
From Softmax to Sparsemax
A Sparse Model of Attention and Multi-Label Classification

André F. T. Martins and Ramón F. Astudillo

ICML 2016

Softmax

❖ Converting a representation vector into a posterior
probabilities of labels , defined as:

❖ Limitation: full support,

❖ Requires: sparse probability distribution by assign exactly
zero probability —> interpretability !

ℝK → ΔK−1

softmaxi(z) =
exp (zi)

∑K
k=1 exp (zk)

softmax(z) > 0,∀z

2

Sparsemax

❖ A sparse alternative: Euclidean projection of z onto the probability
simplex

❖ Close-Form Solution

 is a normalizing threshold function such that

❖ How to compute ?

 sparsemax (z) := argmin
p∈ΔK−1

∥p − z∥2

 sparsemaxi(z) = max {0, zi − τ}
τ ∑

j

max {0,zj − τ} = 1

τ

3

Sparsemax Evaluation

4

From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification

• We apply the sparsemax loss to train multi-label linear
classifiers (which predict a set of labels instead of a
single label) on benchmark datasets (§4.1–4.2).

• Finally, we devise a neural selective attention mecha-
nism using the sparsemax transformation, evaluating
its performance on a natural language inference prob-
lem, with encouraging results (§4.3).

2. The Sparsemax Transformation
2.1. Definition

Let �K�1 := {p 2 RK | 1>p = 1, p � 0} be the (K �
1)-dimensional simplex. We are interested in functions that
map vectors in RK to probability distributions in �K�1.
Such functions are useful for converting a vector of real
weights (e.g., label scores) to a probability distribution (e.g.
posterior probabilities of labels). The classical example is
the softmax function, defined componentwise as:

softmaxi(z) =
exp(zi)P
j exp(zj)

. (1)

A limitation of the softmax transformation is that the re-
sulting probability distribution always has full support, i.e.,
softmaxi(z) 6= 0 for every z and i. This is a disadvan-
tage in applications where a sparse probability distribution
is desired, in which case it is common to define a threshold
below which small probability values are truncated to zero.

In this paper, we propose as an alternative the following
transformation, which we call sparsemax:

sparsemax(z) := argmin
p2�K�1

kp� zk2. (2)

In words, sparsemax returns the Euclidean projection of the
input vector z onto the probability simplex. This projection
is likely to hit the boundary of the simplex, in which case
sparsemax(z) becomes sparse. We will see that sparsemax
retains most of the important properties of softmax, having
in addition the ability of producing sparse distributions.

2.2. Closed-Form Solution

Projecting onto the simplex is a well studied problem, for
which linear-time algorithms are available (Michelot, 1986;
Pardalos & Kovoor, 1990; Duchi et al., 2008). We start by
recalling the well-known result that such projections corre-
spond to a soft-thresholding operation. Below, we use the
notation [K] := {1, . . . ,K} and [t]+ := max{0, t}.

Proposition 1 The solution of Eq. 2 is of the form:

sparsemaxi(z) = [zi � ⌧(z)]+, (3)

where ⌧ : RK ! R is the (unique) function that satis-
fies

P
j [zj � ⌧(z)]+ = 1 for every z. Furthermore, ⌧

Algorithm 1 Sparsemax Evaluation
Input: z
Sort z as z(1) � . . . � z(K)

Find k(z) := max
n
k 2 [K] | 1 + kz(k) >

P
jk z(j)

o

Define ⌧(z) =
(
P

jk(z) z(j))�1

k(z)

Output: p s.t. pi = [zi � ⌧(z)]+.

can be expressed as follows. Let z(1) � z(2) � . . . �
z(K) be the sorted coordinates of z, and define k(z) :=

max
n
k 2 [K] | 1 + kz(k) >

P
jk z(j)

o
. Then,

⌧(z) =

⇣P
jk(z) z(j)

⌘
� 1

k(z)
=

⇣P
j2S(z) zj

⌘
� 1

|S(z)| , (4)

where S(z) := {j 2 [K] | sparsemaxj(z) > 0} is the
support of sparsemax(z).

Proof: See App. A.1 in the supplemental material.

In essence, Prop. 1 states that all we need for evaluating
the sparsemax transformation is to compute the threshold
⌧(z); all coordinates above this threshold (the ones in the
set S(z)) will be shifted by this amount, and the others will
be truncated to zero. We call ⌧ in Eq. 4 the threshold func-
tion. This piecewise linear function will play an important
role in the sequel. Alg. 1 illustrates a naı̈ve O(K logK)
algorithm that uses Prop. 1 for evaluating the sparsemax.1

2.3. Basic Properties

We now highlight some properties that are common to soft-
max and sparsemax. Let z(1) := maxk zk, and denote by
A(z) := {k 2 [K] | zk = z(1)} the set of maximal compo-
nents of z. We define the indicator vector A(z), whose kth
component is 1 if k 2 A(z), and 0 otherwise. We further
denote by �(z) := z(1) � maxk/2A(z) zk the gap between
the maximal components of z and the second largest. We
let 0 and 1 be vectors of zeros and ones, respectively.

Proposition 2 The following properties hold for ⇢ 2
{softmax, sparsemax}.

