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Introduction
Meta-learning: 

learning to learn (or optimize) 

> learn a function f  that is a set of learning 
algorithm F or feature extractor

N-ways K-shot classification: 

In each training and test tasks, there are N 
classes, each has K examples.
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[Ravi and Larochelle., 2017]



Research 
Question

Are Meta-Learned Features Fundamentally Better for 
Few-Shot Learning?

> the differences between features learned by meta-

learning and classical training;

> explore the different methods with two proposed 
mechanisms (regularizers) 
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Introduction

Two categories:

v tune the feature extractor (e.g., 
MAML & Reptile)
v search for meta-parameters that lie 

close in weight space to a wide range of 
task-specific minima

v fix the feature extractor (e.g., R2-D2 
and MetaOptNet)
v cluster object classes more tightly in 

feature space
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Gradient-based optimization (Hong-yi Lee)



MAML vs. Reptile
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[Finn et al., 2017][Nichol & Schulman, 2018]



MAML vs. Reptile
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[Hong-yi Lee]

MAML



Last-layer Methods

use differentiable optimizers to minimize the fine-tuning 
objective and then differentiate the solution with respect to 
feature inputs.

v R2-D2 (Bertinetto et al. 2018): Ridge Regression 
Differentiable Discriminator

v MetaOptNet (Lee et al., 2019): SVM

v ProtoNet (Snell et al., 2017): the proximity of input 
features to class centroids
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Class Clustering in Feature Space

Conclusion: meta-learned models separate 
features differently than classically trained 
networks.

𝑅!": measurement of feature clustering

𝑅#$: measurement of hyperplane variation 
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Comparison of class separation metrics for feature 
extractors trained by classical and meta-learning routines.



Linear Separability

(a) class variation is high relative to the 
variation between classes

(b) classes move farther apart relative to the 
class variation
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Meta v.s Classical

vclassically trained model mashes features 
together

v the meta-learned models draws the classes 
farther apart
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Feature Clustering Regularizer

𝑅!": the measurement of feature clustering
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𝑓! 𝑥",$ : feat. vec. for data j in cls i;
𝑢": mean of feat. vec. in class i;
𝑢: mean across all feature vectors.

Feature space clustering improves few-shot performance of transfer learning



Hyperplane Variation Regularizer 

𝑅#$: measurement of hyperplane variation 
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x1, x2 in class A; 
y1, y2 in class B

Distance between distance vectors 𝑥% − 𝑦% and 𝑥& − 𝑦& relative to their size.



Experiements
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Weight-Clustering

v Finding clusters of local minima for task losses 
in parameter space
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v Reptile: minimizing the consensus formulation

v Weight-Clustering Regularization

v Inner-loop optimization



Experiments
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