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Meta-learning Introduction

+ deep neural networks will severely overfit on one-shot
+ humans spend a lifetime to classify things

+ knowledge transfer from other tasks



Meta-learning Introduction

+ The model is trained to learn tasks in the meta-
training set.

training data test set
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Meta-learning Introduction

+ two optimizations
% the learner, which learns new tasks
+ the meta-learner, which trains the learner.

+ three categories:
+ recurrent models
* metric learning
+ learning optimizers



Problem Set-up

T ={{(z1,01),..., (s, 1)}, {F1, ..., &3}, {(F1, ..., 30)})
=R TA =R

Labeled: {(z1,01),...,(Zs,ls)} for supervised learning
Unlabeled: {Z1,...,Z,} for semi-supervised and active learning

To classify: {(z1,...,T¢)}
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Few-shot GNIN

+ Goal: propagate label information from labeled
samples towards the unlabeled query image

+ Idea: a posterior inference over a graphical model
determined by the input images and labels



Few-shot GNIN

<+ Contributions

1. supervised message passing through end-to-end
graph neural networks

2. state-of-the-art performance with fewer parameters

3. extend to semi-supervised and active learning



Model: node teatures

<+ Initial Node Features
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¢ is CNN; h(l) € Rf is one-hot encoding




Model: metric
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Model:
GNN
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Experiments

+ Omniglot

1623 hand drawn characters from 50 alphabets,
every character has 20 examples, at resolution 105x105

| 5-Way 20-Way
 Model 1-shot 5-shot 1-shot 5-shot |
' Pixels Vinyals et al. (2016) 41.7% 63.2% 26.7% 42.6% |
- Siamese Net Koch et al. (2015) 97.3% 98.4% 88.2% 97.0% |
Matching Networks Vinyals ct al.’(2016) 08.1% 08.9% 03.8% 08.5%
N. Statistician Edwards & Storkey\(zolﬁ) 08.1% 99.5% 93.2% 98.1%
Res. Pair-Wise Mehrotra & Dukkipati (2017) - - 94.8% -
 Prototypical Networks Snell et al. (2017) 97.4% 99.3% 95.4% 98.8%
ConvNet with Memory Kaiser et al. (2017) 98.4% 99.6% 95.0% 98.6%
~ Agnostic Meta-learner Finnetal. (2017)  98.7 £0.4% 99.9 +0.3% 95.8 £0.3% 98.9 +0.2%
 Meta Networks Munkhdalai & Yu (2017) 98.9% - 97.0% - |
'T'CML Mishra et al. (2017) 98.96% +0.20% 99.75% +£0.11% 97.64% +0.30% 99.36% +0.18% |
Our GNN 99.2% 99.7% 97.4% 99.0% |




Experiments

+ Mini-ImageNet
60,000 colorful images of size 84 x 84 with 100 classes,
each having 600 examples

S5-Way

Model 1-shot S5-shot
Matching Networks vinyals et al. (2016) 43.6% 55.3%
Prototypical Networks\Snen et al. (2017) 46.61% +£0.78%  65.77% £0.70%
Model Agnostic Meta-learner Finnetal. 2017) 48.70% +1.84%  63.1% +0.92%
Meta Networks Munkhdalai & Yu (2017) 49.21% +0.96 -

Ravi & Larochelle Ravi & Larochelle (2016) 43.49% +0.77% 60.2% +0.71%
TCML Mishra et al./(2017) 55.71% +0.99% 68.88% +0.92%
Our metric learning + KNN 49.44% +0.28% 64.02% +0.51%
Our GNN 50.33% +0.36% 66.41% +0.63%
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Summary

+ graph neural representation for few-shot, semi-
supervised, and active learning

+ two optimization: node metric + GNN learner

+ comparable results
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