1. ⇢(0) = 1/K and lim✏!0+ ⇢(✏�1z) = A(z)/|A(z)|
(uniform distribution, and distribution peaked on the
maximal components of z, respectively). For sparse-
max, the last equality holds for any ✏ �(z) · |A(z)|.

2. ⇢(z) = ⇢(z + c1), for any c 2 R (i.e., ⇢ is invariant
to adding a constant to each coordinate).

1More elaborate O(K) algorithms exist based on linear-time
selection (Blum et al., 1973; Pardalos & Kovoor, 1990).

Sort the coordinates of z
Define k(z) the sparsity bound: index

 is the threshold function
 the support of sparsemax

τ(z)
S(z) := {j ∈ [K] |sparsemaxj(z) > 0}

Sparse logits after
threshold; sum of sparse logits

{z(j) | j ≤ k(z)}

∑
j≤k(z)

z(j)

From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification

� 3 � 2 � 1 0 1 2 3
t

0.0

0.2

0.4

0.6

0.8

1.0 softmax1([t,0])

sparsemax1([t,0])

t1

� 3 � 2 � 1
0

1
2

3

t 2

� 3
� 2

� 1
0

1
2

3

sp
ar

se
m

ax
1
([
t 1

,t
2
,0

])

0.0

0.2

0.4

0.6

0.8

1.0

t1

� 3 � 2 � 1
0

1
2

3

t 2

� 3
� 2

� 1
0

1
2

3

so
ft
m

ax
1
([
t 1

,t
2
,0

])

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1. Comparison of softmax and sparsemax in 2D (left) and 3D (two righmost plots).

3. ⇢(Pz) = P⇢(z) for any permutation matrix P (i.e., ⇢
commutes with permutations).

4. If zi zj , then 0 ⇢j(z) � ⇢i(z) ⌘(zj � zi),
where ⌘ = 1

2 for softmax, and ⌘ = 1 for sparsemax.

Proof: See App. A.2 in the supplemental material.

Interpreting ✏ as a “temperature parameter,” the first part
of Prop. 2 shows that the sparsemax has the same “zero-
temperature limit” behaviour as the softmax, but without
the need of making the temperature arbitrarily small.

Prop. 2 is reassuring, since it shows that the sparsemax
transformation, despite being defined very differently from
the softmax, has a similar behaviour and preserves the same
invariances. Note that some of these properties are not sat-
isfied by other proposed replacements of the softmax: for
example, the spherical softmax (Ollivier, 2013), defined as
⇢i(z) := z

2
i /

P
j z

2
j , does not satisfy properties 2 and 4.

2.4. Two and Three-Dimensional Cases

For the two-class case, it is well known that the softmax
activation becomes the logistic (sigmoid) function. More
precisely, if z = (t, 0), then softmax1(z) = �(t) :=
(1 + exp(�t))�1. We next show that the analogous in
sparsemax is the “hard” version of the sigmoid. In fact,
using Prop. 1, Eq. 4, we have that, for z = (t, 0),

⌧(z) =

8
<

:

t� 1, if t > 1
(t� 1)/2, if �1 t 1
�1, if t < �1,

(5)

and therefore

sparsemax1(z) =

8
<

:

1, if t > 1
(t+ 1)/2, if �1 t 1
0, if t < �1.

(6)

Fig. 1 provides an illustration for the two and three-
dimensional cases. For the latter, we parameterize z =
(t1, t2, 0) and plot softmax1(z) and sparsemax1(z) as a
function of t1 and t2. We can see that sparsemax is piece-
wise linear, but asymptotically similar to the softmax.

2.5. Jacobian of Sparsemax

The Jacobian matrix of a transformation ⇢, J⇢(z) :=
[@⇢i(z)/@zj]i,j , is of key importance to train models with
gradient-based optimization. We next derive the Jacobian
of the sparsemax activation, but before doing so, let us re-
call how the Jacobian of the softmax looks like. We have

@softmaxi(z)

@zj
=

�ije
zi
P

k e
zk � e

ziezj

(
P

k e
zk)2

= softmaxi(z)(�ij � softmaxj(z)), (7)

where �ij is the Kronecker delta, which evaluates to 1 if
i = j and 0 otherwise. Letting p = softmax(z), the full
Jacobian can be written in matrix notation as

Jsoftmax(z) = Diag(p)� pp>
, (8)

where Diag(p) is a matrix with p in the main diagonal.

Let us now turn to the sparsemax case. The first thing to
note is that sparsemax is differentiable everywhere except
at splitting points z where the support set S(z) changes,
i.e., where S(z) 6= S(z+ ✏d) for some d and infinitesimal
✏.2 From Eq. 3, we have that:

@sparsemaxi(z)

@zj
=

(
�ij � @⌧(z)

@zj
, if zi > ⌧(z),

0, if zi ⌧(z).
(9)

It remains to compute the gradient of the threshold function
⌧ . From Eq. 4, we have:

@⌧(z)

@zj
=

⇢ 1
|S(z)| if j 2 S(z),

0, if j /2 S(z).
(10)

Note that j 2 S(z) , zj > ⌧(z). Therefore we obtain:

@sparsemaxi(z)

@zj
=

⇢
�ij � 1

|S(z)| , if i, j 2 S(z),

0, otherwise.
(11)

2For those points, we can take an arbitrary matrix in the set of
generalized Clarke’s Jacobians (Clarke, 1983), the convex hull of
all points of the form limt!1 Jsparsemax(zt), where zt ! z.

