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NLP in Healthcare Domain

Texts in Healthcare Domain
e clinical notes (reports, discharge summaries, etc.)
® biomedical literature
® discussions in medical forum
® social posts about health
Healthcare Applications
® Medical Code Prediction
® Patient Outcome Prediction

® Adverse Drug Event Detection
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Medical Code Prediction

Clinical Note A\
Diagnosis Code
..... the old patient with 401.9 Unspeciﬁ_ed essential
hypertension end > hypertension
stage oxygen Medical 496 Chronic airway
dependent chronic . obstruction
obstructive > COdlllg
pulmonary disease Model
...... was intubated on
arrival to ...... -> 96.71 Insertion of
: endotracheal tube

~—

Figure: An example of medical coding with ICD codes

® Standard translation of written patient descriptions
® Standardized treatment alignment; insurance reimbursement

e Extreme multi-label multi-class classification
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Patient Outcome Prediction
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Figure: An example of multitask patient outcome
prediction based on sequential inputs of clinical
notes in the electronic health record.
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Adverse Drug Event Detection

Post-marketing medication safety
surveillance
Spontaneous reporting systems

Data from social media, biomedical
articles, and medical forums

NLP models for automated ADE detection

Adverse Drug Events
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Failure

Figure: Adverse drug events. Source: PharmaNet,
British Columbia, Canada
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https://www2.gov.bc.ca/gov/content/health/practitioner-professional-resources/pharmacare/pharmanet-bc-s-drug-information-network/ades-pharmanet
https://www2.gov.bc.ca/gov/content/health/practitioner-professional-resources/pharmacare/pharmanet-bc-s-drug-information-network/ades-pharmanet

Today's Talk

e Effective text representation with deep neural networks,
® | earning with high-dimensional and imbalanced medical codes,

® Solving multiple prediction tasks in healthcare
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Effective Text Representation

Challenges

® Complex diagnosis information: professional medical vocabulary and noise e.g.,
non-standard synonyms and misspellings

® | engthy documents: from hundreds to thousands of tokens
® Relational learning for adverse drug reactions
Solutions for effective text representation learning:
e Effective convolutional neural networks (CNNs)
¢ Improved BERT-baed (hierarchical) models
® Contextualized graph embeddings
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Effective CNN Encoding: Gated CNN
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Effective CNN Encoding: Results

Table: Results on MIMIC-11I dataset with top-50 ICD codes. “-" indicates no results reported in the
original paper.

Model AUC-ROC F1

Macro Micro | Macro Micro | P@5
C-MemNN (Prakash et al., 2017) 83.3 - - - 42.0
Attentive LSTM (Shi et al., 2017) - 90.0 - 53.2 -
CAML (Mullenbach et al., 2018) 87.5 90.9 53.2 61.4 60.9
MultiResCNN (Li and Yu, 2020) 89.9+0.4 92.840.2 | 60.6+1.1 67.0£0.3 | 64.1£0.1
HyperCore (Cao et al., 2020) 89.5+0.3 92.94+0.2 | 60.9+£0.1 66.3£0.1 | 63.2£0.2
GatedCNN-NCI (ours) 91.5+0.3 93.840.1 | 62.9+0.5 68.6+0.1 | 65.3+0.1

Conclusion References

Multitask Learning
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Effective CNN Encoding: Parameters

Table: Number of trainable parameters

Model num. params.

CAML (Mullenbach et al., 2018) 6.2M

DCAN (Ji et al., 2020) 8.7TM

MultiResCNN (Li and Yu, 2020) 11.9M

ClinicalBERT (Alsentzer et al., 2019) 113.8M

GatedCNN-NCI 7.6M
Introduction Effective Text Representation ced Medic
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Hierarchical Encoding with Language Models
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Results

Table: Results of PLM fine-tuning with BERT-hier + LAN in various domains on MIMIC-IIl dataset
with top-50 and full ICD codes. Clinical notes are truncated at length of 2500.

MIMIC-1II Top-50 Codes MIMIC-I1I Full Codes

Model AUC-ROC F1 AUC-ROC F1

Macro Micro|Macro Micro 5 Macro Micro|Macro Micro‘P©8 P15
BERT-base 82.7 86.3] 40.8 50.8/52.2| 822 96.6 5.8 44.1|63.3 48.1
BlueBERT 89.4 92.0/ 61.0 65.6/62.8| 84.4 975 5.1 425|626 47.3
BioBERT full text 88.8 91.7| 60.4 66.0/63.1| 85.2 974 6.4 47.0|65.8 50.7
BioRedditBERT 87.1 89.6| 59.4 64.8/62.4| 86.5 98.0 3.0 40.6/62.4 47.8
PubMedBERT full text 88.6 90.8| 63.3 68.1/64.4| 87.4 98.1 4.3 445|652 50.4
SapBERT full text 88.5 90.8| 622 66.7/63.1| 86.4 97.7 6.2 46.8/68.5 53.0
ClinicalBERT all notes 89.2 91.6/ 595 64.8/62.0/ 84.7 97.4 6.0 46.6/65.1 499

PubMedBERT, trained entirely from scratch on biomedical article corpora, performs better
than other pretrained models from other domains.

Effective Text Representation
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Results

T T T
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F1 macro

Code frequency (#codes/note)

Figure: Comparing BERT-based models with convolution-based approaches. F1 scores of different
models on the MIMIC-III full code dataset (8,922 labels). Code frequency groups are sorted in

ascending order from left to right.

