Few-shot learning with graph neural networks

At ICLR 2018

25 May 2018

- deep neural networks will severely overfit on one-shot
- humans spend a lifetime to classify things
- knowledge transfer from other tasks

 The model is trained to learn tasks in the metatraining set.

two optimizations

- the learner, which learns new tasks
- the meta-learner, which trains the learner.

* three categories:

- recurrent models
- metric learning
- learning optimizers

Problem Set-up

 $\mathcal{T} = \{\{(x_1, l_1), \dots, (x_s, l_s)\}, \{\tilde{x}_1, \dots, \tilde{x}_r\}, \{(\tilde{x}_1, \dots, \tilde{x}_t)\}\}\}$ $Y = (y_1, \dots, y_t) \in \{1, K\}^t$

Labeled: $\{(x_1, l_1), \dots, (x_s, l_s)\}$ for supervised learning Unlabeled: $\{\tilde{x}_1, \dots, \tilde{x}_r\}$ for semi-supervised and active learning To classify: $\{(\tilde{x}_1, \dots, \tilde{x}_t)\}$

Learning objective $\min_{\Theta} \frac{1}{L} \sum_{i \leq L} \mathcal{L}(\Phi(\mathcal{T}_i; \Theta), Y_i) + \mathcal{R}(\Theta)$

Few-shot GNN

- Goal: propagate label information from labeled samples towards the unlabeled query image
- Idea: a posterior inference over a graphical model determined by the input images and labels

Few-shot GNN

- Contributions
- supervised message passing through end-to-end graph neural networks
- 2. state-of-the-art performance with fewer parameters
- 3. extend to semi-supervised and active learning

Model: node features

Initial Node Features

 ϕ is CNN; $h(l) \in \mathbb{R}_+^K$ is one-hot encoding

Model: metric

$$V = \{X_1, X_2, \dots, X_N\}$$
$$\tilde{A}_{i,j}^{(k)} = \varphi_{\tilde{\theta}}(\mathbf{x}_i^{(k)}, \mathbf{x}_j^{(k)})$$
$$\varphi_{\tilde{\theta}}(\mathbf{x}_i^{(k)}, \mathbf{x}_j^{(k)}) = \mathrm{MLP}(abs(\mathbf{x}_i^{(k)} - \mathbf{x}_j^{(k)}))$$

Experiments

Omniglot

1623 hand drawn characters from 50 alphabets,

every character has 20 examples, at resolution 105x105

	5-Way		20-Way	
Model	1-shot	5-shot	1-shot	5-shot
Pixels Vinyals et al. (2016)	41.7%	63.2%	26.7%	42.6%
Siamese Net Koch et al. (2015)	97.3%	98.4%	88.2%	97.0%
Matching Networks Vinyals et al. (2016)	98.1%	98.9%	93.8%	98.5%
N. Statistician Edwards & Storkey (2016)	98.1%	99.5%	93.2%	98.1%
Res. Pair-Wise Mehrotra & Dukkipati (2017)	-	-	94.8%	-
Prototypical Networks Snell et al. (2017)	97.4%	99.3%	95.4%	98.8%
ConvNet with Memory Kaiser et al. (2017)	98.4%	99.6%	95.0%	98.6%
Agnostic Meta-learner Finn et al. (2017)	98.7 ±0.4%	99.9 ±0.3%	$95.8 \pm 0.3\%$	98.9 ±0.2%
Meta Networks Munkhdalai & Yu (2017)	98.9%	-	97.0%	-
TCML Mishra et al. (2017)	98.96% ±0.20%	99.75% ±0.11%	97.64% ±0.30%	99.36% ±0.18%
Our GNN	99.2%	99.7%	97.4%	99.0%

Experiments

Mini-ImageNet 60,000 colorful images of size 84 × 84 with 100 classes, each having 600 examples

	5-Way		
Model	1-shot	5-shot	
Matching Networks Vinyals et al. (2016)	43.6%	55.3%	
Prototypical Networks Snell et al. (2017)	$46.61\% \pm 0.78\%$	$65.77\% \pm 0.70\%$	
Model Agnostic Meta-learner Finn et al. (2017)	$48.70\% \pm 1.84\%$	$63.1\% \pm 0.92\%$	
Meta Networks Munkhdalai & Yu (2017)	49.21% ±0.96	-	
Ravi & Larochelle Ravi & Larochelle (2016)	$43.4\% \pm 0.77\%$	$60.2\% \pm 0.71\%$	
TCML Mishra et al. (2017)	$55.71\% \pm 0.99\%$	$68.88\% \pm 0.92\%$	
Our metric learning + KNN	49.44% ±0.28%	$64.02\% \pm 0.51\%$	
Our GNN	$50.33\% \pm 0.36\%$	$66.41\% \pm 0.63\%$	

Summary

- graph neural representation for few-shot, semisupervised, and active learning
- two optimization: node metric + GNN learner
- comparable results