Two and Three-Dimensional Cases

❖ For two dimensions: ,
softmax becomes logistic (sigmoid)
function as:

❖ 2D sparsemax is the “hard” version
of the sigmoid

z = (t, 0)

 softmax 1(z) = (1 + exp(−t))−1

5

For z = (t, 0)

piece-wise linear

Two and Three-Dimensional Cases

6

From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification

t1

� 3 � 2 � 1
0

1
2

3

t 2

� 3
� 2

� 1
0

1
2

3

sp
ar

se
m

ax
1
([
t 1

,t
2
,0

])

0.0

0.2

0.4

0.6

0.8

1.0

t1

� 3 � 2 � 1
0

1
2

3

t 2

� 3
� 2

� 1
0

1
2

3

so
ft
m

ax
1
([
t 1

,t
2
,0

])

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1. Comparison of softmax and sparsemax in 2D (left) and 3D (two righmost plots).

3. ⇢(Pz) = P⇢(z) for any permutation matrix P (i.e., ⇢
commutes with permutations).

4. If zi zj , then 0 ⇢j(z) � ⇢i(z) ⌘(zj � zi),
where ⌘ = 1

2 for softmax, and ⌘ = 1 for sparsemax.

Proof: See App. A.2 in the supplemental material.

Interpreting ✏ as a “temperature parameter,” the first part
of Prop. 2 shows that the sparsemax has the same “zero-
temperature limit” behaviour as the softmax, but without
the need of making the temperature arbitrarily small.

Prop. 2 is reassuring, since it shows that the sparsemax
transformation, despite being defined very differently from
the softmax, has a similar behaviour and preserves the same
invariances. Note that some of these properties are not sat-
isfied by other proposed replacements of the softmax: for
example, the spherical softmax (Ollivier, 2013), defined as
⇢i(z) := z

2
i /

P
j z

2
j , does not satisfy properties 2 and 4.

2.4. Two and Three-Dimensional Cases

For the two-class case, it is well known that the softmax
activation becomes the logistic (sigmoid) function. More
precisely, if z = (t, 0), then softmax1(z) = �(t) :=
(1 + exp(�t))�1. We next show that the analogous in
sparsemax is the “hard” version of the sigmoid. In fact,
using Prop. 1, Eq. 4, we have that, for z = (t, 0),

⌧(z) =

8
<

:

t� 1, if t > 1
(t� 1)/2, if �1 t 1
�1, if t < �1,

(5)

and therefore

sparsemax1(z) =

8
<

:

1, if t > 1
(t+ 1)/2, if �1 t 1
0, if t < �1.

(6)

Fig. 1 provides an illustration for the two and three-
dimensional cases. For the latter, we parameterize z =
(t1, t2, 0) and plot softmax1(z) and sparsemax1(z) as a
function of t1 and t2. We can see that sparsemax is piece-
wise linear, but asymptotically similar to the softmax.

2.5. Jacobian of Sparsemax

The Jacobian matrix of a transformation ⇢, J⇢(z) :=
[@⇢i(z)/@zj]i,j , is of key importance to train models with
gradient-based optimization. We next derive the Jacobian
of the sparsemax activation, but before doing so, let us re-
call how the Jacobian of the softmax looks like. We have

@softmaxi(z)

@zj
=

�ije
zi
P

k e
zk � e

ziezj

(
P

k e
zk)2

= softmaxi(z)(�ij � softmaxj(z)), (7)

where �ij is the Kronecker delta, which evaluates to 1 if
i = j and 0 otherwise. Letting p = softmax(z), the full
Jacobian can be written in matrix notation as

Jsoftmax(z) = Diag(p)� pp>
, (8)

where Diag(p) is a matrix with p in the main diagonal.

Let us now turn to the sparsemax case. The first thing to
note is that sparsemax is differentiable everywhere except
at splitting points z where the support set S(z) changes,
i.e., where S(z) 6= S(z+ ✏d) for some d and infinitesimal
✏.2 From Eq. 3, we have that:

@sparsemaxi(z)

@zj
=

(
�ij � @⌧(z)

@zj
, if zi > ⌧(z),

0, if zi ⌧(z).
(9)

It remains to compute the gradient of the threshold function
⌧ . From Eq. 4, we have:

@⌧(z)

@zj
=

⇢ 1
|S(z)| if j 2 S(z),

0, if j /2 S(z).
(10)

Note that j 2 S(z) , zj > ⌧(z). Therefore we obtain:

@sparsemaxi(z)

@zj
=

⇢
�ij � 1

|S(z)| , if i, j 2 S(z),

0, otherwise.
(11)

2For those points, we can take an arbitrary matrix in the set of
generalized Clarke’s Jacobians (Clarke, 1983), the convex hull of
all points of the form limt!1 Jsparsemax(zt), where zt ! z.

5D case

Gradient-based Optimization

❖ Jacobian of Softmax

For matrix notation with ,

∂ softmaxi(z)
∂zj

=
δijezi ∑k ezk − eziezj

(∑k ezk)
2 = softmaxi(z)(δij − softmaxj(z))

p = softmax(z)

Jsoftmax (z) = Diag(p) − pp⊤

7

Gradient-based Optimization

❖ Jacobian of Sparsemax

1.