More advanced hierarchical embedding method and model ensemble has shown promising
performance (Zhang and Jankowski, 2022)
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Contextualized Graph Embeddings
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Contextualized Graph Embeddings
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Results

Table: Results of TwiMed datasets

Datasets Metrics HTR-MSA CNN-T MSAM IAN ATL Ours
P (%) 75.0 81.3 85.8 87.8 815 88.4
TwiMed-Pub R (%) 66.0 63.9 85.2 738 67.0 85.0
F1 (%) 70.2 71.6 85.3 79.2 734 86.7
P (%) 60.7 61.8 74.8 83.6 637 84.2
TwiMed-Twitter R (%) 61.7 60.0 85.6 813 634 837
F1 (%) 61.2 60.9 79.9 82.4 635 83.9

Our graph-based model outperforms other baselines in most cases.

[¢=]
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High-dimensional and Imbalanced Medical Codes
Medical code prediction

® High-dimensional label space

&
S
S

® |mbalanced labels

pexu

e Different disease classification systems

® Multitask learning with different granularities

leobrnen | §
: Label-wise § ______ : c'g(?e 0 __________________________________________________________
Attention : :
oo Hgnt>lowf,
IR oo g = ode MT-RAM in ECML-PKDD 2021
' Hight>Lowf, (Sun et al., 2021) and MARN in
Loss optimized by FL ACM TIST (Sun et al., 2023)

........ Original loss
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Can multitask learning connect different medical coding systems?
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High-dimensional and Imbalanced Medical Codes
Natural Language Processing for Healthcare

® The embeddings of
representative significant CCS
codes and their corresponding
ICD codes.

® The relevant ICD codes are

clustered around the respective

significant CCS code.

® MARN learns representations
that capture informative

relationships between the codes.
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Does the model optimized with focal loss balance the learning between
low- and high-frequency codes?

—— Trained model with BCE loss
—— Trained model with focal loss
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Normalized binary cross entropy loss loss of
each ICD code, with x-axis sorted by code
frequency. The high-frequency codes are on
the left, the low-frequency codes on the right.

MARN optimized with focal loss can balance
the learning of high- and low-frequency codes. J
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Task-conditioned Multitask Learning
® joint training of multiple tasks

® 3 hypernetwork for task-specific parameter generation to share information among
different tasks

® regularize the objective function via a parameterized task weighting scheme that
effectively balances the learning process among multiple tasks

Mulmask
| Classifiers

| Base Text Encoder Clinical Notes

al and Imbala

Natural Language Processing for Healthcare



Results

Table: Patient outcome prediction from early notes with average score + standard deviation reported.

Progressive Ultimate
F1 AUC-ROC ‘ F1 AUC-ROC

MT-LSTM 51.69 £ 3.72 53.80 £1.99 52.36 £ 3.62 56.17 £2.23
MT-BERT 55.52 + 3.92 56.75 £ 2.56 56.02 = 4.34 60.85 £1.61
MT-RAM 56.00 £ 3.09 57.26 £1.94 56.51 £ 2.80 62.78 £1.39
MT-Hyper 56.38 + 2.30 57.57 £1.27 57.67 £ 2.21 62.41 +1.61
MT-LSTM 8.50 + 3.39 63.00 £ 0.95 8.69 £+ 3.79 62.26 £ 0.91
MT-BERT 11.63 +4.83 64.13 £1.30 11.80 +5.02 63.24 £1.30

Task Method

Readmission

Diagnosis MT-RAM 1406 +1.21 6858+1.60 | 1439+141  67.84+1.64
MT-Hyper | 190.56+1.33  72.98+0.45 | 20.47+1.38  73.2140.43
MT-LSTM | 30.10+2.70 7573+0.02 | 3054 +2.68  76.50 £ 0.87
LOS MT-BERT | 26.40+4.34 72.604+281 | 27.25+4.08  73.71+2.66
MT-RAM 26.2043.08 73.15+3.44 | 27.0842.80  74.04+3.31
MT-Hyper | 33.1840.91 71.844+1.05 | 33.28+1.03 72.23+2.18
MT-LSTM | 30.12+327 6418+129 | 3053+3.36 6497 F1.34
Average MT-BERT | 31.18+4.36 64494222 | 31.60+448 65934 1.86

MT-RAM 32.09 £+ 2.46 66.33 £2.33 32.66 £+ 2.34 68.22 £ 2.11
MT-Hyper 36.37 £1.51 67.47 £1.23 37.14 £1.54 69.28 +1.41
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Results

Table: Results (AUC-ROC) of zero-shot diagnosis
prediction on unseen diagnosis results with average
score + standard deviation reported.

Dataset ‘ Method ‘ Progressive Ultimate
MT-LSTM 11.00 +2.31 9.74 £ 1.55

Discharge MT-BERT 10.47 £ 0.76 9.00 £ 0.36
MT-RAM 11.40 £ 1.44 10.37 £1.25
MT-Hyper 64.06 + 2.02 68.33 +2.76
MT-LSTM 8.65+1.19 8.47 +1.00

Early MT-BERT 8.24 +0.79 8.20+0.74
MT-RAM 14.25 + 3.11 14.12 +3.12
MT-Hyper 62.04 £1.13 63.76 + 1.03
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Figure: Visualization of task embeddings
with dimension reduced by PCA
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Summary

o Effective text representation
¢ Effective CNN encoding: GatedCNN-NCI (Ji et al., 2021b)
® Hierarchical contextualized encoding: BERT-hier (Ji et al., 2021a)
® Contextualized graph embeddings: CGEM (Gao et al., 2022)

® High-dimensional and imbalanced medical codes

® MT-RAM (Sun et al., 2021) and MARN (Sun et al., 2023)
® Multitask learning for high-dimensional codes
® Focal loss for imbalanced codes

® Multitask learning
® Hypernetwork-guided multitask learning: MT-Hyper (Ji and Marttinen, 2023)
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