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Mental Health & Suicide

[World Health Organization, Mental health action plan 2013 - 2020]

1/4 suffering from mental disorder

3/4 people not receive treatment

source: deccanchronicle.com

900,000 committing suicide every year

Early detection !



Suicidality message in Twitter

Tasks and Solutions

Source: www.scyspi.org

¡ Benchmarking for Suicidal Ideation Detection (SID)
o feature engineering: TF-IDF, POS tags, linguistic, etc. 
o word embedding and neural networks.

¡ Knowledge transferring in private communities
o knowledge transferring via model aggregation; 
o average difference decent for federated transferring. 

¡ Leverage external indictors with relation networks
o indicators include sentiment and topics;
o relation network with self attention mechanism.

Source: hackernoon.com

http://www.scyspi.org/risk-factors-and-warning-signs


Benchmarking for 
Suicidal Ideation 
Detection

¡ Input: title, text body

¡ Features: Statistics, POS, 
LIWC, TF-IDF, and Topics

¡ Classifier: SVM, ensemble 
methods, neural networks



Attentive Relation 
Networks

¡ Difference in emotions 
(pos/neg, anxiety, sadness) 
and topics (family, friends, 
work, money)

¡ Incorporating sentiment 
and topic information

¡ Relation networks with 
attention mechanism



Knowledge Transferring
via Model Aggregation

¡ Data scarcity in isolated 
private chatting rooms

¡ Trade-off between 
accuracy and data 
protection

¡ Collecting only aggregated 
information

¡ Knowledge sharing and 
transferring

For each user uk, we train a data-preserving model based on local data Tk = {(xi, yi)}m

1 to
predict the suicidal intention:

yi = Fk(xi; qk),

Here Fk and qk are the classification function and the corresponding model parameters for
the user uk respectively. After the local training on each user’s posts is finished, the learned
parameters qk of user uk are taken as the outputs. These output parameters represent each
user.

Disadvantages: While this a a good way to protect privacy, a local data-preserving model
will generally suffer from inaccurate predictions due to insufficient training data. In an ex-
treme cases, there could be no training data for a new user, yet data is required to predict the
suicidal intention when new data are generated from a device. This problem is referred as a
cold start [19] or zero-shot learning [18] problem. To balance prediction accuracy and privacy is-
sues, in this paper, we propose learning an additional global data-free model by aggregating
the model’s parameters from local devices.

Definition 2: Global Data-free Model. The global data-free model is learned by aggregating
the local models’ parameters (q1, · · · , qn) without any user data, which is defined as

F(q) = f (q1, · · · , qn), (1)

where qk is the parameters for a local data-preserving model, f (·) is a aggregation function
to integrate all local parameters, and q is the global model parameters.

The global data-free model ensures that all data are securely stored in the local device.
Such a model is an effective way to overcome the cold start or zero-shot learning problems.
Whenever a new user is added, the model can simply copy/download the model parameters
from the global model, which is usually stored in a server (as shown in Fig 1.(b)).

Aims. To enable privacy-preserving suicidal ideation detection, we aim to solve two prob-
lems: 1) how to train a optimal local-preserving model, 2) how to train a global data-free model.

To solve the first problem, we need to minimize the prediction errors in the given training
data. The prediction error is to be calculated by a loss function L(y, Fk(x)) in which y is the
real label and Fk(x; qk) is the predicted label using the classification model for each user, which
is written as:

F̂k = arg min
Fk

Ex,y[L(y, Fk(x))]

= arg min
Fk

Ex,y[�
Nc

Â
c=1

y log(Fk(x; qk)]

To solve the second problem, the aim is to optimally aggregate the user models, written
as the minimized expected distance between the global parameters and the local user param-
eters.

minqEk[
1
2

D(q, qk)
2]

where D(·, ·) is denoted as the distance between two sets of parameters.
To solve these problems, two optimizers are needed. The first one learns the local model

for each user. The second one aggregates the learned models from local users and builds a
global model for the local users.