2.

3.

4. where s = sparsemax(z)

8

 sparsemaxi(z) = max {0, zi − τ}

τ(z) =
(∑j≤k(z) z(j)) − 1

k(z)
S(z) := {j ∈ [K] |sparsemaxj(z) > 0}

❖ Jacobian of Sparsemax

Loss Function: Logistic Loss

❖ Consider regularized empirical risk minimization problems

❖ Logistic loss

❖ Gradient

 is the delta distribution on k.

 minimize
λ
2

∥W∥2
F +

1
N

N

∑
i=1

L (Wxi + b; yi)

Lsoftmax (z; k) = − log softmaxk(z) = − zk + log∑
j

exp (zj)

∇zLsoftmax (z; k) = − δk + softmax(z)

δk

9

Loss Function: Sparsemax Loss

❖ Reversing engineering the sparsemax loss

❖ Sparsemax loss:

∇zLsparsemax (z; k) = − δk + sparsemax (z)

Lsparsemax (z; k) = − zk +
1
2 ∑

j∈S(z)
(z2

j − τ2(z)) +
1
2

10

Generalization to
Multi-Label Classification

❖ The multinomial logistic loss

Gradient:

❖ The corresponding generalization in the sparsemax case

Gradient:

Lsoftmax (z; q) = KL(q∥ softmax(z)) = − H(q) − q⊤z + log∑
j

exp (zj)

∇zLsoftmax (z; q) = − q + softmax(z)

Lsparsemax (z; q) = − q⊤z +
1
2 ∑

j∈S(z)
(z2

j − τ2(z)) +
1
2

∥q∥2

∇zLsparsemax (z; q) = − q + sparsemax (z)

11

Experiments:
Multi-Label Benchmarking

12

❖ Logistic: independent
binary logistic
regressors on each label

❖ Softmax: a multinomial
logistic regressor

❖ a slight advantage of
Sparsemax

From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification

1. Label proportion estimation and multi-label classifi-
cation, via the sparsemax loss in Eq. 26 (§4.1–4.2).

2. Attention-based neural networks, via the sparsemax
transformation of Eq. 2 (§4.3).

4.1. Label Proportion Estimation

We show simulation results for sparse label proportion es-
timation on synthetic data. Since sparsemax can predict
sparse distributions, we expect its superiority in this task.
We generated datasets with 1,200 training and 1,000 test
examples. Each example emulates a “multi-labeled doc-
ument”: a variable-length sequence of word symbols, as-
signed to multiple topics (labels). We pick the number of
labels N 2 {1, . . . ,K} by sampling from a Poisson distri-
bution with rejection sampling, and draw the N labels from
a multinomial. Then, we pick a document length from a
Poisson, and repeatedly sample its words from the mixture
of the N label-specific multinomials. We experimented
with two settings: uniform mixtures (qkn = 1/N for the
N active labels k1, . . . , kN) and random mixtures (whose
label proportions qkn were drawn from a flat Dirichlet).5
We set the vocabulary size to be equal to the number of
labels K 2 {10, 50}, and varied the average document
length between 200 and 2,000 words. We trained mod-
els by optimizing Eq. 15 with L 2 {Lsoftmax, Lsparsemax}
(Eqs. 24 and 26). We picked the regularization constant
� 2 {10j}0j=�9 with 5-fold cross-validation.

Results are shown in Fig. 3. We report the mean squared er-
ror (average of kq � pk2 on the test set, where q and p are
respectively the target and predicted label posteriors) and
the Jensen-Shannon divergence (average of JS(q,p) :=
1
2KL(qkp+q

2)+ 1
2KL(pkp+q

2)).6 We observe that the two
losses perform similarly for small document lengths (where
the signal is weaker), but as the average document length
exceeds 400, the sparsemax loss starts outperforming the
logistic loss consistently. This is because with a stronger
signal the sparsemax estimator manages to identify cor-
rectly the support of the label proportions q, contributing to
reduce both the mean squared error and the JS divergence.
This occurs both for uniform and random mixtures.

4.2. Multi-Label Classification on Benchmark Datasets

Next, we ran experiments in five benchmark multi-label
classification datasets: the four small-scale datasets used by
Koyejo et al. (2015),7 and the much larger Reuters RCV1

5Note that, with uniform mixtures, the problem becomes es-
sentially multi-label classification.

6Note that the KL divergence is not an appropriate metric here,
since the sparsity of q and p could lead to �1 values.

7Obtained from http://mulan.sourceforge.net/
datasets-mlc.html.

Table 1. Statistics for the 5 multi-label classification datasets.

DATASET DESCR. #LABELS #TRAIN #TEST

SCENE IMAGES 6 1211 1196
EMOTIONS MUSIC 6 393 202
BIRDS AUDIO 19 323 322
CAL500 MUSIC 174 400 100
REUTERS TEXT 103 23,149 781,265

Table 2. Micro (left) and macro-averaged (right) F1 scores for the
logistic, softmax, and sparsemax losses on benchmark datasets.

