

##		Estimate	2.5%	97.5%
##	Concordance	0.004467324	0.003292577	0.006058658
##	Casewise Concordance	0.293233128	0.234208848	0.360136998
##	Marginal	0.015234718	0.012860807	0.018038809
##	Rel.Recur.Risk	19.247690103	14.645257725	23.850122482
##	log(OR)	3.625153734	3.234286444	4.016021025

summary(bp1)\$probDZ

##	Estimate	2.5%	97.5%
## Concordance	0.001440254	0.0009503536	0.002182143
## Casewise Concordance	0.094537629	0.0667986510	0.132164199
## Marginal	0.015234718	0.0128608072	0.018038809
## Rel.Recur.Risk	6.205407284	4.0723812095	8.338433359
## log(OR)	1.994581307	1.5853517140	2.403810901

summary(bp1)\$coef

##				Estimate	Std.Err	2.5%	97.5%
##	Tetrachoric	correlation	ΜZ	0.6988528	0.03375873	0.6265551	0.7592258
##	Tetrachoric	correlation	DZ	0.3706259	0.04339034	0.2826528	0.4524161

compare(bp0,bp1) # LRT

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liabilit threshold model for censored data

Practicals

Liability threshold: ACE model - ignoring time

bp2 <- bptwin(cancer country,zyg="zyg",DZ="DZ",id="id", binary=TRUE,type="ace",data=prt)
summary(bp2)\$probMZ</pre>

##		Estimate	2.5%	97.5%
##	Concordance	0.004467383	0.003292626	0.006058727
##	Casewise Concordance	0.293234795	0.234210425	0.360138679
##	Marginal	0.015234832	0.012860918	0.018038923
##	Rel.Recur.Risk	19.247655571	14.645254708	23.850056434
##	log(OR)	3.625156484	3.234289702	4.016023266

summary(bp2)\$probDZ

##		Estimate	2.5%	97.5%
##	Concordance	0.00144021	0.0009503172	0.002182094
##	Casewise Concordance	0.09453405	0.0667954859	0.132160423
##	Marginal	0.01523483	0.0128609183	0.018038923
##	Rel.Recur.Risk	6.20512575	4.0721465918	8.338104900
##	log(OR)	1.99452774	1.5852906534	2.403764836

summary(bp2)\$coef

##				Estimate	Std.Err	2.5%	97.5%
##	Α			0.65647764	0.10956971	0.4417250	0.8712303
##	С			0.04237639	0.09289080	-0.1396862	0.2244390
##	Е			0.30114597	0.03375863	0.2349803	0.3673117
##	ΜZ	Tetrachoric	Cor	0.69885403	0.03375863	0.6265565	0.7592268
##	DZ	Tetrachoric	Cor	0.37061521	0.04339116	0.2826405	0.4524070

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liabilit threshold model for censored data

Practicals

The Heritability of Prostate Cancer in the Nordic Twin Study of Cancer Hjelmborg, Scheike, Kaprio, Mucci et al. http://cebp.aacrjournals.org/content/23/11/2303 Cancer Epidemiology, Biomarkers & Prevention (2014)

References

- Estimating heritability for cause specific mortality based on twin studies; Scheike, Holst and Hjelmborg; LIDA (2013).
- Estimating twin concordance for bivariate competing risks twin data; Scheike, Holst and Hjelmborg; Stat Med (2014)
- Measuring early or late dependence for bivariate lifetimes of twins Scheike, Holst and Hjelmborg; *LIDA* (2014).
- Revisiting the Concordance for Twin Pairs; Hjelmborg, Scheike, Holst and Möller; Hum Genet Twin Research (2015), in preparation
- The liability threshold model for censored twin data Holst, Scheike and Hjelmborg, Computational Statistics & Data Analysis (2015)

Cumulative incidence adjusted for censoring

- Aims of Multivariate Analysis
- Worked example: Prostate cancer
- The Liability threshold model for censored data
- Practicals
- Appendix: Methodology

- Data: $(X_{jk}, \tilde{T}_{jk}, \tilde{\epsilon}_{jk})$, where $\tilde{T}_{jk} = \min(T_{jk}, C_k)$ for $j \in \{1, 2\}, k \in \{1, \dots, p\}$.
- The cumulative incidence function:

$$F_1(t) = \operatorname{Prob}(T \leq t, \epsilon = 1) = \int_0^t \lambda_1(s)S(s-)ds,$$

- Non-parametric Aalen-Johansen product-limit mle estimator; $\hat{F}_1(t) = \sum_{t_j \leq t} \frac{d_{ij}}{n_j} \hat{S}(t_{j-1})$
- Models: Fine and Gray (1999) 'proportional model?, also logistic link and random effects extension.
- Methods: *Estimation of probandwise concordance for censored time to event twin data*. Scheike, Holst and Hjelmborg (2012).

- Methods: *Estimation of probandwise concordance for censored time to event twin data*. Scheike, Holst and Hjelmborg (2012).
- First, advanced model approach and then shortcut assuming same censoring in pairs.
- Warning: offensive slides may occur.

Concordance

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liability threshold model for censored data

Practicals

Appendix: Methodology • The concordance function conditional on covariates

 $C_X(t) = P_{j_1,j_2}(t,t) = P(T_1 \le t, \epsilon_1 = j_1, T_2 \le t, \epsilon_2 = j_2|X),$

• assume a specific semi-parametric regression structure

$$C_X(t) = h_c(\Lambda_0(t), X\beta_c, t)$$

- For example $h(a, b, t) = 1 \exp(ab)$, or a logit-link version where $h(a, b, t) = (\exp(a + b)/(1 + \exp(a + b))$. Here $\Lambda_0(t)$ is an increasing baseline-function.
- -in this way, semi-parametric random effects regression model (Scheike et al. 2012).

