From Softmax to Sparsemax

A Sparse Model of Attention and Multi-Label Classification

André F. T. Martins and Ramón F. Astudillo

ICML 2016

Softmax

★ Converting a representation vector into a posterior probabilities of labels $\mathbb{R}^{K} \rightarrow \Delta^{K-1}$, defined as:

softmax_i(z) =
$$\frac{\exp(z_i)}{\sum_{k=1}^{K} \exp(z_k)}$$

- ★ Limitation: full support, softmax(z) > 0, $\forall z$
- Requires: sparse probability distribution by assign exactly zero probability —> interpretability !

Sparsemax

A sparse alternative: Euclidean projection of z onto the probability simplex

sparsemax (z) :=
$$\underset{p \in \Delta^{K-1}}{\operatorname{argmin}} \|p - z\|^2$$

Close-Form Solution

sparsemax_i(z) = max
$$\{0, z_i - \tau\}$$

 τ is a normalizing threshold function such that $\sum_{j} \max \{0, z_j - \tau\} = 1$

• How to compute τ ?

Sparsemax Evaluation

Algorithm 1 Sparsemax Evaluation

Input: z
Sort z as $z_{(1)} \ge ... \ge z_{(K)}$ Sort the coordinates of zFind $k(z) := \max \left\{ k \in [K] \mid 1 + kz_{(k)} > \sum_{j \le k} z_{(j)} \right\}$ Define k(z) the sparsity bound: indexDefine $\tau(z) = \frac{(\sum_{j \le k(z)} z_{(j)}) - 1}{k(z)}$ Sparse logits $\{z_{(j)} \mid j \le k(z)\}$ after
threshold; sum of sparse logits $\sum_{j \le k(z)} z_{(j)}$

 $\tau(z)$ is the threshold function $S(z) := \left\{ j \in [K] \mid \text{sparsemax}_{j}(z) > 0 \right\}$ the support of sparsemax

Two and Three-Dimensional Cases

* For two dimensions: z = (t, 0),
softmax becomes logistic (sigmoid)
function as:

softmax
$$_1(z) = (1 + \exp(-t))^{-1}$$

2D sparsemax is the "hard" version of the sigmoid

For
$$z = (t, 0)$$

$$au(m{z}) = egin{cases} t-1, & ext{if} \ t>1 \ (t-1)/2, & ext{if} \ -1 \leq t \leq 1 \ -1, & ext{if} \ t<-1 \end{cases}$$

Two and Three-Dimensional Cases

5D case

Gradient-based Optimization

Jacobian of Softmax

$$\frac{\partial \operatorname{softmax}_{i}(z)}{\partial z_{j}} = \frac{\delta_{ij}e^{z_{i}}\sum_{k}e^{z_{k}} - e^{z_{i}}e^{z_{j}}}{\left(\sum_{k}e^{z_{k}}\right)^{2}} = \operatorname{softmax}_{i}(z)\left(\delta_{ij} - \operatorname{softmax}_{j}(z)\right)$$

For matrix notation with $p = \operatorname{softmax}(z)$,

 $\mathbf{J}_{\text{softmax}}(z) = \text{Diag}(p) - pp^{\top}$

Gradient-based Optimization

Jacobian of Sparsemax

1.

$$\frac{\partial \operatorname{sparsemax}_{i}(z)}{\partial z_{j}} = \begin{cases} \delta_{ij} - \frac{\partial \tau(z)}{\partial z_{j}}, & \text{if } z_{i} > \tau(z) \\ 0, & \text{if } z_{i} \leq \tau(z) \end{cases}$$
sparsemax_{i}(z) = \max\{0, z_{i} - \tau\}
$$\tau(z) = \frac{\left(\sum_{j \leq k(z)} z_{(j)}\right) - 1}{k(z)}$$

$$z.$$

$$\frac{\partial \tau(z)}{\partial z_{j}} = \begin{cases} \frac{1}{|S(z)|} & \text{if } j \in S(z) \\ 0, & \text{if } j \notin S(z) \end{cases}$$

$$S(z) := \{j \in [K] \mid \operatorname{sparsemax}_{j}(z) > 0\}$$

$$3. \quad \frac{\partial \mathrm{sparsemax}_i(\boldsymbol{z})}{\partial z_j} = \begin{cases} \delta_{ij} - \frac{1}{|S(z)|}, & \text{if } i, j \in S(\boldsymbol{z}) \\ 0, & \text{otherwise} \end{cases}$$