DATASET LOGISTIC SOFTMAX SPARSEMAX

SCENE 70.96 / 72.95 74.01 / 75.03 73.45 / 74.57
EMOTIONS 66.75 / 68.56 67.34 / 67.51 66.38 / 66.07
BIRDS 45.78 / 33.77 48.67 / 37.06 49.44 / 39.13
CAL500 48.88 / 24.49 47.46 / 23.51 48.47 / 26.20
REUTERS 81.19 / 60.02 79.47 / 56.30 80.00 / 61.27

v2 dataset of Lewis et al. (2004).8 For all datasets, we re-
moved examples without labels (i.e. where Y = ?). For all
but the Reuters dataset, we normalized the features to have
zero mean and unit variance. Statistics for these datasets
are presented in Table 1.

Recent work has investigated the consistency of multi-label
classifiers for various micro and macro-averaged metrics
(Gao & Zhou, 2013; Koyejo et al., 2015), among which a
plug-in classifier that trains independent binary logistic re-
gressors on each label, and then tunes a probability thresh-
old � 2 [0, 1] on validation data. At test time, those labels
whose posteriors are above the threshold are predicted to
be “on.” We used this procedure (called LOGISTIC) as a
baseline for comparison. Our second baseline (SOFTMAX)
is a multinomial logistic regressor, using the loss function
in Eq. 24, where the target distribution q is set to uniform
over the active labels. A similar probability threshold p0

is used for prediction, above which a label is predicted to
be “on.” We compare these two systems with the sparse-
max loss function of Eq. 26. We found it beneficial to scale
the label scores z by a constant t � 1 at test time, before
applying the sparsemax transformation, to make the result-
ing distribution p = sparsemax(tz) more sparse. We then
predict the kth label to be “on” if pk 6= 0.

We optimized the three losses with L-BFGS (for a maxi-
mum of 100 epochs), tuning the hyperparameters in a held-
out validation set (for the Reuters dataset) and with 5-fold
cross-validation (for the other four datasets). The hyperpa-
rameters are the regularization constant � 2 {10j}2j=�8,
the probability thresholds � 2 {.05⇥n}10n=1 for LOGISTIC

8Obtained from https://www.csie.ntu.edu.tw/
˜cjlin/libsvmtools/datasets/multilabel.html.

From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification

1. Label proportion estimation and multi-label classifi-
cation, via the sparsemax loss in Eq. 26 (§4.1–4.2).

2. Attention-based neural networks, via the sparsemax
transformation of Eq. 2 (§4.3).

4.1. Label Proportion Estimation

We show simulation results for sparse label proportion es-
timation on synthetic data. Since sparsemax can predict
sparse distributions, we expect its superiority in this task.
We generated datasets with 1,200 training and 1,000 test
examples. Each example emulates a “multi-labeled doc-
ument”: a variable-length sequence of word symbols, as-
signed to multiple topics (labels). We pick the number of
labels N 2 {1, . . . ,K} by sampling from a Poisson distri-
bution with rejection sampling, and draw the N labels from
a multinomial. Then, we pick a document length from a
Poisson, and repeatedly sample its words from the mixture
of the N label-specific multinomials. We experimented
with two settings: uniform mixtures (qkn = 1/N for the
N active labels k1, . . . , kN) and random mixtures (whose
label proportions qkn were drawn from a flat Dirichlet).5
We set the vocabulary size to be equal to the number of
labels K 2 {10, 50}, and varied the average document
length between 200 and 2,000 words. We trained mod-
els by optimizing Eq. 15 with L 2 {Lsoftmax, Lsparsemax}
(Eqs. 24 and 26). We picked the regularization constant
� 2 {10j}0j=�9 with 5-fold cross-validation.

Results are shown in Fig. 3. We report the mean squared er-
ror (average of kq � pk2 on the test set, where q and p are
respectively the target and predicted label posteriors) and
the Jensen-Shannon divergence (average of JS(q,p) :=
1
2KL(qkp+q

2)+ 1
2KL(pkp+q

2)).6 We observe that the two
losses perform similarly for small document lengths (where
the signal is weaker), but as the average document length
exceeds 400, the sparsemax loss starts outperforming the
logistic loss consistently. This is because with a stronger
signal the sparsemax estimator manages to identify cor-
rectly the support of the label proportions q, contributing to
reduce both the mean squared error and the JS divergence.
This occurs both for uniform and random mixtures.

4.2. Multi-Label Classification on Benchmark Datasets

Next, we ran experiments in five benchmark multi-label
classification datasets: the four small-scale datasets used by
Koyejo et al. (2015),7 and the much larger Reuters RCV1

5Note that, with uniform mixtures, the problem becomes es-
sentially multi-label classification.

6Note that the KL divergence is not an appropriate metric here,
since the sparsity of q and p could lead to �1 values.

7Obtained from http://mulan.sourceforge.net/
datasets-mlc.html.

Table 1. Statistics for the 5 multi-label classification datasets.

DATASET DESCR. #LABELS #TRAIN #TEST

SCENE IMAGES 6 1211 1196
EMOTIONS MUSIC 6 393 202
BIRDS AUDIO 19 323 322
CAL500 MUSIC 174 400 100
REUTERS TEXT 103 23,149 781,265

Table 2. Micro (left) and macro-averaged (right) F1 scores for the
logistic, softmax, and sparsemax losses on benchmark datasets.