Methods - Competing risk random effects model

- Aims of Multivariate Analysis
- Worked example: Prostate cancer
- The Liability threshold model for censored data

Practicals

Appendix: Methodology • Katsahian et al. (2006), Scheike et al. (2010):

$$F_1(t,X_j,Z) = P(T \leq t, ext{cancer}|Z,X_j) = 1 - \exp\left(-Z\Psi_{ heta}^{-1}\left[\Lambda(t,X_j)
ight]
ight)$$

- $\Psi_{\theta}(t) = E_{\theta} \{ \exp(-Zt) \mid X \}$ is the Laplace transform of the random effect Z.
- Z is assumed gamma distributed with shape parameter $1/\theta$ and scale parameter θ .
- Λ(t, X_j) = exp(-α(t) (γX_j)t), where α(t) is a baseline regression function and γ is a q-dimensional vector of parameters.
- This leads to random effects with mean 1 and variance θ .
- The marginal transition probability given only X_j is of the simple additive form

$$F_1(t,X_j) = 1 - \exp(-\alpha(t) - tX_j^T\beta)$$

- Aims of Multivariate Analysis
- Worked example: Prostate cancer
- The Liabilit threshold model for censored data

Practicals

Appendix: Methodology • The marginal transition probability given only X_j is of the simple additive form

$$F_1(t, X_j) = 1 - \exp(-\alpha(t) - tX_j^T \beta)$$

- NB! If no covariates, $F_1(t)$ is simply a reparametrization of the non-parametric cumulative incidence function.
- For event times (T_1, T_2) we can compute the bivariate cumulative incidence

$$P(T_1 \le t, \epsilon_1 = 1, T_2 \le s, \epsilon_2 = 1 | X_1, X_2)$$
 by

 $1 - (1 - F_1(t, X_1)) - (1 - F_1(s, X_2)) + \Psi_{\theta} \left(\Psi_{\theta}^{-1} \left[\Lambda(t, X_1) \right] + \Psi_{\theta}^{-1} \left[\Lambda(t, X_1) \right] \right)$

• Variances of random effects measures amount of correlation within pairs.

Concordance - much simpler!

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liability threshold model for censored data

Practicals

Appendix: Methodology • The concordance function conditional on covariates

$$C_X(t) = P_{j_1,j_2}(t,t) = P(T_1 \leq t, \epsilon_1 = j_1, T_2 \leq t, \epsilon_2 = j_2|X)$$

- First, consider times to the joint event (j_1, j_2) .
- When does the counting processes

$$\begin{split} N_{j_1,j_2}(t) &= I(T_1 \leq t, \epsilon_1 = j_1, T_2 \leq t, \epsilon_2 = j_2) \quad \text{unobserved co} \\ \tilde{N}_{j_1,j_2}(t) &= I(\tilde{T}_1 \leq t, \epsilon_1 = j_1, \tilde{T}_2 \leq t, \epsilon_2 = j_2) \quad \text{observed data} \end{split}$$

have the same intensity function $\lambda_{j_1,j_2}(t)$?

Most important slide!

Aims of Multivariate Analysis

Worked example: Prostate cancer

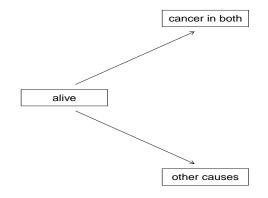
The Liability threshold model for censored data

Practicals

Appendix: Methodology The intensity of the observed counting process equals that of the unobserved complete data process when

- censoring is the same in pairs and
- censoring is independent of competing risks data given covariates.

Formally,


$$\begin{split} P(\Delta \tilde{N}_{j_1,j_2}(t) &= 1 | Y_{j_1,j_2}(t) = 1, X) = \\ &= P(\Delta \tilde{N}_{j_1,j_2}(t) = 1 | \tilde{A}_1(t), \tilde{A}_2(t), (\tilde{T}_2 \ge t, \tilde{T}_1 \ge t), X) \\ &= P(\Delta \tilde{N}_{j_1,j_2}(t) = 1 | \tilde{A}_1(t), \tilde{A}_2(t), (\tilde{T}_2 \ge t, \tilde{T}_1 \ge t), C > t, X) \\ &= P(\Delta N_{j_1,j_2}(t) = 1 | A_1(t), A_2(t), (T_2 \ge t, T_1 \ge t), C > t, X) \end{split}$$

with $\tilde{A}_1(t) = (\tilde{T}_1 \leq t, \epsilon_1 = j_1, \tilde{T}_2 \geq t)$ and $\tilde{A}_2(t) = (\tilde{T}_2 \leq t, \epsilon_2 = j_2, \tilde{T}_1 \geq t).$

Methods - applying same censoring

- Same censoring is very often plausible observations at almost same time.
- We may then consider pairwise competing risk data.
- This is univariate hence standard methods are applicable.

Aims of Multivariate Analysis

Worked example: Prostate cancer

The Liabilit threshold model for censored data

Practicals

Reducing data to pairwise competing risks data that can be used for standard estimation.

twins	time	cause/status
twin 1 pair 1	10	cancer
twin 2 pair 1	20	cancer
combined data	20	cancer
twin 1 pair 2	10	cancer
twin 2 pair 2	20	dead
combined data	20	other causes
twin 1 pair 3	10	dead
twin 2 pair 3	20	cancer
combined data	10	other causes
twin 1 pair 4	10	dead
twin 2 pair 4	20	censored
combined data	10	other causes
twin 1 pair 5	10	cancer
twin 2 pair 5	20	censored
combined data	20	censored