4. $\mathbf{J}_{\text{sparsemax}}(z) = \mathbf{D} \operatorname{iag}(s) - ss^{\top} / |S(z)|$ where $s = \operatorname{sparsemax}(z)$

Loss Function: Logistic Loss

Consider regularized empirical risk minimization problems

minimize
$$\frac{\lambda}{2} \|\mathbf{W}\|_F^2 + \frac{1}{N} \sum_{i=1}^N L(\mathbf{W}\mathbf{x}_i + \mathbf{b}; y_i)$$

Logistic loss

$$L_{\text{softmax}}(z;k) = -\log \operatorname{softmax}_{k}(z) = -z_{k} + \log \sum_{j} \exp\left(z_{j}\right)$$

Gradient

$$\nabla_z L_{\text{softmax}}(z;k) = -\delta_k + \operatorname{softmax}(z)$$

 $\boldsymbol{\delta}_k$ is the delta distribution on k.

Loss Function: Sparsemax Loss

Reversing engineering the sparsemax loss

$$\nabla_z L_{\text{sparsemax}}(z;k) = -\delta_k + \text{sparsemax}(z)$$

Sparsemax loss:

$$L_{\text{sparsemax}}(z;k) = -z_k + \frac{1}{2} \sum_{j \in S(z)} \left(z_j^2 - \tau^2(z) \right) + \frac{1}{2}$$

Generalization to Multi-Label Classification

The multinomial logistic loss

 $L_{\text{softmax}}(z; q) = KL(q \| \operatorname{softmax}(z)) = -H(q) - q^{\top}z + \log \sum_{j} \exp\left(z_{j}\right)$

- Gradient: $\nabla_z L_{\text{softmax}}(z; q) = -q + \operatorname{softmax}(z)$
- The corresponding generalization in the sparsemax case

$$L_{\text{sparsemax}}(z; q) = -q^{\mathsf{T}}z + \frac{1}{2}\sum_{j \in S(z)} \left(z_j^2 - \tau^2(z)\right) + \frac{1}{2} \|q\|^2$$

Gradient: $\nabla_z L_{\text{sparsemax}}(z; q) = -q + \text{sparsemax}(z)$

Experiments: Multi-Label Benchmarking

Table 1. Statisti	cs for the 5	multi-label classification datasets.			
DATASET	DESCR.	#LABELS	#TRAIN	#TEST	
SCENE Emotions Birds CAL500 Reuters	IMAGES MUSIC AUDIO MUSIC TEXT	6 6 19 174 103	1211 393 323 400 23,149	1196 202 322 100 781,265	

Table 2. Micro (left) and macro-averaged (right) F_1 scores for the logistic, softmax, and sparsemax losses on benchmark datasets.

DATASET	LOGISTIC	Softmax	S PARSEMAX
SCENE	70.96 / 72.95	74.01 / 75.03	73.45 / 74.57
EMOTIONS	66.75 / 68.56	67.34 / 67.51	66.38 / 66.07
BIRDS	45.78 / 33.77	48.67 / 37.06	49.44 / 39.13
CAL500	48.88 / 24.49	47.46 / 23.51	48.47 / 26.20
REUTERS	81.19 / 60.02	79.47 / 56.30	80.00 / 61.27

- Logistic: independent
 binary logistic
 regressors on each label
- Softmax: a multinomial logistic regressor
- a slight advantage of
 Sparsemax

Experiments: Neural Networks with Attention Mechanisms

Sparse Attention

NoAttention: $u = \tanh \left(\mathbf{W}^{pu} \boldsymbol{h}_{L} + \mathbf{W}^{hu} \boldsymbol{h}_{N} + \boldsymbol{b}^{u} \right)$ SoftAttention: $z_{t} = \boldsymbol{v}^{\top} \tanh \left(\mathbf{W}^{pm} \boldsymbol{h}_{t} + \mathbf{W}^{hm} \boldsymbol{h}_{N} + \boldsymbol{b}^{m} \right)$ $p = \operatorname{softmax}(z), \text{ where } z := (z_{1}, ..., z_{L})$

A boy **rides on** a **camel** in a crowded area while talking on his cellphone. Hypothesis: *A boy is riding an animal*. [entailment] A young girl wearing **a pink coat** plays with a **yellow** toy golf club. Hypothesis: *A girl is wearing a blue jacket*. [contradiction] Two black dogs are **frolicking** around the **grass together**. Hypothesis: *Two dogs swim in the lake*. [contradiction] A man wearing a yellow striped shirt **laughs** while **seated next** to another **man** who is wearing a light blue shirt and **clasping** his hands together. Hypothesis: *Two mimes sit in complete silence*. [contradiction]