DATASET LOGISTIC SOFTMAX SPARSEMAX

SCENE 70.96 / 72.95 74.01 / 75.03 73.45 / 74.57
EMOTIONS 66.75 / 68.56 67.34 / 67.51 66.38 / 66.07
BIRDS 45.78 / 33.77 48.67 / 37.06 49.44 / 39.13
CAL500 48.88 / 24.49 47.46 / 23.51 48.47 / 26.20
REUTERS 81.19 / 60.02 79.47 / 56.30 80.00 / 61.27

v2 dataset of Lewis et al. (2004).8 For all datasets, we re-
moved examples without labels (i.e. where Y = ?). For all
but the Reuters dataset, we normalized the features to have
zero mean and unit variance. Statistics for these datasets
are presented in Table 1.

Recent work has investigated the consistency of multi-label
classifiers for various micro and macro-averaged metrics
(Gao & Zhou, 2013; Koyejo et al., 2015), among which a
plug-in classifier that trains independent binary logistic re-
gressors on each label, and then tunes a probability thresh-
old � 2 [0, 1] on validation data. At test time, those labels
whose posteriors are above the threshold are predicted to
be “on.” We used this procedure (called LOGISTIC) as a
baseline for comparison. Our second baseline (SOFTMAX)
is a multinomial logistic regressor, using the loss function
in Eq. 24, where the target distribution q is set to uniform
over the active labels. A similar probability threshold p0

is used for prediction, above which a label is predicted to
be “on.” We compare these two systems with the sparse-
max loss function of Eq. 26. We found it beneficial to scale
the label scores z by a constant t � 1 at test time, before
applying the sparsemax transformation, to make the result-
ing distribution p = sparsemax(tz) more sparse. We then
predict the kth label to be “on” if pk 6= 0.

We optimized the three losses with L-BFGS (for a maxi-
mum of 100 epochs), tuning the hyperparameters in a held-
out validation set (for the Reuters dataset) and with 5-fold
cross-validation (for the other four datasets). The hyperpa-
rameters are the regularization constant � 2 {10j}2j=�8,
the probability thresholds � 2 {.05⇥n}10n=1 for LOGISTIC

8Obtained from https://www.csie.ntu.edu.tw/
˜cjlin/libsvmtools/datasets/multilabel.html.

Experiments:
Neural Networks with Attention Mechanisms

13

❖ Sparse Attention

From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification

Table 3. Accuracies for the natural language inference task.
Shown are our implementations of a system without attention, and
with logistic, soft, and sparse attentions.

DEV ACC. TEST ACC.

NOATTENTION 81.84 80.99
LOGISTICATTENTION 82.11 80.84
SOFTATTENTION 82.86 82.08
SPARSEATTENTION 82.52 82.20

with model parameters W
{xz,xr,xh,hz,hr,hh} 2 RD⇥D

and b{z,r,h} 2 RD. Likewise, our hypothesis GRU
(with distinct parameters) generates a state sequence
[hL+1, . . . ,hN], being initialized with the last state from
the premise (hL). The NOATTENTION system then com-
putes the final state u based on the last states from the
premise and the hypothesis as follows:

u = tanh(WpuhL +W
huhN + bu) (32)

where W
pu
,W

hu 2 RD⇥D and bu 2 RD. Finally, it
predicts a label by from u with a standard softmax layer. The
SOFTATTENTION system, instead of using the last premise
state hL, computes a weighted average of premise words
with an attention mechanism, replacing Eq. 32 by

zt = v>tanh(Wpmht +W
hmhN + bm) (33)

p = softmax(z), where z := (z1, . . . , zL) (34)
r = H1:Lp (35)
u = tanh(Wpur +W

huhN + bu), (36)

where W
pm

,W
hm 2 RD⇥D and bm,v 2 RD. The LO-

GISTICATTENTION system, instead of Eq. 34, computes
p = (�(z1), . . . ,�(zL)). Finally, the SPARSEATTENTION
system replaces Eq. 34 by p = sparsemax(z).

We optimized all the systems with Adam (Kingma & Ba,
2014), using the default parameters �1 = 0.9, �2 = 0.999,
and ✏ = 10�8, and setting the learning rate to 3 ⇥ 10�4.
We tuned a `2-regularization coefficient in {0, 10�4

, 3 ⇥
10�4

, 10�3} and, as Rocktäschel et al. (2015), a dropout
probability of 0.1 in the inputs and outputs of the network.

The results are shown in Table 3. We observe that the
soft and sparse-activated attention systems perform simi-
larly, the latter being slightly more accurate on the test set,
and that both outperform the NOATTENTION and LOGIS-
TICATTENTION systems.10

10Rocktäschel et al. (2015) report scores slightly above ours:
they reached a test accuracy of 82.3% for their implementation of
SOFTATTENTION, and 83.5% with their best system, a more elab-
orate word-by-word attention model. Differences in the former
case may be due to distinct word vectors and the use of LSTMs
instead of GRUs.

Table 4. Examples of sparse attention for the natural language in-
ference task. Nonzero attention coefficients are marked in bold.
Our system classified all four examples correctly. The examples
were picked from Rocktäschel et al. (2015).