2.2 Data Protection Framework

The data protection framework shown in Fig. 1b learns the global model by aggregating
distributed local models without collecting the user data. This procedure consists of four
main steps:

1. Model initialization: the users download the initial model from the server.

2. Local training: the users update the model weights on their local devices.
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1) Train an optimal local model,
2) Train a global knowledge-shared model
Optimize:
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v Local model training:

v Global model ensemble:

yi = fk(xi; ✓k)
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Summary

¡ Benchmarking and knowledge discovery
o Comprehensive content analysis to discover knowledge 

from suicide-related text; 
o Benchmarking on binary classification using feature 

extraction and deep neural networks. 

¡ Leverage external indictors with relation networks
o Consider sentimental clues and topics in people's posts;
o Reason the relations between risk factors and posts 

with attention relation networks;
o Fine-grained suicidal ideation detection. 

¡ Knowledge transferring in private communities 
o Another scenario of suicidal ideation detection in 

private chatting; 
o Knowledge transferring framework to train a global 

model for knowledge sharing with distributed agents.



Knowledge 
Graphs

A Survey on Knowledge 
Graphs: Representation, 
Acquisition and 
Applications.
Shaoxiong Ji, Shirui Pan, 
Erik Cambria, Pekka 
Marttinen, and Philip S Yu.
arXiv preprint 
arXiv:2002.00388, 2020.

Knowledge 
Graph

Knowledge 
Representation 

Learning

Knowledge-
Aware 

Applications

Temporal 
Knowledge 

Graph

Knowledge 
Acquisition

Scoring Function

Encoding Models

Representation Space Question Answering

Dialogue Systems

Natural Language 
Understanding

Relation Extraction

Entity Discovery

Knowledge Graph Completion

Auxiliary Information

Recommender Systems

Others Applications

- Embedding-based Ranking
- Path-based Reasoning
- Rule-based Reasoning
- Meta Relational Learning
- Triple Classification

- Recognition
- Typing
- Disambiguation
- Alignment - Neural Nets

- Attention
- GCN
- GAN
- RL
- Others

- Single-fact QA
- Multi-hop 
Reasoning

- Question Generation
- Search Engine
- Medical Applications
- Mental Healthcare
- Zero-shot Image 
Classification
- Text Generation
- Sentiment Analysis

- Point-wise  - Manifold
- Complex     - Gaussian
- Discrete

- Distance
- Semantic 
Matching
- Others

- Linear/Bilinear
- Factorization
- Neural Nets
- CNN
- RNN
- Transformers
- GCN

Temporal Embedding

Entity Dynamics

Temporal Relational Dependency

Temporal Logical Reasoning

- Textual - Type - Visual

https://arxiv.org/abs/2002.00388


Thank you!
¡ Suicidal Ideation Detection in Online Social Content. Shaoxiong 

Ji. Master of Philosophy, The University of Queensland. 2020.

¡ Suicidal Ideation Detection: A Review of Machine Learning 
Methods and Applications. Shaoxiong Ji, Shirui Pan, Xue Li, Erik 
Cambria, Guodong Long, and Zi Huang. arXiv preprint 
arXiv:1910.12611, 2020.

¡ Suicidal Ideation and Mental Disorder Detection with Attentive 
Relation Networks. Shaoxiong Ji, Xue Li, Zi Huang, and Erik 
Cambria. arXiv preprint arXiv:2004.07601, 2020.

¡ Detecting Suicidal Ideation with Data Protection in Online 
Communities. Shaoxiong Ji, Guodong Long, Shirui Pan, Tianqing 
Zhu, Jing Jiang, and Sen Wang. 24th International Conference on 
Database Systems for Advanced Applications (DASFAA), 2019.

¡ Supervised Learning for Suicidal Ideation Detection in Online 
User Content. Shaoxiong Ji, Celina Ping Yu, Sai-Fu Fung, Shirui 
Pan, and Guodong Long. Complexity, 2018.

shaoxiong.rocks

shaoxiong.ji@aalto.fi

@shaoxiongji

shaoxiongji

http://shaoxiong.rocks/papers/MPhil_thesis_SID.pdf
https://arxiv.org/abs/1910.12611
https://arxiv.org/abs/2004.07601
https://link.springer.com/chapter/10.1007/978-3-030-18590-9_17
http://downloads.hindawi.com/journals/complexity/2018/6157249.pdf
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