A boy rides on a camel in a crowded area while talking on his
cellphone.
Hypothesis: A boy is riding an animal. [entailment]

A young girl wearing a pink coat plays with a yellow toy golf
club.
Hypothesis: A girl is wearing a blue jacket. [contradiction]

Two black dogs are frolicking around the grass together.
Hypothesis: Two dogs swim in the lake. [contradiction]

A man wearing a yellow striped shirt laughs while seated next
to another man who is wearing a light blue shirt and clasping his
hands together.
Hypothesis: Two mimes sit in complete silence. [contradiction]

Table 4 shows examples of sentence pairs, highlighting the
premise words selected by the SPARSEATTENTION mech-
anism. We can see that, for all examples, only a small num-
ber of words are selected, which are key to making the fi-
nal decision. Compared to a softmax-activated mechanism,
which provides a dense distribution over all the words,
the sparsemax activation yields a compact and more inter-
pretable selection, which can be particularly useful in long
sentences such as the one in the bottom row.

5. Conclusions
We introduced the sparsemax transformation, which has
similar properties to the traditional softmax, but is able
to output sparse probability distributions. We derived
a closed-form expression for its Jacobian, needed for
the backpropagation algorithm, and we proposed a novel
“sparsemax loss” function, a sparse analogue of the logis-
tic loss, which is smooth and convex. Empirical results in
multi-label classification and in attention networks for nat-
ural language inference attest the validity of our approach.

The connection between sparse modeling and interpretabil-
ity is key in signal processing (Hastie et al., 2015). Our
approach is distinctive: it is not the model that is assumed
sparse, but the label posteriors that the model parametrizes.
Sparsity is also a desirable (and biologically plausible)
property in neural networks, present in rectified units (Glo-
rot et al., 2011) and maxout nets (Goodfellow et al., 2013).

There are several avenues for future research. The ability
of sparsemax-activated attention to select only a few vari-
ables to attend makes it potentially relevant to neural archi-
tectures with random access memory (Graves et al., 2014;
Grefenstette et al., 2015; Sukhbaatar et al., 2015), since

From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification

Table 3. Accuracies for the natural language inference task.
Shown are our implementations of a system without attention, and
with logistic, soft, and sparse attentions.

DEV ACC. TEST ACC.

NOATTENTION 81.84 80.99
LOGISTICATTENTION 82.11 80.84
SOFTATTENTION 82.86 82.08
SPARSEATTENTION 82.52 82.20

with model parameters W
{xz,xr,xh,hz,hr,hh} 2 RD⇥D

and b{z,r,h} 2 RD. Likewise, our hypothesis GRU
(with distinct parameters) generates a state sequence
[hL+1, . . . ,hN], being initialized with the last state from
the premise (hL). The NOATTENTION system then com-
putes the final state u based on the last states from the
premise and the hypothesis as follows:

u = tanh(WpuhL +W
huhN + bu) (32)

where W
pu
,W

hu 2 RD⇥D and bu 2 RD. Finally, it
predicts a label by from u with a standard softmax layer. The
SOFTATTENTION system, instead of using the last premise
state hL, computes a weighted average of premise words
with an attention mechanism, replacing Eq. 32 by

zt = v>tanh(Wpmht +W
hmhN + bm) (33)

p = softmax(z), where z := (z1, . . . , zL) (34)
r = H1:Lp (35)
u = tanh(Wpur +W

huhN + bu), (36)

where W
pm

,W
hm 2 RD⇥D and bm,v 2 RD. The LO-

GISTICATTENTION system, instead of Eq. 34, computes
p = (�(z1), . . . ,�(zL)). Finally, the SPARSEATTENTION
system replaces Eq. 34 by p = sparsemax(z).

We optimized all the systems with Adam (Kingma & Ba,
2014), using the default parameters �1 = 0.9, �2 = 0.999,
and ✏ = 10�8, and setting the learning rate to 3 ⇥ 10�4.
We tuned a `2-regularization coefficient in {0, 10�4

, 3 ⇥
10�4

, 10�3} and, as Rocktäschel et al. (2015), a dropout
probability of 0.1 in the inputs and outputs of the network.

The results are shown in Table 3. We observe that the
soft and sparse-activated attention systems perform simi-
larly, the latter being slightly more accurate on the test set,
and that both outperform the NOATTENTION and LOGIS-
TICATTENTION systems.10

10Rocktäschel et al. (2015) report scores slightly above ours:
they reached a test accuracy of 82.3% for their implementation of
SOFTATTENTION, and 83.5% with their best system, a more elab-
orate word-by-word attention model. Differences in the former
case may be due to distinct word vectors and the use of LSTMs
instead of GRUs.

Table 4. Examples of sparse attention for the natural language in-
ference task. Nonzero attention coefficients are marked in bold.
Our system classified all four examples correctly. The examples
were picked from Rocktäschel et al. (2015).

A boy rides on a camel in a crowded area while talking on his
cellphone.
Hypothesis: A boy is riding an animal. [entailment]

A young girl wearing a pink coat plays with a yellow toy golf
club.
Hypothesis: A girl is wearing a blue jacket. [contradiction]

Two black dogs are frolicking around the grass together.
Hypothesis: Two dogs swim in the lake. [contradiction]

A man wearing a yellow striped shirt laughs while seated next
to another man who is wearing a light blue shirt and clasping his
hands together.
Hypothesis: Two mimes sit in complete silence. [contradiction]

Table 4 shows examples of sentence pairs, highlighting the
premise words selected by the SPARSEATTENTION mech-
anism. We can see that, for all examples, only a small num-
ber of words are selected, which are key to making the fi-
nal decision. Compared to a softmax-activated mechanism,
which provides a dense distribution over all the words,
the sparsemax activation yields a compact and more inter-
pretable selection, which can be particularly useful in long
sentences such as the one in the bottom row.

5. Conclusions
We introduced the sparsemax transformation, which has
similar properties to the traditional softmax, but is able
to output sparse probability distributions. We derived
a closed-form expression for its Jacobian, needed for
the backpropagation algorithm, and we proposed a novel
“sparsemax loss” function, a sparse analogue of the logis-
tic loss, which is smooth and convex. Empirical results in
multi-label classification and in attention networks for nat-
ural language inference attest the validity of our approach.

The connection between sparse modeling and interpretabil-
ity is key in signal processing (Hastie et al., 2015). Our
approach is distinctive: it is not the model that is assumed
sparse, but the label posteriors that the model parametrizes.
Sparsity is also a desirable (and biologically plausible)
property in neural networks, present in rectified units (Glo-
rot et al., 2011) and maxout nets (Goodfellow et al., 2013).

There are several avenues for future research. The ability
of sparsemax-activated attention to select only a few vari-
ables to attend makes it potentially relevant to neural archi-
tectures with random access memory (Graves et al., 2014;
Grefenstette et al., 2015; Sukhbaatar et al., 2015), since

From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification

Figure 3. Simulation results for the
estimation of label posteriors, for uni-
form (top) and random mixtures (bot-
tom). Shown are the mean squared
error and the Jensen-Shannon diver-
gence as a function of the document
length, for the logistic and the sparse-
max estimators.

and p0 2 {n/K}10n=1 for SOFTMAX, and the coefficient
t 2 {0.5⇥ n}10n=1 for SPARSEMAX.

Results are shown in Table 2. Overall, the performances of
the three losses are all very similar, with a slight advantage
of SPARSEMAX, which attained the highest results in 4 out
of 10 experiments, while LOGISTIC and SOFTMAX won 3
times each. In particular, sparsemax appears better suited
for problems with larger numbers of labels.

4.3. Neural Networks with Attention Mechanisms

We now assess the suitability of the sparsemax transforma-
tion to construct a “sparse” neural attention mechanism.

We ran experiments on the task of natural language infer-
ence, using the recently released SNLI 1.0 corpus (Bow-
man et al., 2015), a collection of 570,000 human-written
English sentence pairs. Each pair consists of a premise and
an hypothesis, manually labeled with one the labels EN-
TAILMENT, CONTRADICTION, or NEUTRAL. We used the
provided training, development, and test splits.

The architecture of our system, shown in Fig. 4, is the
same as the one proposed by Rocktäschel et al. (2015).
We compare the performance of four systems: NOATTEN-
TION, a (gated) RNN-based system similar to Bowman
et al. (2015); LOGISTICATTENTION, an attention-based
system with independent logistic activations; SOFTATTEN-
TION, a near-reproduction of the Rocktäschel et al. (2015)’s
attention-based system; and SPARSEATTENTION, which
replaces the latter softmax-activated attention mechanism
by a sparsemax activation.

We represent the words in the premise and in the hypothe-
sis with 300-dimensional GloVe vectors (Pennington et al.,
2014), not optimized during training, which we linearly
project onto a D-dimensional subspace (Astudillo et al.,

Figure 4. Network diagram for the NL inference problem. The
premise and hypothesis are both fed into (gated) RNNs. The
NOATTENTION system replaces the attention part (in green) by a
direct connection from the last premise state to the output (dashed
violet line). The LOGISTICATTENTION, SOFTATTENTION and
SPARSEATTENTION systems have respectively independent lo-
gistics, a softmax, and a sparsemax-activated attention mecha-
nism. In this example, L = 5 and N = 9.

2015).9 We denote by x1, . . . ,xL and xL+1, . . . ,xN , re-
spectively, the projected premise and hypothesis word vec-
tors. These sequences are then fed into two recurrent net-
works (one for each). Instead of long short-term memories,
as Rocktäschel et al. (2015), we used gated recurrent units
(GRUs, Cho et al. 2014), which behave similarly but have
fewer parameters. Our premise GRU generates a state se-
quence H1:L := [h1 . . .hL] 2 RD⇥L as follows:

zt = �(Wxzxt +W
hzht�1 + bz) (28)

rt = �(Wxrxt +W
hrht�1 + br) (29)

h̄t = tanh(Wxhxt +W
hh(rt � ht�1) + bh) (30)

ht = (1� zt)ht�1 + zth̄t, (31)
9We used GloVe-840B embeddings trained on Common Crawl

(http://nlp.stanford.edu/projects/glove/).

NoAttention:
 u = tanh (WpuhL + WhuhN + bu)

zt = v⊤ tanh (Wpmht + WhmhN + bm)
p = softmax(z), where z := (z1, …, zL)

SoftAttention:

