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Chapter 1

Introduction

1.1 Shuffling cards

Consider the problem of card shuffling of a deck of 52 cards. Suppose we are shuffling the
deck with a usual rifle shuffle: we cut the deck roughly from the middle into two packs and
then “riffle” (interleave) the two packs together, see Figure 1.1.

Figure 1.1: A riffle shuffle, Johnny Blood, CC-by-sa 2.0

In a normal situation we will observe that the order of the cards in the deck begin to look
random (see Figure 1.2 below) so that it is very hard to predict the order of the cards.
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Figure 1.2: A relatively random looking order of cards in a deck of 52 cards.



It should be noted that if we are doing a “perfect shuffle” in the sense that we split the
deck into exactly two piles of 26 cards and then manage to riffle the cards perfectly on top
of each other (with no errors), then one can check that the shuffle returns to the initial state
after 8 shuffles (this is a so called perfect riffle / faro / dovetail shuffle). However, in
practise this can be hard to do, but some people can do it, see the YouTube video:

https://www.youtube.com/watch?v=71Nk7bfkFq8

In a normal situation there is always some errors in the shuffling and it is very hard to do a
perfect rifle shuffle. These human errors introduces randomness into the situation and are
exactly what explain why the deck eventually becomes very random.

In fact, Gilbert, Shannon, and Reeds (1955) did experiments on skilled human card shuf-
fling and were able to make a probabilistic model that predicts very well how the order of the
cards evolve as we do a riffle shuffle. In the late 80s / early 90s Persi Diaconis realised the card
shuffling problem as question about mixing of a random walk on the symmetric group
Sso, that is, the set of all permutations o of {0,1,...,51}. Then Diaconis applied methods
from harmonic analysis and the statistical predictions done by Gilbert, Shannon, and Reeds
to obtain estimates on how fast does a deck mix in a human riffle shuffle.

Science Times
Ehe Netw ok Times

In Shuffling Cards, W
7 Is Winning Number
e el

Figure 1.3: The New York Times article “In Shuffling Cards, 7 Is Winning Number”, January
9, 1990 by Gina Kolata. © The New York Times Archives, available at https://www.
nytimes.com/1990/01/09/science/in-shuffling-cards-7-is-winning-number.html

Diaconis obtained a very surprising answer in the case of riffle shuffle model done by
Gilbert, Shannon and Reeds: it turned out that after roughly 6 shuffles the deck will still be
quite ordered, but at the 7th shuffie the deck suddenly becomes very random, see for example
The New York Times article from 1990 in Figure 1.3). The “very random” here means that
almost every possible order of cards is possible in the deck (which can be formalised using
something so called total variation distance to uniform or entropy, see later of the course).
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Let us give some notation and model card shuffling as a random walk on the symmetric
group. We say that o : {0,1,...,51} — {0,1,...,51} is a permutation if ¢ is a bijection.
Write

Sso := {0 is a permutation of {0,1,...,51}}

and equip Sso with the binary operation, which assigns to two permutations o, 0’ € S5y a new
permutation, the product, defined for j € {0,1,...,51} by

o0'(j) = o(a'(j))-

Hence, oo’ is just formally the composition o o ¢’ of the functions o and ¢, we just do
not want to repeat the notation o everywhere. In S5y let us write e € S5y just the identity
permutation defined by

e(j) =
that keeps each j € {0,1,...,51} fixed.
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Figure 1.4: The initial state of the deck of cards.

To model card shuffling, let us now think the deck has 52 slots ordered from 0,1,...,51,
where 0 denotes the top card and 51 denotes the bottom card. Suppose initially we have the
following order for the cards (as in Figure 1.4):

we have for clubs:
K&, Qb ..., Ad are in slots 0,1,...,12;

for diamonds:
K&, QO, ..., A are in slots 13,14, ..., 25;

for hearts:
KQ,QQ,..., AQ are in slots 26,27, ..., 38;

and for spades:
K&,Q®, ..., A® are in slots 39,40, ...,51.

Now if we perform permutations o € Ssp of {0,1,...,51}, we move the card around from the
initial order 0, 1,...,51. For example, the top card of the deck is initially K& (corresponds
to the label 1), so if the permutation ¢(0) = 51, this means that we move K to the bottom
of the deck. Also, if we apply the identity permutation, we keep the deck order the same and
the deck is not shuffled at all. Using this identification, every permutation o € Sss is a shuffle
of the deck.



If we have n permutations oy, 09, ..., 0, € S5z, then their product
0109 ...0, € S52

corresponds to a permutation where we have shuffled the deck n times with some choices of
shuffles ¢, 09, ...,0,. If the permutation is always the same, that is, 0y = 09 = -+ = 0, = 0,
we just write o™ as the product n times.

Now the big question in the course is that how many times should we shuffle a deck of 52
cards to make it “sufficiently random”? What types of shuffling work best? These questions
can be relevant when trying to maximise unpredictability of outcomes. As we mentioned
earlier, in rifle shuffles we seem to be able to get random orders for cards. If we do not
have randomness though, then it is possible that we end up to the original state. A classical
example of such behaviour is the faro shuffle (also known as dovetail shuffle or perfect riffle
shuffle):

,—[Example 1.1 (Perfect riffle shuffle / dovetail shuffle / faro shufﬂe)} \

The perfect riffle shuffle splits the deck into exactly two piles of 26 cards and then
riffles the cards perfectly on top of each other. How do we model this as a permutation
0 € S527 Define

. 27, 0<j<25
o(j) =1 .
2j — 51, 26 <j <5l.

This is the same as saying that for j = 0,1,...,50 we have:
0(7) :=27 mod 51

and o(51) = 51 (the last card remains in the same position). Now for 0 < j < 25,
i.e. the first 26 cards on a pile, are put to even slots on {0,1,...,51}, and then the
rest (26 < j < 51) are put to odd slots, which is precisely a perfect riffle shuffle.

For perfect riffle shuffles, there is no randomness present, and it turns out that after 8
shuffles we return to the initial state of the deck:

r—[Theorem 1 .2} \

Let o be the perfect riffle shuffle. Then after 8 times we return to the initial state of
the deck, that is,

Proof
By definition the perfect riffle shuffle o assigns to j € {0, 1,...,50} the value

o(j) =2j mod 51.
Thus for k£ € N we have
o*(j) =25 mod 51.
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Thus in order for us to have o*(j) = j, we need to find the minimal k € N such that
1=2% mod 51,

or equivalently, we want to find the minimal k£ € N such that
2" =1 mod 51.

This is the so called “multiplicative order” in number theory, which we will not go into here,
but in this case it is straightforward to compute by looking at the powers up to 8:

21 =2=2 mod 5l

22 =4=4 mod 51
22 =8=8 mod 51
2 =16=16 mod 51
25 =32=32 mod 51
26 = 64 =13 mod 51
27 =128 =26 mod 51
28 =256 =1 mod 51

so k = 8 is the minimal k& we looked for. Hence 8 perfect riffle shuffles returns the the deck to

its initial state. O
However, in a real world situation, typically humans make errors in the riffle shuffles and
thus at every step we choose ‘random’ permutations oy, 09, ..., 0, and the product
0109 ...0p

after n steps tells us the distribution of the cards after n steps. However, as we mentioned
earlier, in human trials we make errors in the riffle shuffles and these errors will eventually
accumulate into the order of the cards in the deck to become very hard to predict. How would
we formalise this? We can ask the following questions:

,—[Questions 1.3} \

Q1. How many shuffles does it take for the deck to reach a given order of cards in
the deck?

Q2. How many shuffles does it take for the card order to have gone through every
possible combination of cards?

3. How many shuffles do we need to do such that the deck is close to “close to
random”?




First we need to talk about what is a very “uncertain” order of cards. There are in total
52! different permutations o € S52 and each permutation o € Ss2, when applied to the initial
order of cards we agreed in the beginning, gives out some new order of cards. Hence if we
don’t know which shuffle ¢ € S5; we use, then there are in total 52! different possible orders
of the cards. Then we have no knowledge at all on the ordering of the cards: can define this
as “very random” state of the cards. Later in the course we will see that this corresponds to
the uniform distribution or Lebesgue distribution of possible permutations o € Ss,.

Let us now give the first random shuffle example to demonstrate the situation, which is
called the random transposition shuffle:

,—[Random transpositions} \

Place the ordered deck of 52 cards on a table into a single row:

K&, Qb, ... A& KO, QO, .., AO KD,QQ,. .. AV, K&, Q6h, ... AM.

We call a permutation o € S5s a transposition if it changes the places of two cards,
that is, for some i # j we have o(i) = j and o(j) = i. The random transposition
shuffle goes as follows: left hand chooses a random card with probability 1/52, and
the right hand chooses a random card with probability 1/52. Then these cards are
interchanged. If both hands chose the same card, nothing happens.

Formally this means that if the card i was chosen with probability 1/52 and the
card j was chosen with probability 1/52, then the transposition o that swaps these

is chosen with probability
1 1 2

=
522 522 522
If the same card is chosen, then o = e, the identity permutation, so the probability
of choosing that is 1/52.

Answers to all the Questions 1.3 is then that 270 random transposition shuffles is
enough to make the deck sufficiently random as we will see in the final chapter of
the course.

Let us give the example of Gilbert, Shannon and Reeds from 1955 on experiments on
human riffle shuffles:



,—[Rifﬂe shuffle (Gilbert-Shannon-Reeds, 1955)} \

The rifle shuffle model by Gilbert-Shannon-Reeds consists of two steps like how
humans typically do the riffle shuffle: we first do a random cut roughly from the
middle and split the deck into two piles, and then do a riffle, which may not be
completely perfect, to produce the shuffie.

(1) Random cut: Firstly, we choose 1 < k < 52 randomly with probability:
52

()

52

2

In probability this would mean that k has binomial distribution Bin(n, p) with
n = 52 and p = 1/2. Then the player will have k cards on the left hand and
52 — k cards on the right hand.

(2) Random riffle: Now, given the randomly chosen k cards on the left hand
of the player, and 52 — k£ cards on the right hand of the player, we choose a
random card either from the bottom of the left pile with probability k/52 or
and bottom of the right hand pile with probability (52 — k)/52.

Then we are remaining with two piles with = cards on the left pile and y cards
on the right pile (in total x + y cards, which is in this case 51 cards). Now we
continue and choose a random card either from the bottom of the remaining
left pile (of x cards) with probability z/(x + y) or from the bottom of the right
pile (of y cards) with probability y/(z + y) and place that card on the top of
the card chosen in the previous step.

Iterate this until we have gone through all the 52 cards. Then the resulting
pile of 52 cards we produced gives us a random permutation o € Ss3 that gives
us this random order of cards.

Answers to all the Questions 1.3 is then that 7 riffle shuffles is enough to make the
deck sufficiently random.

\. J

Borel and Cheron (1955) suggested also the following type of shuffle in the book of math-
ematics of Bridge:

r—[Borel’s shufﬂe] N

Remove the top card of the deck and then insert it into the deck into a random
position (it could be any of the 52 positions with probability 1/52). Then also
the bottom card of the deck is removed and inserted at a random position of the deck.

This is a relatively slowly mixing shuffle process and answers to all the Questions 1.3
is then that 465 Borel shuffles is enough to make the deck sufficiently random.

\ J

Finally we give another popular way to shuffle cards, which is the overhand shuffle:
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r—[Overhand shufﬂes] \

In the overhand shuffle we transfer a small number of cards at a time from the
shuffles right hand to the left. The person shuffling slides a couple of cards from the
top of the deck from their right hand to the left. Then we repeat this process until
all the cards on the right hand are transferred. Thus cards near the top of the deck
end up near to the bottom of the new deck. Since the packet sizes transferred are
typically random, this will eventually mix up the deck.

More mathematically we can define overhand shuffle by first choosing k random cut
points that split the deck into k£ + 1 piles of cards. The sizes of these packets have
random size and also the number k£ + 1 of packets. Then the overhand shuffle just
reverses the order of the packets on the deck producing a new order. Depending on
the random k + 1 packets, this gives a random permutation o € Sss.

Answers to all the Questions 1.3 is then that 2500 overhand shuffles is enough to
make the deck sufficiently random (proved by R. Pemantle, 1988). This makes sense
as overhand shuffle mixes up much more slowly than the rifle shuffie unless the
packet sizes chosen are very small.

In all these cases, answering to Questions 1.3 requires us to understand what is the statistics
of the random product permutation

0109 ...0p

for randomly chosen oy, 09,...,0, € S52 permutations, say, rifle shuffles, overhand shuffies,
random transpositions or Borel shuffles. This is also known as understanding the mixing of
the random walk X,, = 0105...0, on the group Sss..



1.2 Mutations in the gene order of chromosomes

One influential motivation for random walks on groups come from the evolution of deoxyri-
bonucleic acid (DNA) sequences, which form a chromosome. Chromosomes can be found from
the nucleus of every cell and form the central unit of heredity. Mathematically a chromosome,
c, is an element c € {1,2,...,n}™, where n is the number of possible genes ¢i, ..., g,, and m
is the length of the chromosome. Each gene g; itself is a sequence (or a block) of DNA, see
Figure 1.5 for an illustration.

Chromosome

Nucleosome

JOORHRGDIVGUGRGT

Exon Intron Exon

Y
Gene

Figure 1.5: A chromosome is formed of blocks (genes) of DNA strings. Picture (¢) Wikimedia
Commons.

Each gene g;, j = 1,2,...,n, itself is a sequence of nucleotides in DNA. In cell biology it
has been observed that chromosomes ¢ evolve in various transmutations:

(1) substitutions: a gene g; in a chromosome c is substituted with another gene (length m
remains the same)

(2) insertions: a gene is inserted into the chromosome ¢ to some location (making the length
m+ 1)

(3) deletions: a gene is deleted from a chromosome ¢ from some locartion (making the length
m—1)

(4) inversions: between two markers of the chromosome c invert the genes, that is, if ¢ =
Giys - - - Gi,, and we choose two markers ¢; < ¢, then reverse the order of the genes

gij+17gij+2 s Gigg

ino

Gij_15- -+ 7gij+27 gij+17



and various other transformations. Thus if the number of genes is n, then an transmutation
evolution of a chromosome c to a chromosome ¢’ (say along random substitutions of genes)
can be modelled as a random walk of random substitutions in the symmetric group S,,, when
we identify each label {1,2,...,n} by the corresponding gene {gi, ..., gn}.

,—[Example 1.4 (Shuffling genes of ﬂies)} \

An example for the study of this can be traced to the work of Durrett [6], where he
considered the comparisons found by Ranz et al. [11] of the chromosomes found in
two fly species: Drosophila repleta and Drosophila melanogaster. Durrett considered
the chromosome 2 of Drosophila repleta, denoted by c,, and compared it to the
chromosome arm 3R of Drosophila melanogaster, denoted by c3g. In these examples
the number of genes n = 26. If we order the genes as g1, gs, ..., gog, then what was
observed was that the c3g chromosome of Drosophila melanogaster is equal to the
string of genes

C3r = (9127g?a947927937921792079187917913799791679679147
926, 925, 924, 915, 910, 911, 98, 95, 923, 922, 919, 917)

where all the underlined parts match those of the chromosome 2 ¢y of Drosophila
repleta.

Durrett asked and made a model to answer the question: how many (random)
inversions (see (4) above for a definition) from the chromosome ¢y has happened to
form c3r? Data analysis on the species suggests that all possible random inversions
could have occured with equal probability, why is this true theoretically? Here
the model for random inversion is that we choose the end-genes g;; and g;,, where
i; < ik, at uniformly randomly, that is, each edge is chosen with equal probability.
(Due to biological reasons, one has to do this as a ’continuous time process’ in the
sense that in practise one expects these random edges are chosen at times of a rate
of a Poisson process, but now we just consider this as a discrete time process.)

Durrett then proved that, with high probability, when starting from a gene cg, then
it will take around 85 random inversions of genes to form csr, which was consistent
with the data Ranz et al. [11] observed. More details can be found from Durrett’s
work [6], but this can all be formalised using the tools of this course using the total
variation distance for a random process on the symmetric group Ss¢ formed of random
inversions, similarly to card shuffling above.

More examples of genetic applications can be read for example when comparing the
genomes of a mouse and human:
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,—[Example 1.5 (Comparing human and mouse genomes)}

The differences between the X chromosome of a human cx(human) and of a mouse
cx (mouse) may be encoded as as follows:,

cx(human) = B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, B11
cx(mouse) = B1,—B7,B6,—B10, B9, — B8, B2, —B11,—B3, B5, B4

The notation above for cx(human) means that the X chromosome of a human
cx(human) consists of 11 blocks of genes Bk = g, ...g; of various lengths, k =
1,2,3,...,11, and so does the mouse, and the numbers denote how cx(human) is
shuffled to get cx(mouse) as follows:

(1) The first block cx(mouse) of the X chromosome of the mouse is equal to the
first block of the human’s X chromosome’s block B1.

(2) The second block of cx(mouse) is —B7 indicates that the second segment
of a mouse is 7th block B7 human segment cx(human) with the orientation
reversed in B7 (hence —1).

(3) The third block in cx(mouse) is B6 so it indicates that the 6th block B6 of a
human cy (human) is 3th mouse block in cx(mouse)

. etc.

The parsimony approach in evolutionary changes of the X chromosome asks about
estimating the minimum number of reversals of the blocks in the mouse

cx(mouse) = B1,—B7, B6, —B10, B9, — B8, B2, —B11,—B3, B5, B4
back to that of a human
cx(human) = B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, B11?

Hannehalli and Pevzner [9] developed an algorithm to find that the minimal distance
can be computed as 7, that is, 7 is the number of reversals needed to transform the
X chromosome of a mouse into that of a human. However, there are thoudands of
different solutions how the minimum can be achieved, also if one wants to develop
the change in practise through mutations, one can ask if this can be modelled as
a random walk using random inversions or other transmutations. This was done
for example by Berestycki and Durrett [3] using more complex random models of
shuffling genes based on graph theory.
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1.3 Scrambling the Rubik’s cube

Rubik’s cube is a puzzle invented by the Hungarian architect and sculptor Erné Rubik in 1974.
The standard Rubik’s cube has six squares at the center of each face, which are fixed to a core
that enables the other 20 squares to rotate around.

Figure 1.6: Rubik’s cube in three states: (1) solved state, (2) an application of a face rotation
and (3) a relatively randomly looking scrambled version.

The standard Rubik’s cube thus has 6 faces and each face has 9 smaller squares we will
call facets. Thus the whole cube as in total 6 x 9 = 54 facets. We will say that the cube is
in a solved state if all the facets of each corresponding face share the same colour.

A move of the cube is one of the following rotations of the 6 faces: 90 degrees, 180 degrees
or —90 degrees. In a move of the cube the center facet attached to the mechanism does rotate
around its center but will not change its face. The Singmaster notation to the Rubik’s cube
moves are the following:

Face rotations of the Rubik’s cube

90 degrees 180 degrees —90 degrees
F - front clockwise F? - front clockwise twice F~! - front counter-clockwise
B - back clockwise B? - back clockwise twice B! - back counter-clockwise
U - top clockwise U? - top clockwise twice U~! - top counter-clockwise
D - bottom clockwise D? - bottom clockwise twice D~ - bottom counter-clockwise
L - left face clockwise | L? - left face clockwise twice L1 - left face counter-clockwise
R - right face clockwise | R? - right face clockwise twice | R~! - right face counter-clockwise

We can identify each of the Rubik’s cube moves as a permutation on the set of non-center
facets. Recall that there were in total 54 — 6 = 48 non-center facets. Suppose at the initial
state we are have the non-center facets of the solved Rubik’s cube’s assigned to these slots.
More precisely this means that each facets corresponding to 0,1,...,7 share the same color,
8,9,...,15 share the same color, and so on. Then each of the Rubik’s cube moves listed above
is a bijection

o:{0,1,...,47} — {0,1,...,47},
i.e a permutation. That is, 0 € Sys. Note that some of the permutations of {0,1,...,47} is
not possible as all the possible moves are listed above.

The key moves are the six face rotation {F, B,U, D, L, R} < Sy since all the other can
be obtained as their combinations (for example, FF' = F? or FFF = F~'). Hence all the
possible states of the Rubik’s cube can be identified with an element o € Syg that is obtained
as a finite composition of the maps F, B,Y, D, L, R. This gives rise to the Rubik’s cube group:
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,—[Rubik’s cube group] \

The Rubik’s cube group R is the subgroup of Sss generated by the 6 face rotations
{F,B,U,D, L, R}, that is,

R ={(F,B,U,D,L,R).

As in the case of card shuffling, we can model “scrambling” of the Rubik’s cube by random
choices of the permutations o € R. One such scramble choice could be, for example, choosing
the face rotation F' with probability 1/2 and the face rotation L with probability 1/2. It is
interesting to ask which random choices produce a very random scramble.

The most uniformly random state would then correspond to the random permutation
with equal probability 1/|R| chooses a permutation from R. Since each o € R corresponds
to a some order of the non-center facets of the Rubik’s cube, then the probability of knowing
what is the order of the colors of the non-center facets of the Rubik’s cube will be very the
smallest possible, that is, 1/|R|. Then with very high probability such a permutation will
produce a very randomly looking scramble of the Rubik’s cube, see Figure 1.6(3).

We can then ask questions such as:

,—[Questions 1.6} \

Starting from the solved state of the Rubik’s cube, apply the face rotation F' with
probability 1/3, the face rotation L with probability 1/3 and the face rotation U with
probability 1/3.

Q1. When we keep on applying these two rotations randomly, is the distribution of
the Rubik’s cube “close to random”?

Q2. If yes, then how many rotations we need to be close to random?

Q3. After how many rotations of the cube we can reach a given state of the cube
with high probability?

Q4. After how many rotations of the cube we have reached every state of the cube
with high probability?

These questions can be answered with the same probabilistic language as in the case of
card shuffling: by considering random walks on the group R. Thus, we need to find out what
is the probability of achieving a given permutation with a given random process and how close
is this probability distribution to the uniform distribution.

To attack Questions 1.6, we first need to us to understand the situation in a far simpler
settings that do not involve such large groups like Sy and its large subgroups. The two key
examples we will consider in this course will be based on the symmetric group Sy of 4 elements,
which we can use to model dice rolling in the next section (and it is also a very simple non-
abelian group), and then the even simpler setting of cyclic additive group of p elements Z,
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(also noted C), in some literature), which is an abelian group. However, we emphasise that
proving similar results in the simpler setting carry on also to the more abstract setting of
Rubik’s cube, card shuffling and even Lie groups beyond this course, and we will come back

to these in the end of the course.
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1.4 Dice rolling

This section will describe another model based on dice rolling, which, like the card shuffling,
can be described as a random walk on a symmetric group. However, this time we only have
to work with the symmetric group S, which makes the computations also easier towards the
end of the course.

Figure 1.7: Two 6 sided dice (D6), picture from OpenClipart

When we throw a dice, we will perform a symmetry of the cube, which permutes the 8
cornes of the dice but in a way that an edge is sent on another edge. It turns out that there
are exactly 24 physically possible symmetries that can be represented by an actual dice throw.
Formally, you could also have symmetries that map the inside of the cube to the outside, but
these are impossible physically and would require deformation of the dice.

Write D as the group of (physical) rotations of the dice, which we will describe now. A
rotation of the dice will always have an azis, which can go through the dice in three possible
ways:

(1) opposite faces,
(2) centers of opposite edges,

(3) opposite corners (i.e. diagonal azis).

In the case (1), there are two possible 90° rotations around the axis, and as we have three
possible face pairs, this produces in total 6 possible 90° rotations. We can also go 180° rotation
in these 3 cases, and in which case both ways would produce the same rotation. Thus in total
we have 9 rotations in the case (1).

In the case (2), it is only possible to rotate by 180°, so we have in total 6 rotations in the
case (2) as there are 6 possible pairs of edges on the opposite sides of the dice.

In the case (3), if we fix one such axis, the only possible rotations here are 120° one- or
the other way. As there are four possible pairs of corners on the opposite side of the dice, we
have 8 possible rotations.

These describe the D and show also that the number of elements in D, |D| = 24. This
description also helps to see why actually D can be identified with the symmetric group 5,
(i.e. in the language of group theory, they are isomorphic). We do not formally prove this
here, the proof is done e.g. in [8, Theorem 7.4], but we give now the basic idea. First of all,
consider the set of 4 diagonals d;, ds, d3, ds that go through the cube. When you now rotate
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a cube using any of the rotations (1), (2) or (3) (i.e. an element r € D), then r will permute
the diagonals dy, ..., dy into some new order (take for example a dice in your hand and see
what happens to the diagonals when you rotate, or Figure 1.8), so any r gives rise to some
permutation o, € Sy. It turns out that this identification is 1 — 1: any permutation o € Sy
(i.e. a permutation of the diagonals dy, ..., d,) corresponds to one of the three rotations (1),
(2) or (3). This can be done by first showing two simple rotations of type (1) (see Figure 1.8)
correspond to two permutations o = (1234) and 8 = (1423) in cycle notation of permutations,
which then can be used to form a larger subgroup of Sj.
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a=(1234) B =(1423)

Figure 1.8: Two rotations a and  that will be used to identify D with S, image from [8,
Figure 7.3].

This way we can think physical dice rolling as a random walk on the symmetric group
S;. One natural random walk here would be defined as follows, which we can answer these
formally in the end using the tools of this course:

,—[Questions 1.7} \

Consider the two rotations o and 3 from Figure 1.8 and the rotation corresponding
to permutation v = (123). Then randomly roll dice applying the rotation « with
probability 1/3 and § with probability 1/3, and ~ with 1/3.

Q1. When we keep on applying these three rotations randomly, is the distribution
of the dice “close to random”?

Q2. If yes, then how many rotations we need to be close to random?

Q3. After how many rotations of the dice we can reach a given state of the dice
with high probability?

Q4. After how many rotations of the dice we have reached every state of the dice
with high probability?
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1.5 Pass the broccoli

In this section we will provide a simple setting/example, where we can prove analogous results
as we asked in the case of card shuffling, Rubik’s cube scrambling and dice rolling with not
much background assumed from the reader. Suppose there is a dinner gathering with p people
sitting in a round table such as the King Arthur and the Knights of the Round Table. Let us
assign to each person sitting at the round table a label from {0,1,...,p — 1}.

Figure 1.9: King Arthur and the Knights of the Round Table.

Suppose now that that King Arthur is sitting on the chair labeled 0 and has a bowl of
broccoli, which they would like to pass to either to the knight to their left or to their right so
that they can get their share of vitamins. However, King Arthur does not know to which one
they would like to pass the bowl, so they will flip a coin. If the outcome is heads, they will
pass is to the knight sitting to the right (label 1) or to the knight sitting to their left (label
p—1). After this pass, the knight who received the bowl of broccoli (either knight 1 or knight
p—1) will do the same: they will flip a coin and pass the bowl of broccoli either to the knight
sitting to their right or to their left.

& - *

Figure 1.10: Passing the broccoli process with the Knights of the Round Table: the broccoli
is first with the knight sitting on the chair 0, and then gives with probability 1/2 the broccoli
either to the knight sitting to their left or to their right.

This forms a “random walk” of the bowl of broccoli around the table. Depending on your
preferences, you may or may not want to taste the broccoli. Hence you could ask for example
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what is the best place to sit on the table to avoid the bowl of broccoli for the longest possible
time? Or is there a place where we could avoid it completely? Unfortunately, the answer to
the second question is no: there is no escape from the broccoli! As we can see in Figure
1.11, the people the bowl of broccoli has visited begins to “spread” around the table (starting
from the King Arthur sitting at 0).

%

L
e *
® ®

'YX, Toe

Figure 1.11: The “orbit” of the broccoli: as time evolves, the broccoli has visited larger and
larger arc around 0 eventually reaching to the other end of the table. And, there is no
escape! Eventually the broccolis become uniformly distributed around the table.

However, we can still ask formally how fast is the spreading, or what is the distribution of
it? For example, consider the following questions:

,—[Quest ions 1 .8} N

Q1. How many passes does it take for the bowl of broccoli to reach a given person?
Q2. How many passes does it take for the bowl of broccoli to reach every person?

Q3. How many passes do we need to take that the distribution of the people who
may hold the bowl of broccoli is “close to random”?

It turns out that the answer to all of these questions is roughly p?, where p is the number
of people dining. We can prove these by formalising the questions as a long-time behaviour
of a ergodic random walk (Chapter 3) on the additive cyclic group (Z,,®) (Chapter 2)
and use harmonic analysis (Chapter 4) to estimate the distribution of the broccoli after n
steps (Chapter 5), which us to find the optimal mixing times (Chapter 5) of the random
walk (i.e. the pass the broccoli process).

It is also possible that the person at 0 chooses to use some other method of passing the
brocceoli. Suppose for example the number of people p is even and assume the person 0 flips
a coin and throws the bowl of broccoli to either the person right to the person right of 0 (i.e.
person 2) or the one left the left of 0 (person p — 2). Then the person who got the bowl of
broccoli does the same, and so on. In this process it turns out that the bowl of broccoli can
only be on those people on the table whose label is an even number, i.e. the labels

I =1{0,2,4,...,p—2}.
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In the language of group theory (see Chapter 2), the set I' forms a proper subgroup of
the additive cyclic group (Z,,®). In Chapter 3 we see that the random walk formed by
such process that concentrates on this type of proper subgroup cannot have similar mixing
properties as the pass the broccoli process described above (it is not ergodic, see Chapter
3). In particular, the distribution fo the broccoli cannot be uniform in the whole table, but
only within the subgroup I'.

The course will mostly concentrate on the pass the broccoli process modelled by a random
walk on (Z,,®). This may sound too “easy” for some readers but Z, is simple enough to
make most of the theory of random walks and harmonic analysis very short, but still contain
most of the crucial ideas. In Chapter 6, we will formalise these ideas in more general groups
G, such as the symmetric group discussed above and other more complicated groups that lack
the pleasant properties of the group (Z,,®). We will see that the general idea is still more or
less the same as in Z, and the success of the method relies more on what is known about the
algebraic structure of the group G.

As a final note, we also mention that many of the ideas presented for Z, also can be
adapted even in continuous setting, such as in the analysis of dynamical systems or random
walks on R, R% or even hyperbolic spaces but requires then more abstract measure theory
(such as Lebesgue integration and Haar measures) and Fourier analysis on Euclidean spaces
or hyperbolic spaces.
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1.6 Goals of the course and references

It will be helpful throughout the course to keep in mind the following Intended Learning
Outcomes (ILOs), which are also available on the course’s official website. The Chapter(s)
below each ILO indicate the location where the content related to each ILO is taught in these
notes.

,—[Intended Learning Outcomes} .

On successful completion of this course unit students will be able to:

1. Model card shuffling as a random walk on the symmetric group
(Chapter 1: Introduction & Chapter 6: Applying the ideas beyond Z,)

2. Define total variation distances between probability distributions on the dis-
crete circle, group Z, and calculate these distances for simple examples in Z,,
(Chapter 2: Probability theory on the group Z,)

3. Define convolutions of probability distributions on Z,, model random walks as
iterated convolutions and estimate probabilities of events using iterated convo-
lutions,

(Chapter 3: Dynamics)

4. Define Fourier transforms on the group Z, and estimate Fourier transforms of
probability distributions and their convolutions on Z,,
(Chapter 4: Harmonic Analysis)

5. Outline the calculations of computing total variation distances of convolutions
of probability distributions to the uniform distribution on 7Z, and alter these
proofs in other examples with different constants or parameters,

(Chapter 3: Dynamics, Chapter 5: Finding the mizing time)

6. Explain the key ideas of the theorems and methods presented in the course
and describe how each component (harmonic analysis, random walks and group
theory) come into play,

(Chapter 5: Finding the mixing time)

7. Apply the methods presented in the course and prove similar results for anal-
ogous contexts such as random walks on higher dimensional lattices, matrix
groups, models for card shuffling, Rubik’s cube scrambling or dice rolling.
(Chapter 1: Introduction, Chapter 6: Applying the ideas beyond Z,)

The ILOs will be basis of the summative examination of the course (final exam) and we
will build the teaching materials and assignments around them. They can be helpful to keep
track on what is your learning level and where there might still be things to improve.
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This course does not have a fixed source and much of the material has been taken from
various scattered sources. However, the key sources for the Z, part and modelling card shuffling
come from the following two books:

(1) P. Diaconis: Group Representations in Probability and Statistics, IMS Lecture Series
volume 11, Institute of Mathematical Statistics, Hayward, California, 1988

(2) F. Ceccherini-Silberstein, T. Scarabotti, F. Tolli: Harmonic Analysis on Finite
Groups. Cambridge University Press, New York, 2008.

The book (1) by Diaconis is the classical source and contains a vast amount of examples
and goes very much beyond the scope of the course. The book (2) by Ceccherini-Silberstein,
Scarabotti and Tolli has a far more followable Section 2: “Two basic examples on abelian
groups” which discuss the group Z, and also the torus Zg, which we will go through in this
course more in detail.

Another useful source that goes more into the Harmonic Analysis side of the course is the
book by Stein and Shakarchi:

(3) E. Stein, R. Shakarchi: Fourier Analysis: An Introduction (Princeton Lectures in
Analysis), 2011

This book by Stein and Shakarchi goes again beyond the scope of this course but can
provide helpful support for surrounding material in Fourier analysis and further example.

Finally more on the probability side is the following book by Lyons and Peres:

(4) R. Lyons, Y. Peres: Probability on Trees and Networks, Cambridge Series in Statistical
and Probabilistic Mathematics, 2017

This book goes far close to applications such as on the theory of trees and networks, but
can be helpful to provide a better background on probabilistic notions.

Finally, on the notions such as ergodicity and mixing of dynamical systems, a recommended
introduction is given by the following book by Walters:

(5) P. Walters: An Introduction to Ergodic Theory, Springer, 1982

To summarise the core aims of the course: we will

« first concentrate on the additive cyclic group (Z,,®),

develop random walks and harmonic analysis in 7Z,,

prove quantitative mixing rates for random walks in Z, using harmonic analysis,

formalise these ideas for card shuffling models by using the symmetric group Sso,

apply the ideas to more general groups.

Good luck with the course!
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1.7 Preliminary notations/definitions for the course

We will now give some preliminary notations and definitions we will use in the course. They
should be familiar from basic courses on algebra, analysis, complex numbers and probability,

but we will give them here for reference.
On the analysis side, we assume basic familiarity with concepts of analysis in the fields

of real and complex numbers.

,—[Deﬁnition 1.9 (Complex conjugate and modulus)} \

Complex numbers are denoted by

C={z=zx+iy:xeR,yeR}

where 2 = —1.

(1) The complex conjugate of a complex number z = x + iy € C' is denoted by

Z=x—1y.
(2) The modulus of a complex number z = z + iy is denoted by
|z| = A/22 + y2.

(3) The exponential map is defined by
e’ = cos(w) +isin(z), zeR,

which are complex numbers on the unit circle in C.

\.

,—[Deﬁnition 1.10 (Limits)} \

Let (an)nen be a sequence of complex numbers. Then a € C is limit of the sequence,

denoted by,
a= lim a,
n—aoo

if for any € > 0 there exists ng € N such that for all n > ng we have

la, —a|] < e.
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On the probability side we will assume some basic familiarity with the probabilistic
language, which we will give below. We will only do probability theory here in finite sets, so
we do not need to assume any language on algebras or o-algebras of sets.

,—[Deﬁnition 1.11 (Sample space, events, probabilities and random Variables)]—

(1) A sample space is any finite set €2. Elements w € ) are called outcomes.
(2) Given a sample space €2, we call any subset A () an event.

(3) Given an outcome w € 2, we associate to each w a probability P(w) € [0, 1]
such that their sum over all the possible outcomes is 1 (full probability):

> P(w).

wef)

Then we define the probability of an event A c () by
P(A) == ) P(w)

weA

with the convention P(@) = 0 for the empty set @.

(4) A S-valued random variable (for some set S) is a map X :  — S.

\ J

,—[Example 1.12 (Coin tossing)} .

In the random trial of coin tossing, the outcomes are either heads or tails. Thus the
sample space is

Q2 = {heads, tails}.

An event is a subset A < (), so for example in a random trial getting heads is the
singleton
A = {heads},

or getting heads or tails is the union
{heads} u {tails} = 2.

Then we can associate a probability P to events A < € by defining
1 , 1
P(heads) = 5 and P(tails) = 5

Then for example
P(we get heads or tails) = P(Q2) =1

or

P(we get heads and tails) = P({heads} n {tails}) = P(&) =0
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On the algebraic side this course assumes some familiarity with basic group theory,
mainly the notations and some examples.

,—[Deﬁnition 1.13 (Group)} \

A pair (G, ) is called a group if the binary operation - : G x G — G satisfies the
axioms:

(1) Closure: If a,b € G, then
a-beG.

(2) Associativity: For all a,b,c € G we have

a-(b-c)=(a-b)-c

(3) Identity element: There exists an element e € G such that

for all a € G.

(4) Inverse element: For each a € G there exists a~! € G such that

a-a " =a  -a=e.

\ J

,—[Deﬁnition 1.14 (Abelian group)} \

A group (G, ") is called a Abelian group if it satisfies the axiom:

(5) Commutativity: For each a,b e G we have

a-b="b-a.

\ J

,—[Deﬁnition 1.15 (Subgroups)} \

Let (G,-) be a group. A subset I' = G is a subgroup if (I',+) is also a group. We
sometimes write I' < G is I' is a subgroup.

\. J

,—[Deﬁnition 1.16 (Generators of groups)} \

Let (G,-) be a group and A < G any subset. The subgroup generated by A is
the smallest subgroup I' < G containing A. Equivalently, (A) set of all a € G that
can be written as finite products of elements (or their inverses) from A:

<A>:{al'ag---"an:ajerrajleA,jz1,...,n,neN}.
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Chapter 2

Probability theory on the group %,

2.1 Group 7,

The vast majority of the course will concentrate on the additive cyclic group (Z,,®) for some
p = 2, which is formally just the integers 0,1,...,p — 1 placed on the unit circle with equal
distance to each other equipped with the binary operation between each points is just addition
modulo p. Note that p is just an integer, so it does not have to be prime for example.

,—[Deﬁnition 2.1 (Group (ZP,C—B))} \

Let pe N, p > 2, be an integer. We write formally

Z,=1{0,1,...,p—1}.
We equip Z, with the following operation: for ¢, s € Z,, we define

t+s, if0<t+s<p-1,;
tds = ]
t+s—p, ift+s=np.

Visually we can think about the group (Z,,®) as a circle with p points.

Figure 2.1: Visual representation of the group Z;: if we take t € Zy; and add, say, 3, we will
move 3 steps counterclockwise. Adding an inverse of an element —3 = 21 — 3 = 18, say, 3
means we move clockwise 3 steps from ¢.
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—~ Remark 2.2

This is the definition of mod p you may have seen in fundamental mathematics
courses, and so t @ s is with this definition the same as

t®s:=t+s mod p.

The operation ¢ @ s means that we move s steps right on the circle Z,, from ¢.
For this purpose we sometimes also use the following “minus notation” to denote the
movement to the left instead of right: if ¢, s € Z,, we define

tOs:=t—s mod p.

This means that we move s steps left from the point ¢ on the circle Z,.

\

r—[Theorem 2.3]

(Z,,®) is a group, that is, it satisfies the group axioms

(1) Closure: If t,s € Z,, then
tDs ey

(2) Associativity: For all ¢, s,r € Z, we have

t®(s@®r)=(tds)Dr.

(3) Identity element: There exists an element 0 € Z, such that
0Dt=tD0=t
for all t € Z,,.
(4) Inverse element: For each t € Z,, there exists —t € Z,, such that
tO—-t=—-tDt=0.
Formally the inverse is, by definition, for ¢ € Z, the number

—t modp=—t+p=p—tei,

Proof

Exercise.
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r—[Theorem 2.4} \

(Z,,®) is also Abelian group, that is, it also satisfies the commutativity axiom

(5) Commutativity: For each ¢, s € Z, we have

tEs=sPt.

Proof
Exercise. []

,—[Example 2.5} N

(1) In Zs we have 2@3 = (2+3) —3=2=(3+2) -3 =3®2.

(2) In Zy we have 22 = (2 +2) — 4 = 0 so 2 is the inverse of 2 in Z,.

\ J

r—[Exercise 2.6] \

(1) In Zg find the inverse of 4.

(2) In Z; find the inverse of 4.

An important notion in the theory of random walks on groups and also in Fourier analysis
are the notions of subgroups, which are algebraic structures within Z,. Random walks
could get trapped into these spaces and the analysis might need to be reduced to these cases
separately.

,—[Deﬁnition 2.7 (Subgroups)} \

(1) A subset I' © Z, is a subgroup if (I',®) is also a group.

(2) A typical way to construct a subgroup is to take the subgroup generated
by A c Z,:

Ay ={t1® - ®t, :t;e Aor —t; € Aji=1,...,n,ne N}

In other words, every element in (A) can be constructed as a finite sum of the
elements in A.
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,—[Example 2.8} \

Suppose p € N is even. Then all even numbers I' = {0,1,...,p— 1} form a subgroup
I in (Z,,®) and the subgroup I' is generated by 2:

T = (2).

Indeed, if t, s € N are even, then their sum ¢ + s is even so as p is even so is t + s
mod p.

Subgroups of Z, depend heavily on the properties of the integer p, and we have the fol-
lowing;:

,—[Theorem 2.9 (Subgroups of Zp)} \

(1) If p is prime, then Z, has only the “trivial” subgroups {0} and Z,.

2) If p is not prime, then all the subgroups of Z, are {0}, Z, and the generated
( p prime, group » s Ly g
subgroups
),

for those t € {1,...,p — 1}, which divide p.

Proof
Left as an exercise. O
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2.2 Probability distributions on Z,

The aim of this section is to define probability distributions on Z, in order to formalise the
notion of a Random Walk. Here we let [0, 1] to be the closed unit interval in R.

We want to formalise the idea of choosing a point ¢ € Z, “at random”. For this purpose
functions p : Z, — [0, 1] that assign each point ¢ € Z, a value p(t) € [0, 1] such that they sum
to 1 gives us formally the probability p(t) of a point ¢ € Z, to be chosen in a random trial.

,—[Deﬁnition 2.10 (Probability distribution)} \

A function p : Z, — [0,1] is called a probability distribution if it satisfies

There are two fundamental probability distributions that we will often use in our analysis:

,—[Deﬁnition 2.11 (Uniform and singular distributions)} \

(1) The uniform (or Lebesgue) distribution on Z, is the function A : Z, —
[0, 1] defined by

(2) Fix some s € Z,. Then singular (or Dirac) distribution at s is the function
ds : Z, — [0, 1] defined by

1. ift=s:
S(t)y=4 0 LT
0, ift+#s.

\.

,—[Example 2. 12} N

(1) The uniform distribution A is a probability distribution:

p—1 p—1 1
DA =D - =pp=1
t=0 t=0 p

(2) The singular distribution d, at s € Z,, is a probability distribution:

p—1

D 16.(t) = 0y(s) = 1.

t=0
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In the case of uniform distribution A all ¢ € Z, have equal chance of being chosen: each
have probability 1/p. However, in the case of singular distribution d, at s € Z, it will be with
probability 1 that we choose s and with probability 0 that we choose any other t € Z,,.

Uniform and singular distributions are important as they give the two natural distributions
often defined and in later sections we will see how they are related to uncertainty, uniformity
and entropy of a probability distribution pu, that describe “how random” the choices we made
according to u are.

In the pass the broccoli process we will assign a natural probability distribution to
describe the evolution of the broccoli, which we will given in the following exercise:

,—[Exercise 2.13 (Pass the broccoli distribution)} \

Define a function p : Z, — [0, 1] by

1 )
5, t = ]_,
0, otherwise.

Prove that p is a probability distribution. Note that —1 is the inverse of 1 in Z,,
that is, p — 1.

We will see later how this pu is related to the pass the broccoli process, but we can see
already that if ¢ € Z, is chosen randomly according to ;v in Exercise 2.13, then either ¢ = 1
with 50% probability or t = —1 with 50% probability. Thus this describes the location of the
broccoli after the first step when the King Arthur (person at ¢t = 0) has given the broccoli
either the knight on their right 0® 1 or left 0 © 1.

In probability theory, we often encounter the word event and probability of an event.
Events are formally just subsets A < Z, of the space of outcomes Z, and probability is the
sum of the weights p(t) on each t € A. The following definition makes these notions precise:

,—[Deﬁnition 2.14 (Events and measures)} \

(1) An event is any subset A < Z,,.

(2) Given a probability distribution y : Z, — [0, 1] and an event A < Z, we define
the probability of the event A as the finite sum:

u(A) = S u(d).

te A

Moreover, for A = &, we just define ;(&) := 0. Thus this extends the definition
of p to all subsets of A c Z, and we have for singletons {t} < Z, for t € Z,

that
p({t}) = p(t).
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In probability theory one says that p, when defined on all events A  Z,, is a probability
measure which satisfies the axioms of a (finitely additive) probability measure:

r—[Theorem 2.15] N

Given a probability distribution u : Z, — [0, 1], the quantity p(A) defined on subsets
A c Z, satisfies

(1) monotonicity: If A c B c Z,, then
u(A) < u(B).

(2) additivity: if A;,..., A, < Z, are disjoint (that is, Ay N Ay = @ for k # (),

then N N
M( U Ak) = Z 1(Ag).

(3) Z, has probability 1: we have

w(Zy) =1

\. J

Proof
Left as an exercise. O]

In literature a probability measure is often called a function satisfying the conditions (1),
(2) and (3) of Theorem 2.15 but the condition (2) on additivity is replaced by o-additivity:
it Ay, Ay, < Z, are disjoint, then

0 0
M( g Ak) = > 1 Ag).
k=1 k=1
In general additivity in more complicated spaces does not imply o-additivity (such examples
can be found from the literature on the field of Measure Theory). However, in our setting of

Z,, this is true:

Theorem 2.16]

If pu: Z, — [0,1] is a probability distribution, then the associated quantity u(A) on
subsets A c Z, is o-additive.

Proof
Left as an exercise. 0

When we have a probability distribution p, we often have some function f : Z, — C whose
values we would like to “observe” with respect to p. For example, we could take the following
oscillating function:

1; t is even;

It = {—1; t is odd.
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Then if we try to observe the value of f at random with respect to p, we would ask for
the expected value of f given the random choice of pu. If p is even and p = A, the uniform
distribution, then we will see that the expected value of f is 0 as there are equal number of
odd and even numbers in {1,2,...,p — 1}.

This leads to statistical concepts such as expectation/integral which measure the average
value of f(t) when we choose t randomly with respect to pu.

,—[Deﬁnition 2.17 (Integral/expectation u(f))} \

Let f : Z, — C be a function. Then the integral (or expectation) of f with respect
to a probability distribution i on Z, is given by the value

p(f) = >, F(t)u(t).

telyp

In literature notations

[raw o B

are used for these.

\ J

,—[Example 2. 18} \

Note that if f = 14, the indicator function of a set A < Z,, that is

1, teA;
14(1) = {0 g A

Then the integral of 1, is the measure p(A):

(L) = [ Ladu=E(L0) = u(4) = Y (o).

te A

\. J

,—[Example 2. 19} \

Counsider the function

1; t is even;
1) =
1) {—1; t is odd.

If p is even, then there are p/2 even and p/2 odd numbers in {0, 1,...,p — 1}. Thus

A(f)Ité:f(t)A(t):g.p_z.p:O

\ J

A good way to construct new probability distributions from a given set of probability
distributions is by taking their convex combinations:
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,—[Theorem 2.20 (Convex combinations)} \

Let p1, ..., pin : Z, — [0, 1] be probability distributions and let oy, ..., a, € [0, 1] be
real numbers summing to one:

Z Oéj = 1.

j=1

Then the function .
pu(t) = Z ajp;(t), te€Zy,
j=1

is a probability distribution.

\. J

,—[Example 2.21 (Pass the broccoli as a convex combination)} \

The pass the broccoli process given by the probability distribution p : Z, — [0, 1]
can be written as a convex combination of the singular distributions at 1 and —1 as
follows:

1 1
= —01 + =0_1.
2 21 5 1

\ J

,—[Example 2.22 (Biased passing the broccoli)} \

Let 0 < a < 1 and define the following probability distribution:

po = by + (1 —a)d_y.

Then p, describes a variation of the pass the broccoli process but where we are
biased to one direction. For example, if o < 1/2; then it is more likely we give the
brocceoli to the clockwise (i.e. use —1).

\ J

r—[Exercise 2.23] N

What is the integral of

1; t is even;
t — ) )
1) {1; t is odd.

with respect to the biased passing the broccoli distribution

fo = @by + (1 — a)d_4?
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2.3 Formalising uncertainty

The aim of this section is to formalise the notion of uncertainty within a probability distribu-
tion p : Z, — [0, 1]. The uncertainty means here that if we choose ¢ € Z, randomly according
to u, then under much “uncertainty” it will be hard to predict the value of ¢. An extreme
example is the uniform distribution A(t) = 1/p, t € Z,, see Figure 2.2.

Figure 2.2: Uniform distribution on Z,: the location of the broccoli is with equal probability
1/p at a place t € Z,. Therefore, the “uncertainty” is maximal: there is no information we can
use to say t would be, say, more likely be at 0 than, say, 7.

If the distribution p is not equal to A, then we have some extra information about the
location of ¢t € Z,,. For example, if © = dy, the singular distribution at 0, then we know with
100% certainty that ¢t = 0. However, typically the distributions considered are not such but
of something in between singular and uniform, see Figure 2.3

Figure 2.3: An example of a probability distribution p : Z, — [0, 1] with the height of each
“broccoli tower” telling us where it is more likely to find the broccoli. Note that some t € Z,
have p(t) = 0, so we know with 100% certainty a randomly chosen ¢ € Z, is not any of those.
There seems to be concentration around one side of the circle Z,.

There are many ways to define “uncertainty” formally. One clear way to do this is to just
simply measure the distance of p to uniform A using the total variation distance
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,—[Deﬁnition 2.24 (Total variation distance)}

Let pu,v : Z, — [0,1] be probability distributions. The total variation distance
between p and v is defined by the maximal distances of the probabilities u(A) and
v(A) over all the events A < Z,, that is,

d(p,v) := max {|/¢(A) —v(A)]: Ac Zp}.

J

Now total variation distance can be used to measure how uniform (or singular) a distribu-

tion p is. In particular, we will be interested of the distance to uniform:
d(, \) = max {|,u(A) CMA) A Zp}.

Recall that A(t) = 1/p for all ¢t € Z,,.

For those who are familiar with metric spaces, it can be checked that the total variation

distance provides a natural notion of metric in the set of all probability distributions:

,—[Exercise 2.25 (Total variation distance is a metric)w

J

Prove that total variation distance between two probability distributions satisfies the
following properties of a metric: if u, v, 7 are probability distributions, then

(1) They satisfy the triangle inequality:
d(p,v) < d(p, 7) + d(7,v);

(2) Symmetry: d(u,v) = d(v, p); and

(3) Equality: d(p,v) = 0 if and only if u = v.

J

Computing total variation distance directly using its definition of finding the measures
w(A) for all sets A = Z, can be hard and it is helpful to use the following identity that links

the total variation distance to the so called “L!-distance”:

,—[Theorem 2.26 (Total variation distance and L' distance)}

We have the following formula for the total variation distance

de) = 5 3 u(t) — ()

\.

Proof
Consider the set
B={teZ,: u(t)=v(t)}
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(1) Firstly, we have that
W(B) — v(B) = u(B") - (B,
Indeed, by definition p(B) = v(B) so in particular
[(B) = v(B)| = u(B) — v(B).

On the other hand, by the additivity of x and v, we have:

(2) Secondly, we see that the set B maximises the total variation distance:

d(p,v) = |u(B) —v(B)|.

Indeed, fix any set A = Z,. We use additivity of 1 and v to write

p(A) —v(A) = > (u(t) —v(®) + ) (u(t) = v(t))

teAnB te A\B

By definition, we have for all ¢t € A\B we have u(t) — v(t) < 0. Hence

ST (ult) - v(t)) < 0.

te A\B

Hence

(A —v(A) < ) (ult) = v(t)) = w(An B) = (A B) < u(B) — v(B).

teAnB
A symmetric argument (Exercise!) shows that
V(A) — u(A) < v(B°) - p(B°),

By (1) we thus have
v(A) = u(A) < u(B) — v(B).

This proves that
1(A) = v(A)] < [u(B) —v(B)| < d(p,v)

so as A c Z, is arbitrary we have
d(p,v) = [u(B) = v(B)|.

(3) Thirdly, we have that



Indeed by (2), we have

By definition

t€Lyp,pu(t) >V (t) telyp,p(t)>v(t)
and
(B) — u(B°) = —(ult) —v(t) = D, ) —w()]
telyp,pu(t)<v(t) tE€Lp, ( )
Hence
p(B) — (B) + v(B) - 2 (1)

(4) Finally, combining (2) and (3) then gives us the claim:

d(p,v) = |(B) Z ()

]

Theorem 2.26 introduces the L' distance between two probability distributions, and we
can give a notation for it using the so called L! norms:

,—[Deﬁnition 2.27 (L* norm)} .

Define the L' norm of a function f : Z, — R by

[ =D 1f(t)

tely

\ J

The difference of two probability distributions u — v is a function that is defined by ¢ € Z, by
(b —v)(t) = pu(t) —v(t).
Hence Theorem 2.26 says the following:
1
d(u,v) = 5lp = vl

Other useful lemma, which we can use to bound total variation distance from below is the
following that allows use “integrals”/“expectation” with respect to probability distributions.
Recall Definition 2.17 for the definition. Here we need the notion of the L* norm:

,—[Deﬁnition 2.28 (L~ norm)} \

Define the L* norm of a function f : Z, — R by

[flloo = max{[f(t) : t € Zp}.
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Theorem 2.29 (Variational formula)}

d(p,v) = g maxu(f) ()| Fle < 1, f 2, R)

Proof
Exercise.

r—[Exercise 2.30]

(1) Compute the total variation distance
d(X, o)
between the uniform distribution A and the singular distribution dy at 0.

(2) Give a formula for the total variation distance
A(5,,5,)
in terms of 5,7 € Z,,.
(3) Define p : Z, — [0, 1] by
= 15 + 16
n= 9 1 5 —1-

What is the total variation distance

(g, \)?

(4) Define p : Z, — [0,1] by
fo = @y + (1 —a)d_q.
What is the total variation distance
d(ptas tip)

for0<a<f<1?

(5) Given two probability distributions p,v : Z, — [0,1] and 0 < o < 1, define
their convex combination

To == ap + (1 — a)v.

Prove that the mapping a — d(piq, i), « € [0, 1], is continuous.
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2.4 Information and entropy

Another way to measure uncertainty comes from information theory, which was formalised and
popularised by Shannon inspired by ideas from statistical mechanics and Maxwell’s equations.
The basic concept here is entropy, which roughly speaking tells us information about how
much uncertainty a random choice ¢ € Z, with probability p(t) has.

,—[Deﬁnition 2.31 (Entropy)} N

The entropy of a probability distribution p : Z, — [0, 1] is given by

p—1

H(pu) = — > u(t) log u(t).

t=0

Here log is taken in base e, that is, log = In.

Entropy is formally the expected information 1,(t) of i at t € Z,, which is defined by:

I,(t) == —log u(t), tezZ,.

Indeed, using the expected value / integral notation, we have that the entropy of p is

,—[Example 2.32} N

(1) In Z, the uniform distribution A has entropy

H(\) = logp.
Indeed, by definition
p—1 p—1 1
= — > p ' logp™t = (logp) D" = = logp.
=0 i—o P

(2) In Z,, given ty € Z,, the singular distribution d, at ¢, has entropy

H(6;,) =0

Indeed, as dy,(tp) = 1 and 0 for ¢ # ty, we have

5t0 = Z 5,50 log 6t() ) log 1=0.
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r—[Exercise 2.33} N

For 0 < a < 1 define the probability distribution
fo = by + (1 — a)o_;.

Express the entropy
H(pa)

as a function of . Compute also the total variation distances

d(pte,d1) and  d(pa,0-1)

as a function of o and compare the results.

2.5 Entropy and total variation distance

The entropy relates naturally to the total variation distance through Pinsker’s inquality
(not examinable, but the idea is useful):

,—[Theorem 2.34 (Pinsker’s inequality)} .

Let pu : Z, — [0,1] be a probability distribution. Then the distance to uniform
satisfies the following comparison to entropy distances

1

W\HW — HO\)| < d(u, \) < A/2[H(u) — H(N).

Recall that the entropy H(\) = log p, recall Example 2.32.

Proof

Let us first prove

d(p, ) < v/2|H(p) — HQV)|

Define
r(t) :=pu(t) —1, teZ,.

p
Recall that H(\) = logp and 0 < H(u) < logp, so
[H(p) = H(A)| = logp — H(p).

Using the definition of r(t) as >},., p(t) = 1 we can write

logp — H(u) = ; SYI(1+ (1) log(1 + (1)) — r(1)].
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Logarithm satisfies the following equality for x > —1:

(14 o)log(lra) o>t &
x) log T) — T A
Thus ) ( )2
r(t
- Nlog(1+r(t)) —r(t)] = — —_—
D té}p 2p tEZZ]p 1+ r(t)/3
Since
D (1+7(s)/3) =p+ 3 Z pu(s -
SELp seZp
the right-hand side is equal to
1 r(t)?
— —_— (1+r(s)/3).
2p? =z 1+r(t)/3 S;p
Define
\/7“ (t)2/(1+r(t)/3), and g¢g(t) =+/1+1r(t)/3.
Then

521+r 5 S0+ =5 3 S0 3 o

teLy seZp teZp SELyp

Cauchy-Schwartz inequality for sums (see Theorem 4.13 in the later sections) gives that
2
(X rg®) < X f02 Y g7
teZy tely teZy

and we see that

so as A(t) = 1/p we have

D, FDg) = Y el = D] lpu(t) =1 =p Y [u(t) = AB)| = plu = Alx = pd(p, V).

teZy teZy teZyp teZy
Thus we have proved

SPd(p, A)? < p*[H(p) — H(V)],

which gives the claim after dividing by p?.

Now let us prove the other inequality

1

mm(u) — H\)| <d(p, M)

Write
fteZ,ult) 2 AB) — {te Ty ult) > 1/p).
Since H(A) = log p we have

H( ~ HO)| = logp — (= 3 u(®)logu)) = 3 uto)og 5.

teZyp telyp
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and as log % < 0 for t ¢ B, we have

t t
2, H logu < ) nlt b)Y

teZyp teB
Add and substract:

S u(t) log A(Z) S (ult) — At ))log)\gi) + S A(t) log Agg (2.3)

teB teB teB

Firstly as p(t) < 1 and A(t) = 1/p, we have

1(t)

< logp,
)\(t) ogp

log

which gives for the first term in (2.3) the bound

S 0lt) ~ A0 o8 ™ < (1o p) Y (0at) — A(0).

teB ( ) teB
For the second term in (2.3), we write pu(t)/\(t) = 1+ (u(t) — A(t))/A(t) and obtain

() u(t) = (1
2 A1) log T = 25 M) o (1+ =25,

teB teB

p(t)—A(t)
NG

S a0 o (1+ MOS0 < Sute) - 20,

teB teB

Applying log(1 + z) < x with z = we obtain

Hence by (2.3) we have

S (0tt) ~ At o A0 < 1ogp + 1) Y(0ut) — A1)

teB A( ) teB

Finally, the sum

D lu(t) - Z |ua(t)

teB teZp

which is equal to d(u, A) by Theorem 2.26. Hence as H(\) = log p we have proved

[H(p) = HA) < 2(H(A) + 1)d(p, A).
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Chapter 3

Dynamics

3.1 Convolution on Z,

In the previous section we talked about uncertainty and randomness of the location of ¢ € Z,,.
For example, in the passing the broccoli process, we knew that the broccoli was at location
t = 0 and then we randomly chose t € Z, according to the probability distribution p given by

11
= —01 + =0_1.
f=50rT 50

In other words, we choose t = 1 with probability 1/2 and t = —1 = p — 1 with probability 1/2,
see Figure 3.1. However, the idea is to continue at each step passing the broccoli either to the
person on their right /left. Hence we would like to talk about the evolution of the process.

@ X3 *

Figure 3.1: Passing the broccoli process: the broccoli is first with the person sitting on the
chair 0, and then gives with probability 1/2 the broccoli either to the person sitting to the left
or the right.

Assume we have started with the broccoli being with the person sitting at ¢ = 0 and then
they have given the broccoli either to their left or their right. This point is ¢t =1 or t = —1.
Now, assume that at the next step we do the same: the person either at ¢ = 1 or —1 gives the
broccoli to the person at their left or their right. In the case ¢ = 1, this would be t = 0 or
t = 2, and in the case of t = —1 = p—1 this would be t = 0 or t = p—2. Is there a probability

43



distribution fi : Z, — [0, 1] that would give us the location of the broccoli after the second
step?

We would need to define a new distribution f : Z, — [0, 1] that would take into account
the choice where we landed if choosing the location of the broccoli randomly with respect to
. We can see that in the process we can only go once left or right, so we know that whatever
fi is, it can only give positive values to the arc {p —2,p — 1,0, 1,2} < Z, since after two steps
the broccoli could have only travelled at most 2 steps right or left. However, after the second
step it is impossible t = 1 or t = —1 because we always give the broccoli to their left or right
from t =1 or t = —1 and those points are p — 2, 0 and 2. Hence the distribution after second
step should be concentrated on {p — 2,0, 2}.

This distribution f : Z, — [0, 1] is the so called convolution p =y of p with itself.

,—[Deﬁnition 3.1 (Convolution)} \

Let f,g : Z, — C be functions. The convolution f g :7Z, — C of f and g is

Fegt) = Y Fte9g(s). ter,

Recall that t© s =t® (—s) =t —s mod p.

In the case of f = g = p for a probability distribution p : Z, — [0, 1] we see that

p—1
o p(t) = > p(t O s)u(s).
s=0
Recalling the notation of “expectation” from the previous chapter, we see that
po p(t) = Ep(fy)
for f; : Z, — [0,1] defined by

fi(s) = u(tes), sei,.

Hence formally convolution p = p(t) describes the expected value of the probability u(t © s)
when s € Z, is chosen randomly according to p. In the case of u = %(51 + %5_1, we thus have

ponlt) = 3 ult© s)u(s)

= p(to1)/2+ut®1)/2
= 0a(t)/4 + S0(t)/4 + 0o (t) /4 + 65(t) /4
= 0(t) /4 + Go(t)/2 + 0_a(t) /4,

where in the last line we used the identities (for ¢ € Z,):
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0-1(t© 1) = do(t);
I (td1) =d(t);
S A(E®1) = 5(t).

Hence if we choose t € Z, randomly according to p * p1, we have t = 2 with probability 1/2,
t = 0 with probability 1/2 and ¢t = —2 with probability 1/4. Thus the resulting distribution
1= [ is also a probability distribution, which is true in general:

Theorem 3.2]

Suppose p and v are probability distributions on Z,. Prove that p+v is a probability
distribution Z,,.

Proof
Exercise. O

Probabilistically, we can think about the convolution as an evolution of a random walk on
Z,, where the transition is given by “transition kernel”

P(ta S) = :u(t@'9>7

which is the probability of the walk to transition from the state s to the state ¢t. The transition
kernel P(t,s) when ordered t,s € Z, gives a matrix p x p matrix P with entries given by
P(t,s). This matrix is very important in the study of the evolution of the random walk and
it is sometimes called the “transfer operator” of the process. In this course we will not pursue
much into this, but for those interested in graph theory or dynamical systems might encounter
this more.
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,—[Remark 3.3 (Probability vs convolution)}

One good way to understand convolution is through the probabilistic idea: if t; € Z,
has distribution p and t5 € Z, has distribution v, then the sum ¢, ®t, has distribution
i+ v. Indeed, for any t € Z, we can write

P(t; ®ty = t) = B(5,(t ®t2))

for the two dimensional Dirac mass function d; : Z, x Z, — [0,1], which is 1 when
t1 @ty =t and 0 otherwise. On the other hand as ¢; has distribution p and ¢, has
distribution v, we have

E(6,(t Dt2)) = f f 5u(t D ts) du(ty) du(ts)

and as t; @ty =t if and only if ¢; =t © t5, we obtain
| [t @t duter) avie) = [t ot avies) = 3 nitttts) = e vit)
tQEZP

Here formally the expectations are taken with respect to the product distribution
px vy, x L, — [0,1], defined by p x v(t,s) = u(t)v(s), (t,s) € Z, x Z,.

Convolution also enjoys the following useful identities:

r—[Theorem 3.4]

For all f,g,h : Z, — C we have
(a) Commutativity: f+g=g= f
(b) Associativity: f=(g+h) = (f*g)=h
(c) Linearity: if , 5 € C, then f = (ag + Sh) =af =g+ 5f =h

Proof
Exercise.

Geometrically or information theoretically, convolution should be thought as “smoothen-
ing” operation. If we convolve, say, two probability distributions p and v, then the resulting
convolution p v should somehow be more smooth than the original. Information theoretically
this means that the “uncertainty” of choosing a point ¢ € Z,, according to p * v increases. This

can be formally done in the following theorem:
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,—[Theorem 3.5 (Entropy grows under convolutions)} \

If p,v:Z, — [0,1] are probability distributions, then the entropy

H(p«v) = max{H(p), H(v)}.

\ J

Proof

Exercise. O

In the case of uniform distribution A(t) = 1/p, t € Z,, the convolution with any other
w: Z, — [0, 1] does not change the situation at all:

r—[Theorem 3.6} N

For the uniform A(t) = 1/p, t € Z,, we have

A=A\

\ J

Proof
Exercise. []

If we convolve with a singular distribution d, : Z, — [0, 1] at some s € Z,, then convolution
works as a translation with s € Z,:

r—[Theorem 3.7 ] \

For the singular distribution d, at s € Z, we have

Os * ult) = p(t © ).

\. J

Proof
Exercise. L

r—[Exercise 3.8] N

ForO<a <1
p=ad + (1 —a)i_y

compute p * p and p* p* p.

\. J

r—[Exercise 3.9] N

Prove that if p, v : Z, — [0, 1] are probability distributions, then

H(p+v) < H(p) + H(v).
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3.2 Sumsets in Z, and relation to convolutions

Convolution is closely related to an additive combinatoric notion of a sumset:

,—[Deﬁnition 3.10 (Sumset)} \

Let A, B < Z,. Then their sumset is the formal sum

A®B={t®s:te A se B}.

\ J

If A c Z,, let us write |A| as the cardinality of A. That is, if A = {a1,...,a,}, then
|A| = n. Additive combinatorics concerns the relationship between the structure of A and B
and the cardinality of their sumset A ® B.

r—[Exercise 3.11] N

(1) Prove that
max{|A|,[Bl} < [A® B| < [A||B].

(2) Give an example of sets A, B < Z, such that
|A® B| = max{|A], |B[}.
(3) Give an example of sets A, B c Z, which are not Z, such that

|A® B[ = |A]|B].

If p is prime, then Z, has no nontrivial subgroups (i.e. the only subgroups are {0} and Z,.)
Thus it is hard to have
|A® B| = max{|A|,|B|}

achieved. The Cauchy-Davenport inequality gives the common lower bound in these cases:

,—[Exercise 3.12 (Cauchy-Davenport inequality)} \

If p is prime, then for all A, B  Z, we have

|A® B| = min{|A| + |B| — 1, p}.

See [14, Proposition 5.4] for a proof.

The connection to sumsets comes from the notion of support of the convolution.
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,—[Deﬁnition 3.13 (Support of a probability distribution)} \

Let p : Z, — [0,1] be a probability distribution. The subset of Z,

spt(p) = {t € Zy : u(t) > 0}

is defined to be the support of p.

If we consider the support of the convolution u * v, it reveals that the support is contained
in the sumset of the supports spt(x) and spt(r). Thus this creates a link between the group
theoretic properties of Z, and the probabilistic heuristics behind convolution and we formalise
it in the following theorem:

,—[Theorem 3.14 (Support of convolutions and the sumset of supports)]—

Let p, v : Z, — [0, 1] be probability distributions. Then the support

spt(u = v) = spt(p) @ spt(v).

Proof
Let r € spt(u = v). Then p*v(r) > 0. We need to prove that r = t @ s for some ¢ € spt(u)
and s € spt(v). By the definition of the convolution

pevlr) = Y ulr & s)us)

sy
so if this is positive then we know that
p(res)v(s) >0
for some s € Z,. This is only possible if u(r©s) > 0 and v(s) > 0 so s € spt(v). Define
t:=ros.

Then p(t) > 0 so t € spt(p) and
r=1t®s.

Thus as r € spt(u = v) is arbitrary, we have
spt(u = v) < spt(p) @ spt(v).

Take ¢ € spt(u) and s € spt(v). We want to prove that u = v(t@® s) > 0. By the
definition of convolution

pv(tds) = Z uwtdsor)v(r).

T€Lyp

If now p(t@s) =0, then pu(t®ser)v(r) = 0 for some r € Z,, which means that

put®sor) =0
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v(r) =0.

Suppose r = s. Then
tEsOr=t@ses=t.

If the first case happens, then
u(t) =pt®sor) =0,

which is a contradiction with ¢ € spt(u). If the second case happens, then

which is also a contradiction with s € spt(v). Hence p*v(t@®s) > 0sot@® s € spt(p=v). In
particular, as ¢ € spt(u) and s € spt(r) are arbitrary, we have

spt(u = v) = spt(p) © spt(v).

r—[Exercise 3.15} N

For 0 < a <1, let
p=ad; + (1 —a)d_.

Compute spt (g = g = ).
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3.3 Convolutions model a random walk on Z,

The aim of this section is to introduce formally random walks on the group Z,, give
notations for it and link it to convolutions.

The core idea behind a random walk is that we have a sequence of probability distributions
p, fa, - Ly, — [0,1] and at step one, we choose a random point ¢; from Z, according to
1, then add (using @ operation) a random point t5 to ¢; obtaining ¢; @ t5. The distribution
of this random variable will be 1 * pus. If we continue this process we obtain a random point
LDt @ Dty € Zy with distribution gy * po * -+ - * .

For example, the pass the broccoli process we have the distribution g = p; = ps = ...

defined by . .
o= 551 + 5(5_1.

Then if we choose a random point t; according to u, we obtain either —1 or 1 with probability
1/2, and then the next point t; is again chosen according to x and added to the value ¢;, which
gives us t; @ to, and so on.

Commonly we deal with a single distribution p = p; = o = ... as in the pass the broccoli
process, and we will mostly concentrate on that case. The case of different distributions gives
arise to a more complicated theory.

To formalise what we said above, let us introduce some notation.

,—[Deﬁnition 3.16 (Iterated convolution)} \

Let 1 be a probability distribution and n > 1. Then the n-iterated convolution is
defined recursively by

*n #(n—1)

Pt = p * [

with p*0 := §.

Thus we have

P =3do, pt=p, p?F=pep, p?=peprp,  andso on,

,—[Example 3.17} \

In the case of the passing the broccoli, the probability distribution
p 2y — [0,1]

tells us the distribution of the broccoli after n steps: we know first that the Broccoli
is with the person sitting on the chair 0, and then with probability 1/2 we pass the
Broccoli either left or right and iterate this n times.

We can use convolutions to define random walks on the group Z, formally.
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Figure 3.2: Visualisation of the iterated convolution. We first have the distribution p*° = d,
we know that he broccoli begins at the location 0. Then, in the first step, we take p*' = pu,
that is, with equal probability the broccoli is located at 1 or —1. The height of the broccoli
towers describe how likely is the broccoli found at ¢ € Z, is. Initially they are in 1 and —1.
Then the picture in the middle is the iterated convolution p*? = i, which shows the broccoli
starting to spread around the table, and finally p*3 = p# pu* p. We observe “flattening” of the
distribution from relatively singular 4 to more uniformly distributed z*3.

,—[Deﬁnition 3.18 (Random walk on Zp)} \
Fix some probability distribution w : Z, — [0,1] and let t,...,t, be Z, valued
random variables with for each j = 1,2,...,n that

P(t; =t) = p(t), tel,
We define a random walk on Z, by the random variable
Xp=t1® - Dt, € Z,,.
This new random variable X, on Z, has distribution p*", that is,
P(X, =t) = u*"(t), teZ,.

We say that X;, X,,... is then driven by the probability distribution .

Here we see that for example



and if A ¢ Z,, we have
P(X;e A) = pu(A).

A common theme in random walks is to understand the return probabilities of random
walks or probabilities we reach from one state to other. In the case of Z,, this could mean
that what is the probability that X; = s (we begin from the state s € Z,) and after n steps
we reach state t € Z,, that is, X,, = t?

There are two ways to approach this. First of all, notice that the values of X; and X,
statistically independent of each other, that is, X; = s and X,, = t do not influence each
other. This is because we have

X1 = tll

for some ¢} € Z, with distribution p and

for some ty,...,t, with distribution g, but here the random variables t;,t] € Z, may not be
the same, they just have the same distribution pu.

Thus we can define the probability of the event that X; = s and X,, = ¢ as follows:

,—[Deﬁnition 3.19 (Probability of the event X; = s, X, = t)} \

If s,t € Z,, then define

P(X; =5,X,=1t):=P(X; =s)P(X,, =t) = u(s)u™"(t).

\ J

,—[Remark 3.20 (Fixing initial £, = s in Xn)} \
If we would like to consider the probability when assuming the first element in X,
is s, that is, then we are fixing ¢; = s in X,,, then there is dependence: we would be
asking the probability of the event

which is by definition as s ®t, @ - - - @ t,, has distribution d, * z**~ given by

55 « N*(n_l)(t> _ u*(”_l)(t@s).
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,—[Remark 3.21 (Conditioning X; = s)}

We need to emphasise here that P(X; = s,X,, = s) does not mean conditional
probability you may have seen in a probability course. If we write

P(X, = t|X, = s) (3.1)

we mean the probability of the event that the random walk X, Xs, X3,... in Z,
driven by a probability distribution u : Z, — [0, 1] satisfies X,, = ¢t assuming that
the same walk started with X; = s. This is more information about the location
and it is possible that X,, = ¢ might be harder/easier to achieve if we have X; = s.
Formally one defines

]P)(Xl = S,Xn = t)
]P(Xl = S) ’

P(X, = t|X; = 5) =

which as P(X; = s) = pu(t) is equal to

P(X, = t|X; = s) = ]P)(XED (}f’fZ): b_ “<SZ‘(‘:; O _ ),

\.

,—[Example 3.22}

Define 1
n = 5(51 + 5*1)7

i.e. the pass the broccoli random walk. Then

P(X1=1,X =1) = p(1)p = pu(1)
1
oM * 11(1)

>3 w1 ©s)uls)

S€Lp

1
= 510 )u() + p1@1)u(-1))
=0
However, if we assume the first summand in X, is 1, then we are computing the

probability
P(1®ty =1) =Pty = 0) = pu(0) = 0.

Finally, the conditional probability
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,—[Example 3.23}

Define 1
n= 5(51 + 5*1)7

i.e. the pass the broccoli random walk. Then

P(X1 =1, X5 =2) = p(1)p = u(2)

= ;u * p(2)
SEDNLEDS

SELp

= (e u) +p2e1)u(-1))
(e (D) a(1) + pa(3)pu(—1))

11
Y 0

RN =N

ol — N

\.

r—[Exercise 3.24}

Let X1, X5, ..., be the random walk driven by p, = ad; + (1 — a)d_;. Compute the
probabilities

(1) P(X; = 1, X = 2).
(2) P(X; = 0, X, = —2).
(3) P(X; = 1, X, = 1).

Compare these to the probabilities
(1) PADt, = 2).
(2) PO@t, = —2).
3) PA@t, = 1).
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3.4 Ergodic theory and subgroups

Having defined iteration, we can now talk about the long-term asymptotics of the process.
For example, is there a way to associate a limit u. probability distribution to the iterated
convolutions p** as n — o0? This limit should give us some information of the long-term
asymptotics of the random walk on Z, with initial distribution given by p.

For this purpose, let us define formally “limits” of sequences of probability distributions:

,—[Deﬁnition 3.25 (Limits of probability distributions)} \
Let g1, po,- -+ Z, — [0,1] be a sequence of probability distributions. Then they

have a limit o, : Z, — [0, 1] if for every ¢ € Z, the limit exists:

lim g, (1) = poo(t).

n—a0

The limit pu* is a probability distribution (Exercise!).

We can characterise them using the total variation distance:

r—[Theorem 3.26} N

Let py, po, -+ + Z, — [0,1] be a sequence of probability distributions. Then they
have a limit po, : Z, — [0, 1] if and only if

lim d(fin, ften) = 0.

n—o0

Proof
Exercise. O

Ergodicity of a random walk is a fundamental notion of chaos. The basic idea of an ergodic
random walk that it will forget the initial state and the limit will be independent of where
we began. In the case of non-ergodic random walks the initial state (or distribution) will
completely determine the range of the random walk.

,—[Deﬁnition 3.27 (Ergodicity)} N

A probability distribution p : Z, — [0, 1] is ergodic if the limit of the iterated
convolutions is the uniform distribution A, that is,

lim p*"(t) = A\(t), teZ,.

n—o0

Recall that A is the uniform distribution \(t) = 1/p for t € Z,,.

56



In other words, recalling the notations from Definition 3.18, if #1,¢5... is the associated
random walk on Z, with 1,1, ..., have distribution p, then the distributions of

antl@tg---(—BtneZp

converge in total variation distance to the uniform distribution A on Z,. For those more
familiar with probability theory, random walks and Markov chains, one can equivalently write
ergodicity using the sites the random walk generated by p : Z, — [0, 1] attains. We will
discuss this in more detaill at the end of the section.

Recall from the language of group theory:

r—[Deﬁnition 3.28] N

Let p = 2.
(1) A subset I' © Z, is a subgroup if
t,sel, == t®sE”Ly
We write then I' < Z,,.

(2) Subgroup I' < Z, is trivial if I' = {0} and proper if I" # Z,.

(3) A subset A c Z, generates a subgroup I' if
(A)=T.

(4) A subset A < Z, is a coset of a subgroup I' if there exists t € Z, such that
A=Tot,

where

F@®t={a®t:ael}.

We will need the following simple lemma that tells us that not a set A < Z, not being
concentrated on proper subgroups implies that taking large enough sumsets

A% = A @ A

for n > 1 with A*® = &, become the whole group Z,.

,—[Lemma 3.29 (Non-concentration and sumsets)} \

Let A < Z,. If A is not contained in a coset of a proper subgroup of Z,, then there
exists n € N such that
A =7,
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Proof
(Thanks Borys Kuca for the proof, see also an alternative proof in the book by Tao and Vu
[14, Proposition 2.2])

Let us first prove the following property: () If A, B < Z, are non-empty and |A @ B| =
|A| = |B|, then A, B are cosets of the same subgroup I' < Z,.

To prove this property (), fix some t € A and some s € B, and define the translates
A'=A0t, and B = BOs.
Then the sumset
A®B =(A@B)® (t®s)
so by the assumption on A and B we have
|A"® B'| =|A"| and |A'® B'| =|B|.

Note that 0 =t8te A and 0 =sOse B so A c A@® B and B' <« A’ @ B’. Therefore we
have from the cardinality equality that

A=A®B =08
Thus A’ @ A" = A’. This implies A" is a subgroup. On the other hand, A = A’ @t and

B = A'"® s so A, B are cosets of the same subgroup. Thus the property (x) above is proved.

Now, let us look at the claim of the lemma. If A is not contained in a coset of a proper
subgroup, then neither is A®" for any n € N. Hence applying the property (*) above we obtain

A% = [A@A| > |Al, AP = |A® @ AP > |AP, |A®S| = |A® @ A®Y| > |A® ...
so we have
|A®?"| > 149" neN,

so the cardinality |A®*"| grows as n — c0. However, we always have |A®?"| < |Z,| = p for all
n € N so that means there exists n € N such that |[A%?"| = |Z,|, which implies A®" = Z,. O

Lemma 3.29 gives us the following fundamental result on supports of iterated convolutions
and concentration on cosets of subgroups:

,—[Theorem 3.30 (Non-concentration of convolutions on subglroups)w \

J

Let w : Z, — [0,1] be a probability distribution. Then the support spt(x) is not
contained in a coset of a proper subgroup of Z, if and only if there exists n € N with

spt(pu™) = Zy.

Proof
Write A = spt(p). Then Theorem 3.14 gives

spt(p*™) = A®",
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Since A = spt(u) is not contained in a coset of a proper subgroup of Z,, we can apply Lemma
3.29 with A = spt(u) to obtain

A% =7,
as claimed.

Suppose on the contrary that spt(u) < I'@ s for some proper subgroup I' of Z,, but
there exists n € N such that p**(¢t) > 0 for all ¢ € Z,. Using Theorem 3.14 we see that the
support

spt(u*) = (T @ 5)®" = T" @ (ns).

However, since I' is a subgroup, we know that
¢ cr

so we have that spt(u*") is also contained in a coset of a proper subgroup I of Z,. Since I' is
proper, that is, not equal to Z,, also spt(u*") # Z, so we know that there exists ¢ € Z, such
that

p " (t) = 0.
Contradiction. O
Theorem 3.30 relates closely to ergodicity:

Theorem 3.31 (Ergodic theorem)}

A probability distribution p is ergodic if and only if the support spt(u) is not con-
tained in a coset of a proper subgroup of Z,.

Proof
If pu is ergodic, then p**(t) — A(t) = 1/p for all t € Z,. Hence there exists n € N such that
w*"(t) > 0 for all n € N. Then by Theorem 3.30 the support spt(x) is not contained in a
proper subgroup of Z,.

Thus we just need to check the other direction, where we assume that spt(u) generates Z,
and it is not contained in a proper subgroup of Z,. Let us prove the ergodicity of 1

. *k _
ICILI&M (t) = A(t), teZ,.

(1) Define the sequences
M, = max p**(t)

teZy

and

o . *k
my = min u*(t).

By Theorem 3.30, since spt(s) is not contained in a proper subgroup of Z, we know that there
exists kg € N such that
€=Mk, € (0, 1)

(2) It is enough to prove that Mj and my both converge to a common limit ¢ > 0. Indeed,
since by definition
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we know that for all ¢ € Z,,.
lim p**(t) = .

k—o0
The only possibility for such limit is ¢ = 1/p since by summing over t € Z,, and using the fact
that ;** is a probability distribution, we have

L= lim Y () = ) lim p*(t) = > £ =pt,
teZyp teZyp te€lyp

which is claim.

(3) Let us now prove that M, and my have a common limit. We know that (M) and
(myg) both converge to some limits M, and m,, respectively as the sequences M} and my, are
monotonic: for my we have that for all ¢t € Z, we have

me= 3 ut© syme < 3 p(t @ s (s) =t (e)

S€lp SELyp

so taking minimum over ¢ € Z, gives
ME < Miy1
and similarly for M} we have

@) = 3 ute st(s) < 3 plte )My = M

SELp SELyp

so by taking maximum over ¢ € Z, gives

My 1 < M.

Now we just need to prove that My, = moo.‘

(4) To prove M, = me, it is enough to prove that for all » > 0 we have
My sr — My e < (1 — &) (M, — m,.). (3.2)
Indeed, by iterating this inequality & times we obtain
Mk +r — Mikg1r < (1 — )5 (M, —m,.),

which converges to 0 as k > w0 as 0 <1 —¢ < 1. Since My — M, and m — my as k — o
the limits along these subsequences will be the same, so My, = my.

(5) Let us now prove the final claim (3.2). We have

() = 3t (t O s)ut (s)

= S0 s) —en (=) lu(s) + 2 ) u (—s)u(s)
= S (0 ) — e (= )]u () + " (0)
> Y [t © 5) — e (=5)]m, + 2" (0)

= (1 —&)m, + eu*@)(0).
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The inequality in the above chain follows from the fact that
Pt ©s) —ep* (—s) = 0
since by definition & = my, we have ¢ < p**(t© s) so
PO s) —ep (=) = p (t O s)(1 - p (—s))

and here
Pt ©s)(1 — p*(=s)) = 0.

We have proved for all ¢ € Z,, the inequality
pF O () = (1 = )m, + ep*@(0).
Now taking the minimum over all t € Z, gives
Migsr = (1 — €)m, + ep*®7(0).
A similar argument (left as an exercise) shows the upper bound
My ir < (1= €)M, + ep*C0(0).

Combining these gives us the claimed inequality (3.2).

r—[Exercise 3.32]

Let 11 be a probability distribution on Z, and assume that the support
spt(p) = {t € Zy : p(t) > 0}
is a proper subgroup of Z,. What is the limit

lim %% (£)?

t—00
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3.5 Mixing

Having now found out that as long as the support spt(sx) is not contained in a proper subgroup
of Z,, then

p () — At)
at every t € Z,. Note that this is equivalent to

(1", \) — 0.

What is the rate of this? This is very relevant to us if we want to find out the number of card
shuffles we would like to do to properly mix the deck, or say, how many moves of the Rubik’s
cube we would need to perform in order to have a state of the cube that is random enough.
For this purpose, practically one could for example require to find the minimal n € N such

that
1

100’
which implies that all the probabilities p*"(A) for every event A < Z, are very close to the
uniform A\(A) = 1/|A| up to an error of 1%.

This minimal n for which

A, ) <

1
*n <
d(p*™, \) 100"

is called the mixing time of the random walk with threshold ¢ = 1/100.

,—[Deﬁnition 3.33 (Mixing time)} N

Given a threshold € > 0, we say that the random walk has mixing time n;(¢) if
for all n = nyi(e)
d(v=p™ \) <e.

To find the mixing time ny;, () it is thus very important to know the quantitative rate at
which
d(pu*", A) — 0.

One usually called the rate of mixing of the random walk.

,—[Deﬁnition 3.34 (Mixing)} \

We say that the random walk driven by p : Z, — [0, 1] is mixing with a rate
¢(n) — 0 as n — oo if for all initial distributions v we have

d(v + 5", \) < 6(n)

for all n e N.

Commonly we see that the rate of mixing is exponential, and in the case of Z,, but to
prove this we need harmonic analysis.
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Chapter 4

Harmonic analysis

4.1 Introduction

Suppose we have a function f : [0,1] — C that has a relatively messy looking graph. One
could consider this as a sound signal with various high and low frequencies in it (like a tape of
a music record), or a very fractal like function. In order to understand the behaviour of f, one
needs to find ways to decompose the function into simpler pieces from which one could read
properties of it. This can be useful in signal processing to find which high or low frequency
sounds are contributing to the signal.

It was observed by Fourier that using sums of simple trigonometric functions (waves)
x +— cos(2mkx), if the function f has enough regularity (such as differentiability), it can be
expressed as a sum of cosine waves:

f(z) = 2 ay, cos(2mkx)

keZ

for some coefficients ay that represent the amplitude (or height) of the wave, and the integer
k corresponds to a frequency (or number of oscillations) of the wave.

Figure 4.1: The core idea behind Fourier analysis: we would like to represent a complicated
function/signal f : [0,1] — C (e.g. the red saw-tooth function) as a sum of simpler cosine
functions x — ay cos(2mkz), k € Z (the blue waves) with the coefficients (“amplitudes”) ay
given by the Fourier transform of the function a; = f (k). The values of a; thus tell how
“high” the oscillations of = +— a cos(2mkz) become and k tells the frequency of the waves
x +— ay cos(2mkx). Picture copyright CCO.

The amplitudes a, are in most cases given by the cosine transform f“’s(k) of the function
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1 at a frequency k, which can be formally defined using integration:

ay = fcos(k:) = fo f(z) cos(—2mkx) du.

This number represents a kind of expected value of the wave. If it is close to 0, then one
expects not to have many oscillations in high frequencies.

However, due to theoretical advantages (and also connections to quantum mechanics, which
we will not explore in this course), it is more beneficial to use complex valued waves

™% = cos(2mkx) + isin(2rkx), e [0,1],

when defining the waves. The advantage of this is that we have many useful theoretical
formula at our disposal (like convolution theorem and Plancherel theorem below) and one can
still recover similar intuition. In this case, the Fourier transform of f : [0,1] — C at frequency

k € 7Z is defined by
1
fii) = | rta)e e da
0

and one looks for a representation of f as a Fourier series:

fla) =Y flk)e*™=, wel0,1].

keZ

In this course, we will not go into this “continuous” side of Fourier analysis, but more consider
the case for functions f : Z, — C instead. However, we emphasise that many of the ideas
presented in the simpler case Z, carry to the continuous setting with sums replaced by integrals.
The proofs in the case Z, are just much simpler and do not require to take into account the
intricacies of real numbers.
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4.2 Fourier transform in 7,

In the case of the group Z, where we study our random walks, we can also study similar
representations of functions f : Z, — R using waves. In literature such Fourier transforms are
also known as Discrete Fourier Transforms (DFT).

,—[Deﬁnition 4.1 (Fourier transform in Zp)} .

The Fourier transform of f : Z, — C in the frequency k € Z, is given by

p—1

Flk)y = D f(g)e 2, (4.1)

t=0

The functions t — e=27*/P ¢ € 7, for a given frequency k € Z, are called characters or
stationary waves, and they have a notation: x;, : Z, — C, defined by

Yk (t) = 6—27rikt/p'

Thus the Fourier transform of f : Z, — C can be written as

p—1

Flky =7 F)xa(t).

t=0

In this chapter we will consider mostly functions f : Z, — C but we mostly apply the Fourier
transforms to probability distributions p : Z, — [0, 1], which are a special case of this theory.

An useful way to think Fourier transforms of, say, a probability distribution yx : Z, — [0, 1]
is that each we choose each complex number x4 (t) with probability p(t) and sum over them.
For computing such resulting exponential sums, the exponential sum formula will be useful:

,—[Theorem 4.2 (Exponential sum formula)} \
As long as 6 # 0, we have
pz: oith _ 1— e
1 — it
=0 €
Proof
Exercise. O

To demonstrate the use of Theorem 4.2 we can use it to directly compute the Fourier
transform of the uniform distribution:
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,—[Example 4.3}

For the uniform distribution A\(¢) = 1/p, t € Z,, we have for k # 0 by the geometric
sum formula with § = —27k/p # 0 that

k) = Z_]

and for k£ = 0 we have

omiktlp _ 11 _ ez‘p@ _ 11— e—27rk;i 0

€ p1l—ei 1;1 — e—2mik/p

S

I < F B |
/\(O) _ 2 76727r10t/p _ Z -1
i=o P i=o P

For the singular distribution a complete opposite happens: the Fourier transform has
constant modulus 1 everywhere!

,—[Example 4.4}

For the singular distribution d5 at s € Z,, we have
5;(]{/,) _ 6—27riks/p
for all k € Z,. Note that in particular |5As(k;)] = 1for all k € Z, and for s = 0 we have

So(k) = 1.

Suppose now we have a general probability distribution u : Z, — [0,1]. What does fi(k)
tell us about 1?7 We see that for the uniform distribution ) being 0 at every k # 0 and for the
singular distribution dy being 1 shows that the Fourier coefficients ji(k) being “large” for most
k € Z, should mean p is close to being singular and fi(k) being “small” for most k € Z, should
mean 4 is close to being uniform. Let us look at the case of the pass the broccoli distribution.

,—[Example 4.5 (Fourier transform of the pass the broccoli distribution)}—

Recall the initial distribution p : Z, — [0, 1] defining the passing the broccoli process

was given by £1(1) = p(—1) = 1 and p(t) = 0 otherwise. The Fourier transform of x
is then given by

p—1

A 1 - 1.,
ﬁ(k) _ ;M(t)e—%rzkt/p _ 56—27rzk/p + §€2mk/p _ COS(27T]{?/p>.

Thus depending on k, we see that fi(k) can attain large and small values, which
means it is neither uniform or singular.
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Fourier coefficients allow us to represent any function f : Z, — C as trigonometric series
with coefficients given by f(k) as follows:

,—[Theorem 4.6 (“Fourier series”)}

Any function f : Z, — C has the following Fourier expansion:

Z 27rikt/p’ te Zp.

Proof
By definition of Fourier coefficients

—1p—1

p—1
Z f(k:)ezmkt Z Z f —27riks/p€27rik:t/p
k=0 k=0 s=

—1p—1

_ Z Z f —27riks/p p2mikt/p

s=0 k=0

p—1 p—1
_ Z f(S) Z 6—27riks/p€27rikt/p

0

_ Z f Z —2mik(s—t)/p

=0

Now we see that

_ P
Z —2mik(t—s)/p __ {p7 55 (42)
Let us argue (4.4) this in the following two cases.

We are summing 1 in total p times, so the sum is p.

Write 6 = —2x(t — s)/p # 0. Then by the geometric sum formula

However, since t — s is an integer we have that

ep@z _ 67271'(1573)1 -1

as the value of €@ at any integer multiple of 27 is 1. Thus

1 — ep@i

1 — et
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as claimed in (4.4).
Continuing now first computation, we see that

p—

p—1 1
D, fls) Y et e = f(t)p,
s=0

k=0

which gives the claim.

W

,—[Deﬁnition 4.7 (Inverse Fourier transform) )

The formula for the Fourier series is also called the Inverse Fourier transform,
denoted for ¢ : Z, — C by

15

Notice that by definition
1

gt) = J9(=t), teZy

Inverse Fourier transform returns from Fourier transform back the function:

Theorem 4.8]

If f:7Z,— C, then

Proof
This is precisely Theorem 4.6.
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4.3 L? theory

One of the fundamental properties of Fourier transform is that it forms an isometry with
respect to the so called “L? norm” on the space of functions f : Z, — C. This property helps
us to transfer questions for probability distributions y : Z, — [0, 1] to their Fourier transforms
i(k), prove something for them, and then transfer this information back to the probability
distribution .

,—[Deﬁnition 4.9 (Inner product and L? norm)} \

(1) The inner product between two functions f, g : Z, — C is by

Goay =S F0)a(),

where Z is the complex conjugate of z € C.

(2) The L? norm of f: Z, — C is given by

[ fll2 =~/ ) =

Recall that for k € Z, the character x;, : Z, — C was defined by

Xi(x) = e Py e,
Recall that by the Fourier series representation we can write every f : Z, — C as a sum of
these characters times the Fourier coefficients. A bit more is true: these functions form an

orthonormal basis:

,—[Exercise 4.10 (Orthonormality of the characters)} \

Show that the characters x; are orthonormal (with respect to the inner product
above) to each other, that is,

0, k#¢

<Xk7X€> = {1’ k =/

A fundamental inequality we will often need in the analysis is the Cauchy-Schwartz in-
equality that links the inner product to the L? norms:
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,—[Theorem 4.11 (Cauchy-Schwartz inequality)} \

Let f,g : Z, — C be any functions. Then

[KF ol < [ £l2lgs-

Proof
There are many ways to prove this. We will give just one example proof here.

Firstly we may assume both || f|ls > 0 and [g|2 > 0. If one of them is 0, say, || f|2 = 0, then
f(t) =0 for all t € Z,, so also |[(f, g)| = 0 no matter what g is.

Let a,b > 0. Then 0 < (a — b)? = a® — 2ab + V? so

2 b2
ab< T+ (4.3)

Fix t € Z,. Apply (4.3) to the non-negative real numbers

£ (2) (1))
= nd b=
2 92

to obtain

SOl @] _ [fB N lg(t)?
Ifll2 gl QHsz 2llgll5
Sum both sides over ¢ € Z, so we obtain

5 0lls0] _ 52 VOP | 5 1o(0)

teZ, ||f”2 ||gH2 teZy 2Hf||2 teZ, 2”9“2

Multiply both sides by | fll2/g]2 to obtain

2 @@ < [ flalgle-

telyp

Finally, by the triangle inequality (as [g(t)| = |g(t)|) we have

<Ll =| D F0a®)| < X 17 ®)llg®)

teZyp teZyp

so the proof is complete. O

There is also an analogue of this for higher order moments, the so called LP norms:

,—[Deﬁnition 4.12 (L? norms)] \

Let f :Z, — C. For 1 < p < 2 define the L” norm of f by

I, = (2 1rwr) ™

teZy
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,—[Theorem 4.13 (Holder’s inequality)} .

Let f,g : Z, — C be any functions. Suppose 1 < p,q < oo satisfy the relation
1/p+1/q=1. Then

[KE ol < 1£lplgll-

Proof
Exercise. Hint: Use Young’s inequality for products: if a,b =0 and 1/p + 1/q = 1, then

ab < af/p+b/q.

O
A key property for Fourier analysis is the so called Parseval’s identity, which says that, up

to a normalisation by p~'/2, the Fourier transform operator
f=f
is an isometry.
,—[Theorem 4.14 (Plancherel’s Theorem / Parseval’s Identity)} \

If f,g9:7%,— C, then
I~
{fr9)= ];<f,g>-

In particular, the L? norm

I£l2 = jﬁﬂb.

Proof
By the definition of the inner product and Fourier transform, we have, after changing the
order of summation that

(F.oy="> fk)ak)

keZy
p—1 p—1
- Z f(t)e’Q’”'kt/pZ g(s)efQﬂ'ik:s/p
keZy t=0 5=0
p—1 p—1
_ Z f(t)ef%rikt/p Z g(s)e2ﬂiks/p
keZ, t=0 s=0
p—l -
_ Z 2 e —2mik(t—s)/p
t=0 s=0 keZy
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Now we see that

p—1 e
Z e—27rik(t—s)/p _ Z e—27‘rik(t—s)/p _ {p, t= S (44)

keZ, k=0 0, t#s.

Let us argue (4.4) this in the following two cases.
We are summing 1 in total p times, so the sum is p.

Write § = —27(t — s)/p # 0. Then by the geometric sum formula

p 10; 1— epez
Z € T
k=0 —¢€

However, since t — s is an integer we have that

6])91 _ 6—27r(t—5)z _ 1’

as the value of € at any integer multiple of 27 is 1. Thus

1— epOi

1 — et

as claimed in (4.4).

Using (4.4) we see that for any ¢ € Z, we have

p—1
Z g(S) Z e—27rzk(t—s)/p =p (t)
s=0

keZy
Hence
p—1 p—1 ‘ p—1 L
DL Y gls) Y e 2= — p N f(t)g(t) = pf. ),
t=0 s=0 keZp t=0
which gives the claim. O
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4.4 Convolution Theorem

The Convolution Theorem is a very basic identity but it is very powerful and enables us
to translate convolutions of probability distributions (which describes dynamics of a random
walk) into products of their Fourier transforms. Recall that the convolution of two functions

f,9:7Z, — C is defined by
frgt)= > [(tOs)g(s).

SELp

Theorem 4.15 (Convolution Theorem)}

If f,g9:7,— C, then

Proof
Firstly, we have the following invariance for summations: for every h : Z, — C and s € Z,, we
have

DAt = D htos). (4.5)

teZy teZy

This is just a reparametrisation: the map ¢ — t © s is a bijection Z, — Z, so we will count
each value in both sums in (6.1) exactly once.

Fix now k € Z,,. Then after changing the order of summation and using t = (t©s) @ s, we
have

Frglhy =37 f=glt)e >

teZy

= > (X flt@s)gls))e

tely  s€Lp

= 3 fres)g(s)e

tely SE€Lyp

= Z 2 f(t@s)g<8)6727rikt/p
SELp telyp

- Z Z f(t© s)g(s)e 2mik(tos)/po=2miks/p
SELp t€Lyp

- Z g(s)e2riks/p Z F(t O 5)e 2mik(t0)p
SELp teZyp

— Z g(s)e=2miks/p Z F(t)e2miktlp
SELp teZy

= f(k)g(k).

In the second last equality we applied (6.1) for h(t) = f(t)e 2"*/P t € Z,. -
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,—[Example 4. 16} \

Let (1) = p(—1) = 1/2 and u(t) = 0 for other ¢t € Z,. That is, p is the driving
distribution for the pass the broccoli process. Recall that

f(k) = cos(2mk/p).

Therefore by the convolution theorem

(k) = cos(2mk/p)>

4.5 Heisenberg Uncertainty Principle in Z,

We want to finish the harmonic analysis section by a fundamental consequence of the Plancherel’s
theorem that relates functions f : Z, — C to their Fourier transforms f : Z, — C. Using a
bit of terminology from quantum mechanics, if we take f : Z, — C with | f|2 = 1 (a “wave
function”), then the function py : Z, — [0, 1] defined by

pr(t) = 1fOF, tei,

is by definition a probability distribution: ., () = |f |2 = 1. In quantum physics one
thinks then the values pf(t) measuring the probability of finding a particle a position t € Z,
given the quantum state f of a particle. Now by Plancherel’s theorem, the Fourier transform
f also satisfies | fll2 = | fll2 = 1, so

pi(k) == |f(R)?, ke,

is also a probability distribution Z, — C where p (k) measures the probability of the particle
at quantum state f having velocity k € C.

Heisenberg Uncertainty Principle fundamentally limits what information we can say
about the position and velocity of a particle simultanously: essentially, it is impossible to
measure the position py and pp with equal accuracy. One can write this formally using
entropy in the following:

,—[Theorem 4.17 (Entropic Heisenberg Uncertainty Principle in Zp)} \

There exists C), > 0 such that if f:Z, — C and | f|2 = 1, then

H(ug) + H(pg) = Cp.

In other words, it is impossible for entropies of p; and p 7 be small simultaneously, which
would mean, using the heuristics of entropy being the expected amount of information, that
it is impossible to have very accurate information on the p; random position ¢ € Z, and the
pj random velocity k € Zj,.
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We do not prove entropic Heisenberg Uncertainty Principle here, and we leave it as an
exercise (find out e.g. what is the optimal C,7). Instead, we prove a weaker version, which is
slightly easier to prove, and that involves only the supports of py and p jor equivalently the
supports of f and f Recall that the support of f : Z, — C is given by spt(f) = {t € Z,
f(t) # 0}:

,—[Theorem 4.18 (Heisenberg Uncertainty Principle in Z, for supports)}—
Let f:7Z, — C with f # 0. Then

| spt(f)]|spt(f)] = p.

Thus if | f|2 = 1, then
| spt(pp)l| spt(pgp)l = p

Proof R
Define the indicator function of spt(f) by:

o)L k € spt(f)
Lo () = {0, k ¢ spt(f).

Fix t € Z,. Then by Fourier inversion:

Z f 27rik:t/p _ 1 Z ot ( )A< ) 2mikt/p

p keZyp p keZp

Applying Cauchy-Schwartz inequality to the functions

ki1 (k) and ke f(k)e2™/P

spt(f)

we obtain

. 2
= eQﬂzkt/p
spt

lceZp
<cs 5 2 L BIF X 1Ry
keZyp keZyp
1 ~
- Zg|spt(f)| > FR)P

k€Zp

_ plg\spumfu%

so taking max over all ¢ € Z, we obtain

1 ~ -
If1% < EISpt(f)H\fH%-
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By Plancherel theorem R
112 = plf12

and here the L? norm is, after summing over the support, bounded by

1£I5 = D3 1F &P = X 1F&)P < [spt(NHIIfI%

SEZp sespt(f)

so we have

1 ~
I£1% < 5’ spt(f)|1spt(F)IIf12

Thus as the support of f is non-empty, we know ||f|2 = max{|f(¢)| : ¢ € Z,} > 0 so we can
divide by it and obtain

~

| spt(f)[[spt(f)| = p

as claimed.

~

The case of yiy and pj follows since spt(f) = spt(uy) and spt(f) = spt(uy). O

Heisenberg Uncertainty Principle also has an inverse that relates to the algebraic structure
of the wave function f:

,—[Theorem 4.19 (Inverse the Heisenberg Uncertainty Principle in Z, for supports)jﬁ

If f:Z, — C with 0 € spt(f) satisfies the equality:

~

spt(f)]|spt(f)] = p,

then spt(f) is a subgroup of Z,.

Proof

Left as an exercise. O
Note that for prime p the only subgroups of Z, are {0} or Z,. Here Heisenberg Uncertainty

Principle for supports can be improved from products to sums by the work of T. Tao [13],

who proved:

,—[Theorem 4.20 (Improved Heisenberg Uncertainty Principle in Z,, for supports)]ﬁ

Suppose p is a prime number. Let f : Z, — C with f # 0. Then

~

|spt(f)] + |spt(f)] = p + 1.

Moreover, this inequality is sharp.

This result is useful as it can be used to give a short proof of the fundamental Cauchy-
Davenport inequality from additive combinatorics, we refer to [13] for details.

76



Chapter 5

Finding the mixing time

5.1 Distance to uniform and Fourier transform

This section is the culmination of all the ideas presented in the previous sections. Here we will
present the Upper Bound Lemma proved by Diaconis and Shashahani, which in the case of the
group Z, can be done simply with Fourier transforms. It allows one to estimate quantitatively
the rate of convergence of the convolution p*" to the uniform distribution in terms of the

Fourier coefficients of u, which may be easier to compute than the actual weights.

,—[Theorem 5.1 (“Upper Bound Lemma”)}

Let p : Z, — [0,1] be a probability distribution. Then for all n € N we have

(™", \) < D 1Ak

keZp\{0}

\

Proof
By Theorem 2.26 connecting total variation distance to L! distance, we have

2
N*n )\ (Z |Iu>x<n _ |> )
Since A(t) = 1/p for all t € Z,,, we have
p—1 2 p—1 2
(X1 = 201) =2 (X A0 =A@ -
t=0 t=0
Using the definition of the inner product for the functions

8= AD), and g(t) = [ () =MD te L,
and Cauchy-Schwartz Inequality (Theorem 4.13) we obtain

(S M@0 @ - x01) = 1Ko < 1319l
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The L? norms here are

I£I5= D A0 = Y % =

teZy teZy

and by definition of g¢:

lgl3 = > 1" (1) = At

telyp

Hence we have proved

Ad(p*, ) < p Y [ (8) = AP = plu™ = A3

teZy

By Plancherel’s Theorem (Theorem 4.14), we have that

~

p—1
pli™ = A3 = | = A3 = [ = X3 = D [ (k) = A(k) P
k=0
Recall that we already established that
~ 1, k=0
)\(k) — Y O’
0, k#0.
On the other hand, as p*" is a probability distribution, the Fourier transform

= > () =

teZ,

— ~ 0 k= 0;
# (k) — A(k) = { “— !
F (k) = A(k) {mwm, o

Hence the difference

Moreover, by the Convolution Theorem (Theorem 4.15) we have

Thus
2 ) = AERE= Y ()P
keZ,\{0}
Dividing by 4 and taking square roots from both sides gives the claim. O

There is also a converse to the the upper bound lemma, which we will leave as an exercise:

,—[Theorem 5.2 (“Lower Bound Lemma”)} \

Let pu: Z, — [0,1] be a probability distribution. Then for all n € N we have

d(u*", \) Z (k).
P rezpo)
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Proof
Exercise. L

There is also a generalisation of the Upper Bound Lemma for general sequence of measures:

r—[Theorem 5.3} \

Let g, pto, -+ : Z, — [0,1] be a sequence of probability distributions. Then for all
n € N we have

1 P
dlp s pin, A) < 5 2 [ swP.

keZp\{0} j=1

Proof
Exercise. L

The Upper Bound Lemma is a very useful lemma to also answer to our questions on the
growth of entropy for the random walks on Z,. It implies the following growth bound:

,—[Theorem 5.4 (Entropy growth under convolutions)} N

Let p: Z, — [0,1] be a probability distribution. Then

H(p*) =logp— (logp+1) | > [f(k)[>.
keZp\{0)

Proof
Pinsker’s inequality gives

1
—H\)| <d(p, A
T 0 — HO) < ()
so the claim follows from the Upper Bound Lemma as H(\) = logp. O]
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5.2 Spectral gap, ergodicity and mixing

Having the Upper Bound Lemma at our disposal, we can now apply it to prove ergodicity and
mixing (of exponential rate) of p assuming the Fourier coefficients ji(k), when k # 0, are all
strictly less than 1 in modulus. In this case u is said to have a spectral gap:

,—[Deﬁnition 5.5 (Spectral gap)} |

A probability distribution p on Z, has a spectral gap if
(k)| <1

for all k e Z,\{0}.

Notice that for £ = 0 we always have

A0) = 3 (e = 3 pt) = 1

telyp teZyp

as 4 is a probability distribution, and for other k, we have by the triangle inequality

AR < X (e ™7 = 3 u(t) = 1
teZy teZy

since || = 1 for all x € R.

Recall that by mixing with rate function ¢(n) — 0, as n — 00, we mean that

d(p™, A) < ¢(n)

for all n € N. We say that the mixing is exponential if for some constant C' > 0and 0 < 6 < 1
we have

é(n) < CO"

for all n € N. The Upper Bound Lemma implies that spectral gap is enough to prove expo-
nential mixing:

Theorem 5.6 (Spectral gap implies exponential mixing)}

If a probability distribution g on Z, has a spectral gap, then p is exponentially
mixing.

Proof
Set
6 — max{[i(k)] : k € Z,\{0}}.
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Since p has a spectral gap, then 0 < § < 1. By the Upper Bound Lemma (recall Theorem
5.1) we have for all n € N that

n 1 ~ 1 vp—1_,
d(p™,A) < B Z [a(k)[* < 5 Z 9> = TG :
keZp\{0} keZp\(0}

Thus, by setting

V=1

_ "
o(m) = V2.
we have that p is mixing with the rate ¢(n) and as 0 < 6 < 1 we know the rate is exponential
with C' = —”;—1. m

Notice that Theorem 5.6 in particular implies that p is ergodic if p has a spectral gap.
Using the lower bound lemma (recall Theorem 5.2) this can be made into a characterisation:

Theorem 5.7 (Spectral gap is equivalent to ergodicity)}

If a probability distribution ;2 on Z, has a spectral gap if and only if p is ergodic.

Proof

We just need to prove the direction that if u is ergodic, then p has a spectral gap, as the other
direction follows from Theorem 5.6. Assume on the contrary that p does not have a spectral
gap. Then we can find ¢ # 0 such that |(¢)| = 1. By the Lower Bound Lemma (Theorem
5.2) we have for all n € N that

11 1 A 1
am =2 ES ame = L Raep - S
2 \/p keZp\{0} 2Vp 2vPp

On the other hand, we assumed pu is ergodic, so by definition
d(p* ™, \) -0, n— o,
Thus we can find n € N such that

1
d(p*™, ) < ——.
A < 5
Contradiction. N

Let us now look at this result in a specific example of the “passing the broccoli process”,
which is driven by

1 1
= -0+ =0_1.
H 901 T 501
Now, depending on p, we will see that u typically has a spectral gap. Hence we should be able

to compute explicit estimates using the maximal Fourier coefficient of p (recall the proof of
Theorem 5.6.

Recall the Questions 1.8 from the introduction:
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,—[Questions 5.8} \

Q1. How many passes does it take for the broccoli to reach a given person?
Q2. How many passes does it take for the broccoli to reach every person?

Q3. How many passes do we need to take that the distribution of the broccoli is
“close to random™?

We can now answer to all of these questions using the following quantitative estimates
following from the Upper Bound Lemma and the definition of total variation distance. Here
it depends on the mixing time we set, that is, which ¢ we put for the mixing time. In any
case, if we set, say, ¢ = 1/100, then for n = Cp? we will have

1
using the following explicit estimate (which follows the same idea as Theorem 5.6 above by

exploiting the spectral gap of p).

r—[Theorem 5.9] N

Suppose p = 7 is odd and let
= 15 + 15
o= 9 1 9 —_1-

Then for all n > p? we have
4™, 3) < e

for a = 7%/2. Moreover, for any p > 7 and for any n € N we have a lower bound

d<,u*n7/\) > 1 efom/pzfﬁn/p4

2\p
with 3 = 74/11.

Proof

In Example 4.5 we computed the Fourier transforms:

i(k) = cos(2mk/p).

Hence by the Upper Bound Lemma (Theorem 5.1) we have

) 1 155
A A’ < - ), |cos(2mk/p)" = 1 D [ cos(2mk/p)|".
keZ,\{0} k=1

Note that as p is odd, the number (p — 1)/2 € Z. Reordering summation gives us (exercise!)

p—1 (p-1)/2
2 | cos(27k/p)|*™ = 2 Z | cos(mk/p)|*".
k=1 k=1
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Hence

1 (p—l)/Q
dpw <5 ), |eos(mh/p)*"
k=1
We know that if x € [0, 7/2], then
cosx < e "2

(again, an exercise, or using Taylor series of cosine around 0). This gives by the geometric
series formula

1 _
d(do = (*", N)? < B Z | cos(mk/p)|*"
k=1
< 1 P2 —n2k2n/p?
1 o0
< ,effr%/zo2 Z e (k2 =1)n/p”
2 k=1
1 o0
< 7677r2n/p2 Z 67371’21671/]02
2 k=1
— 16_7r Tb/p ;
2 1 e/

If we now assume n > p?, then we know that the coefficient

1

o(1 — esmni?) = L

Hence for these n we have

(o 1i*", )\)2 < o~ mn/p?
as claimed.

As for the lower bound, we can see that in the sum the main contribution comes from the
term ko = (p — 1)/2, that is, the term

f(ko) = cos(2mkq/p) = cos(m — w/p) = — cos(m/p).

Then, using the Lower Bound Lemma (Theorem 5.2), we obtain

d(u*",A)>;\/1 D IR 2 gyl = 5 cost/pl

P yezo\oy 2V p

When x < 1/2, then cos(z) > e /2= /11 (again exercise using approximation of cosine around
0), which gives the desired lower bound. [
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Chapter 6

Applying the ideas beyond Z,

6.1 Random walks on general finite groups G

As we have mentioned in the introduction, the methods presented in Z, are possible to gener-
alise into very general settings. However, due to the pleasant algebraic properties of Z, (such
as Abelian), complications will arise in particular in the “harmonic analysis” part, which we
will discuss in a later section.

We will define now the concepts of probability distributions and random walks on a general
finite group G. One could do this in an infinite topological groups (such as Lie groups) or
other more general settings but then one requires theory from those settings (such as Haar
measure), which we not assume the reader to necessary have.

From now on, we will assume G is some finite group, an example could be the symmetric
group S,, and its subgroups like the Rubik’s cube group R. We will think about G being a
multiplicative group in the notation in the sense that we write xy as the group operation
of x € Gand y € G. ilf v € G, we will write 27! € G as its inverse and let 1 € G be the
identity /neutral element, that is,

,—[Deﬁnition 6.1 (Probability distributions on G)} \

A function p : G — [0, 1] is a probability distribution if

D pe) =1,

zeG

The key examples of probability distributions on G are the uniform and singular distribu-
tions:
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,—[Deﬁnition 6.2 (Uniform and singular distributions)} \

The uniform distribution A on G is defined by

1

AMz) = @

The singular distribution J, at y € G is defined by

y U=,

o) = {O T # Y.

We can extend every probability distribution p: G — [0, 1] to all subsets A < G as we did
in Z,:

w(A) = 3 la).

zelG

Now, similarly to the case of Z,, we can define the total variation distance between two
probability distributions p,v : G — [0, 1] by

d(p, v) = max{|p(A) —v(A)]: A= G},

which can be proven to have a similar L' formula (exercise):

A, v) = 5 3 ) — ().

zeG

Next, we can also define convolutions in general finite groups

,—[Deﬁnition 6.3 (Convolutions on G’)} N

Let f,g : G — C be functions. Then the left convolution f =, g is defined by

frogla) =) fl@y)gy).

yeG

We could also define the right convolution f g g is then defined by

frrgl@) =), flay g(y).

yeG

Note that f *1 g is not necessarily the same as f *g g. If G is Abelian, then = = #p.
From now on, as in the case of Z,, we will concentrate on the definition of the right
convolution =i throughout the rest of the analysis and just simply write = = *pg.

\. J

If we are dealing with a non-Abelian group (like the symmetric group S,,), then to define
a random walk on .S, we need to choose a preference which convolution we use. Commonly
one uses left convolution in literature to model a walk.
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,—[Deﬁnition 6.4 (Iterated convolutions on G)} \

Let p : G — [0, 1] be a probability distribution. Then the n-iterated convolution
is defined by

*n #(n—1)

Pt = p * L,

for n > 1 with p* = 6;.

A random walk on G is defined by an i.i.d. sequence of G-valued random variables
x1, X3, ... with driving distribution g, that is,

P(x; = z) = p(z), Veed.

In particular then the “product”

5
[
8

5
S

S
m
Q

has distribution p*":
P(X, =z) =u*"(z), VYred.

,—[Example 6.5 (Gilbert-Shannon-Reeds riffle shuﬂ:le)} \

Take G = Ss2, the symmetric group of permutations of {0,1,...,51}. Say, we con-
sider the riffle shuffle model defined by Gilbert-Shannon-Reeds. We say that a per-
mutation o € S5, is a riffle shuffle if ¢ has exactly two rising sequences. A rising
sequence of a permutation o € S5y is a maximal set of consecutive values that oc-
cur in the correct relative order in ¢. Then it can be checked that the probability
distribution g : Sso — [0, 1] defined by Gilbert-Shannon-Reeds has the formula:

532792 o =e¢;
p(o) =< 2752 o is a riffle shuffle;

0, otherwise,

where e is the identity permutation. Then p*" models the state of random state of
the deck after n riffle shuffles.

\. J

,—[Example 6.6 (Random transpositions)} \

Recall that the random transposition is driven by the probability distribution p :
Sso — [0, 1] defined by

1 e
52 if g = e,
_ 2 . . o .
p(o) =3 =%, if 0 is a transposition
0, otherwise .
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Now, as in the case of Z,, we can talk about the dynamics of the random walk generated
by a probability distribution p : G — [0,1]. For this purpose, we can define ergodicity as in
Z,, by the convergence to uniform:

,—[Deﬁnition 6.7 (Ergodicity)} \

We say that a probability distribution p: G — [0, 1] is ergodic if

W (@) = Az), n— o,

for all a € G, where \(z) = 1/|G|, a € G, is the uniform distribution on G.

We can again characterise ergodicity using the subgroups of GG as follows (left as an exercise,
the proof is very similar to Z, version, but be careful as G may not be Abelian):

r—[Theorem 6.8] \

A probability distribution u is ergodic if and only if the support

spt(p) == {x e G : p(z) > 0}

is not contained in a coset of a proper subgroup of G.

The support assumption here rules out p being a Dirac mass at some y € GG, but also not
concentrated in a coset of a large subgroup. Then the question comes that if spt(u) is not
contained in a coset of a proper subgroup of GG, which means p is ergodic, then how fast does

" (x) > Mx), n— 0?
As in Z,, we can see that this is equivalent to the total variation distance converging to 0:
d(p*™;\) — 0

so we would like to know a rate of convergence and how many iterations it may take for
d(u*™, A) to become sufficiently small that the a € G' chosen according to p*" is close to being
very uncertain. For example, in the case of G = S55 and riffle shuffles, having d(p*", A) small
enough means the state of the deck of cards is very close to being very hard to predict.

The way to do this is to introduce harmonic analysis in the group G, but this goes beyond
the scope of this course, but in the final section we will attempt to do this. However, in some
cases, we can write some of the theory of harmonic analysis such as Z¢ and the torus Zg, which
we will do in the next sections.
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6.2 Random walks on the d-torus (Zg,(—B)

A case where we can establish bounds for mixing times without venturing into the represen-
tation theory is the d-torus Zz equipped with the natural sum of coordinates:

,—[Deﬁnition 6.9 (Discrete torus Zg)} \

Let d € N be a dimension and p € N. Write
Z8 = {(tr, .. ta)  ty € Zpj = 1,2, d}

Thus the elements of Zz are vectors with d entries from the group Z,. Equipping
Zg with the binary operation

tPs = (t1®51,...,td®sd),

where

tz(tl,...,td)eZZ and s=(sl,...,sd)eZZ

makes (ZZ,®) into an Abelian group (exercise!)

Visually Zg could be considered as a d dimensional discrete torus, see for example Figure
6.1.

| -

Figure 6.1: Discrete 2-torus Zg with some value p € N. The mod p on both coordinates mean
that we will identify 0 and p — 1 on each coordinate (set Z,) so topologically we could think
Z? as a subset of the 2-torus in R?.

For simplicity we will consider just the case Z4, that is, p = 2 but a similar analysis can
be carried over for general p > 2. The set Z4 could be regarded as a d-dimensional cube. The
case Z4 has also other motivation. It can be used to model the so called Ehrenfest’s urn model
from statistical mechanics:
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r—[Ehrenfest’s urn model} N

Suppose d balls are distributed in two “urns”. Then one of the balls is chosen uni-
formly randomly and moved to the other urn. This process is then repeated and we
would like to know what is the long-time asymptotic behaviour of this process?

We can solve Ehrenfest’s urn model problem by realising it as a random walk on the group
74 as follows. Enumerate all the balls from 1,2,...,d. Then we can define a vector

t = (tth?,,.,td)EZg

with entry ¢; = 1 if the j:th ball is in the right urn and ¢; = 0 if the j:th ball is the left
urn. Then if we move a ball from one urn to the other, this can be described as a uniformly
random choice of first a ball j € {1,2,...,d} (i.e. a coordinate of t) and then swapping t; to
the opposite (e.g. if ¢; = 0 it is changed to 1 and vice versa). This gives us a random t’ € Z3,
which gives a new order of the balls.

To get into the language we have used in this course, we will use the “standard basis
vectors” e/, j = 1,2,...,d, to model this process. Here €’ is the j:th coordinate vector in Z$
defined by ei = 1 only when j = k and 0 elsewhere. The link to above is that when starting
from some configuration of d-balls in left and right urns, that is, we have some t € Zg, then
the vector t @ e’ gives a new vector in Zz where the j:th coordinate has changed from either
0OtolorltoO.

Thus by defining a probability distribution u : Z¢ — [0, 1] for all t = (¢,...,t4) € Z3 by

d
0, otherwise.

L if t = e/ for some 1 < j < d;
pu(t) =
We can model the first step of the random choice by considering the convolution
Mo* 5t~

By computing this at s € Z¢, we see that

s 5i(s) = p(s o).

Thus
f1 % 0g(s) = 0
if t is not obtained from s by adding one of the coordinate vectors e/ and otherwise
1
1% 0¢(s) = d

Thus p = 0y tells the distribution of the d-balls after the first move. Iterating this we see that
w0y tells us the distribution of the d-balls in the two urns after n iterations.

We can use the similar ideas as we did in the case of Z,, to prove the following quantitative
rate of mixing for the Ehrenfest Urn model, which is effective when we choose a specific ¢ > 0:
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r—[Theorem 6.10} \

For the Ehrenfest urn model probability distribution p in Z¢ defined above, we have
for all ¢ > 0 and n > d(logd + ¢)/4 that

d(:“'*n * 6‘67 )‘) <

Sl

for all initial configurations of d-balls t € Z3.

We will now sketch the idea of the proof. First of all, we need to define harmonic analysis
on Z4. Here we can define Fourier transform using the following definition

r—[Deﬁnition 6.11 (Fourier transform in Zg)} \

The Fourier transform of f: Z4 — C at k € Z is defined by

flk) = D7 FO) (=)<,

d
teZs

where k - t is the dot product

k-t=Fkt+ -+ kgtg.

This definition of Fourier transform has the same theory as the one in Z,, in particular,
all the L? theory (Plancherel’s theorem) and convolution theorem. Then the same strategy as
we did in Z, can be used to prove the following Upper Bound Lemma:

,—[Theorem 6.12 (Upper bound lemma)} \

Let p1: Z3 — [0, 1] be a probability distribution. Then for all n € N we have

*T 1 -~
N <5 [ D At
keZ4\{0}

Proof
Exercise. L

Thus to understand how fast u*" converges to uniform, we need to just understand the

Fourier coefficients ji(k). In the case of the Ehrenfest Urn Model this is not hard to see:
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r—[Lemma 6.13} \

Consider the probability distribution 1 on Zg defined by

FE

L ift = e’ for some 1 < j < d;
pu(t) = .
0, otherwise.

Then N
ﬁ(k):l—g-ﬁ{léjéd:kal}.
Proof
Write
wk)=8{1<j<d:k; =1}
Then
alle) = D7 p(t)(=1)**
tezZd
1 j
= g LD
d
S
1 L
= — -1) + 1
d<k]-z—:1( ) ka—zo )
= (w9 + (@ w(k))
1= 2w
as claimed. n

Using Lemma 6.13 with the Upper Bound Lemma (Theorem 6.12) we obtain for the Ehren-
fest Urn model probability distribution p the following bound:

(™", \)? < ii (j) (1 - de)%.

J=1

Now a calculation shows that if ¢ > 0 and n > d(logd + ¢)/4, then

() 0-2)" <),

This completes the proof of Theorem 6.10. Note that here we only take p*"* and not p*" = d,
but in terms of total variation distance the distance to uniform remains unchanged.
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N

6.3 Dual group G and Fourier transform in GG

Let us now go back to the card shuffling questions. In order thus to continue here, we would
need to define “harmonic analysis” in the symmetric group Sis.
harmonic analysis by an abstract notion of representation theory of the symmetric group.
Here the basic idea is to use the symmetries within the group to form (unitary) representations
we can use to decompose functions f: G — R as we did in the Harmonic analysis section for

Z,. We refer to the book by Diaconis [4] for more details.

,—[Deﬁnition 6.14 (Representations and subrepresentations)}

Here we need to replace

(1)

A representation of a finite group G is a map
P G - GL<VP)7
which assigns to each z € G an invertible linear map p(z) : V, — V, such that

p(ry) = p(x)p(y), z,y€G.

Here V), is some finite dimensional complex vector space depending on p with an
inner product (V, is formed with complex scalars C) of dimension dimV, € N
(known as the dimension of the representation p) and GL(V}) is the set of all
invertible linear maps L : V, — V, (e.g. if V, = C%, then GL(C?) is the set of
invertible complex d x d matrices and d = dim V/,.).

An unitary representation of a finite group G is a representation p : G —
GL(V,) such that each p(z) is a unitary matrix, that is, the inverse p(z)~!
equals to the adjoint: p(x)~! = p(x)*, recall that the adjoint A* of A is
defined by (A*v,w)y, = (v, Aw)y, for all v,w € V,. Writing U(V,) as the set
of all unitary matrices of V,, we have that a representation p is unitary if and
only if p maps G to U(V,), that is, p: G — U(V}). It is possible to change the
inner product of V, such that p becomes unitary in V), so in general one could
assume all representations are unitary.

If p: G — U(V,) is a unitary representation and W is a subspace of V,, which
is p-invariant, that is, W is invariant under all the linear maps p(x), x € G:

p(x)W < W,

then the restriction p|y : G — U(W) is a called a subrepresentation

An important example of a representation is the trivial representation:
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,—[Deﬁnition 6.15 (Trivial representations)} N

Given any finite dimensional complex vector space with an inner product V', then
the associated trivial representation idy : G — U(V) is the map that acts as an
identity:

idy (z)v =wv

for all x € G and v € V. That is, idy (z) is the identity matrix of V for all z € G.

Moreover, other important examples come from the irreducible representations:

,—[Deﬁnition 6.16 (Irreducible representations)} \

A representation p : G — U(V,) is irreducible if the only invariant subspace for
p(z) is either {0} or the whole space V,, that is, if W is a subspace of V, and

px)(W) = {p(x)w:we W} < W,

then W = {0} or W =V,.

An important concept to analyse representations is to study whether they are isomorphic
or not.

,—[Deﬁnition 6.17 (Morphisms and isomorphisms)} \

Given two representations p; : G — U(V,,) and py : G — U(V,,), then a linear map
¢V, —V,, is called morphism if

¢ o pi(x) = pa(z) 0 ¢

for all x € G. We say that p; and p, are isomorphic if there exists a morphism
p:V, — V,, such that p~! is invertible and is also a morphism ¢~ : V,, — V.

Now Schur’s lemma gives us a powerful way to understand the structure of irreducible
representations that are isomorphic:
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,—[Lemma 6.18 (Schur’s lemma)} N

(1) Let p; : G — GL(V}) and py : G — GL(V3) be irreducible representations of a
finite group G and a morphism ¢ : V; — V5. If p; and p, are not isomorphic,
then ¢(v) =0 for all v e 1].

(2) Let p: G — GL(V,) be an irreducible representation of a finite group G and a
morphism ¢ : V, — V. Then
O =kpl

for some constant k.

Proof

The proof of (1) is similar to (2). For the proof of (2), write V' = V. Let A € C be an eigenvalue
of ¢, that is, there is non-zero vy € V' such that ¢vy = Avg. Write E\ = {v € V : ¢pv = \v} the
eigenspace associated to A. Then as ¢ : V' — V is a morphism we have for all v € E that

(¢ — Np(a)v = (¢p(a) — Ap(a))v = (p(a)d — Ap(a))v = p(a)(¢ — A)v = 0.

Thus FE) is invariant ¢(a):

p(9)Ex < Ej.
Since vy € E), is non-zero, we know that E) # {0}. Hence, as ¢ is irreducible, we must have
E\ = V. The only way this can happen when ¢ = AI. This completes the proof. O]

The reason we talk about representations in the context of random walks on groups is that
they give us the building blocks for Fourier analysis. First let us define the notion of dual
group that acts out analogue of the frequencies k € Z, we define the Fourier transform in Z,.
Note that it is not in general a group, but it can be proved to be a finite set as we see later.

F{Deﬁnition 6.19 (Dual group CA?)} \

The dual group of G, denoted by CAT*, indexes all the irreducible unitary represen-
tations of G up to an isomorphism. In other words, for any £ € GG, there exists an
irreducible representation pe : G — U(V,,) and every irreducible representation of G

is isomorphic to one and only one pe. In other words G is the set of all equivalence
classes of irreducible unitary representation with the equivalence relation given by
the isomorphism. Furthermore, we define 1 € GG to correspond to the class of trivial
representations of G up to an isomorphism.

when £ € G.

From now on we write Ve =V,
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,—[Deﬁnition 6.20 (Fourier transforms with respect to a representation)]—

The Fourier transform of f: G — C at £ € G is

F(&) =D F@)pela).

zeG

At trivial representations we can always compute the Fourier transforms of probability
distributions.

,—[Example 6.21} N

Let o : G — [0, 1] be a probability distribution, then

for the identity map of Vi: I1v = v for all v e V.
Proof: Indeed, as pi(x)v = v for all v € V; and = € G, we have that py(z) = I is
the identity map of V7, identified with I;, so we have

A1) = Y u(@)p(x) = ) p@)h = L.

zeG zeG

In the case G = Z,, compare this to the identity ;2(0) = 1.

Moreover, for the uniform distribution, we have:
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,—[Example 6.22}

Let A : G — [0, 1] be the uniform distribution A(z) = 1/|G| we have for all £ € G

that
N ]17 é-: ]-7
A(E) - {O, o

where 0 is the zero-representation: 0(z) = 0 the zero matrix for all z € G.

Proof: The case { = 1 was done in the previous example. Suppose { # 1 so pg
is non-trivial irreducible representation. In particular there exists xy € G such that
pe(zo) # I¢, the identity matrix of V. By computing now the Fourier transform, we

see
Z A(z)pe( 2 pe(a

zeG mEG
Define now the set

W= ) pe(@)Ve = (D) pela)v v e Vi)
zeG zeG

Then W < V since every pe(x)v € Ve for all v € Ve and V is a vector space. Moreover,
for since pg : G — U(V) is a homomorphism any z,y € G, as the map = — yz is a
bijection, we have

y) Z pg(x)v = Z ,Og(yx)v = Z pﬁ(x)y e W.

zeCG zeCG zeCG
Thus W is p¢ invariant. Hence W = {0} or W = V. We now have two cases:

(1) If W = {0}, we are done as then ), ., pe(x) = 0, the zero representation, so
A(E) = 0.

(2) If W = V, we will have a contradiction with pg(z9) # I¢. Indeed, when
W =V, this means that ) _. pe(x) is invertible. This is impossible since by
the bijectivity of 2 — 2 we have

Dpelw) = > pelwo)pelg ') = pe(o) Y pel)

zeG zeG zeG
which, after taking inverses of ) . pe(z) from the right gives
I = pe(zo)le,

so pe(xg) = I, a contradiction.
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,—[Example 6.23 (Relation to harmonic analysis in Zp)} \

Representation theory and Fourier transforms with respect to representations extend
naturally the case of Z,.

(1) The dual group Z; can be identified with Z,. Indeed, every unitary represen-
tation of Z, is isomorphic to the unitary representation:

pk(t) — 67271’7:]’6‘25/1)7 tE Zp’

for each k € Z,. Then we can identify e 2™*/? € C as a 1 x 1 matrix in C, that

is,
e~ 2miktP — (¢72mkP) a5 a matrix on C.

Then the action on the elements z € C in the vector space C are defined

naturally by
<6727rikt/p)Z _ 6727rikt/pz eC

so pi(t) is a rotation in C with angle = —27kt/p so each pg(t) is an invertible
1 x 1 matrix in C. Thus pi(t) € U(C) with dimension of the representation
d,, =1 for all k € Z, as the dimension of the vector space V' = C is 1 when
thinking C as the scalars.

(2) We see that py : Z, — U(C) is a homomorphism: if ¢, s € Z,, then for all z € C
we have:

pkz(t D S)Z _ e—27rik(t®s)/p _ e—Qﬂikt/p6—27riks/pZ _ Pk(t)Pk(S)Z

(3) Finally we see that every py is irreducible as the only subspaces of C are the
trivial ones {0} and C. Hence the definition of the Fourier transform on Z,,
after identifying C scalars by 1 x 1 matrices in C, that for any k € Z, we have

flk) = Z ft)pr(t) = Z F(£)e2mikt/p

teZy teLyp

Then Fourier transform on G obeys a convolution theorem. Here, recall, we use always the
right-convolution = = =g.

,—[Theorem 6.24 (Convolution theorem)} \

Forallf:GHCandgeé,wehave

Proof

Firstly, we have the following invariance for summations: for every h: G — C and b e G we
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have
D h(x) =) hzy™h). (6.1)
zeG zeG
This is just a reparametrisation: the map z ~— zy*
each value in both sums in (6.1) exactly once.

is a bijection G — G so we will count

Fix ¢ € G and thus an irreducible representation pe : G — U(Vg). Then after changing the
order of summation and using = = zy~ 'z, we have after abbreviating p = pg:

=Y. frgl@)p()

zeG

=2 ( )y f(fcy_l)g(y))p(x)

zeG  yeG

= > flay Hgw)e(x)

zeG yeG

= > flay Hgy)e(x)

yeG zeG

=3 Flayg(y)p(ay)p(y)

yeG zeG

= > g( (Z 1))p(y)
o) (21

yeG
yeG

eG
zeG
= 9 f(p)o(y)

yeG

= J©) > 9wp(y)

yeG

= f(©)a(¢).

In the second last equality we applied (6.1) for h(z) = f(z)p(z), x € G. O
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6.4 L? theory in G and the Upper Bound Lemma

Now the plan is to do L? theory in the group G using the Fourier transform in G, and then
prove the Upper Bound Lemma. For this purpose, write L?*(G) as the space of all functions
G — C, that is,

IXG) = {f: G~ T},

which is a vector space with the operation (f + g)(z) = f(z) + g(z), * € G, f,g € L*(G).
Then L?(G) can be equipped with an inner product as we did in Z, using the definition

,—[Deﬁnition 6.25 (Inner product in LQ(G))} \

The inner product of f, g€ L?(G) is defined by

(fr =), fla)g(x).

zelG

Then the L? norm of a single f : G — C by

[£ll2 == A/ <f5 1)

We now see that every f € L*(G) can be written as the finite linear combination of Dirac
masses f = Y, . f(x)d, and the finite set {J, : # € G} form an orthonormal basis for L*(G):

L, ==y
0, x=+#uy.

<5xa 5y> = {

Thus L?(G) is a finite dimensional complex vector space with the inner product given by ¢, -)
above with orthonormal basis {0, : = € G}.

A~

Let L(Vg) be the set of all linear maps V; — V. Denote L?*(G) as the space of all functions
from the dual group G to the union (.4 L(Ve):

L2(G) = {F Yy L(vg)}.

fe@

Thus in particular the Fourier transform f e LQ(@). Then we can equip L2(CA?) with the
Hilbert-Schmidt inner product as follows. Recall from linear algebra that here for a
linear map A : Vi — Vg, the map A* : Ve — V is the adjoint of A satisfying

<A*U7w>V5 = <’U, Aw>V§7 v,we V%

for the inner product -, )y, in V. Moreover, if {ey, ..., €qim(v;)} if an orthonormal basis of V¢,
then the trace of A : V, — V¢ is given by

dim(V)
‘TI'VE (A) = Z <A€j, €j>\/£,

j=1

which is independent of the choice of the orthonormal basis.
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r—[Deﬁnition 6.26 (Hilbert-Schmidt inner product in Lz(@))} \

For F,G e LQ(@), define

(F,Gus = ) dim(Ve)(F(€), G(€)msee.

ge@
where (-, -)ug¢ is given by the trace:
<A, B>HS,§ = T‘I'Vg (AB*)

whenever A, B € L(V).

Then the Hilbert-Schmidt norm of a single F' € L*(G) by

|Fms := A/<F, F)us

and we also write for fixed £ € G that

IF(©)lnse = 2/ CF(E), F(E)mse = A/ Trv (FEF(E)*)

SO

|Flis = D, dim(Ve) | F () s e
geé

We define the inner product in this way as now we indeed have the Plancherel’s theorem:

,—[Theorem 6.27 (Plancherel’s theorem)} \

Let f,g: G — C. Then
1 -~
<f7 g> = 7<f>/g\>HSa
|G|
In the case f = g, this gives

L

I£1l2 =

To eventually prove Plancherel’s theorem, we need an analogue of the geometric summation
formula

D ok 1 ez@p
Z e = 1 i0
k=0 -

that we used extensively in the Z, case. The analogue of this for general groups comes from
representings a very large representation of GG, called regular representation, and then we can
see any irreducible representation of GG will be isomorphic to a subrepresentation of the regular
representation. Then taking traces of both side of this expression, gives us a formula involving
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so called characters of the group GG, which we will call the trace lemma below, that will be the
analogue of the geometric summation formula.

To make this all precise, we will now define the regular representation and define character
theory needed to make this precise. Recall that L?(G) is a complex finite dimensional vector
space with an inner product ;) defined earlier. A natural representation pg : G — U(L*(G))
is given by the regular representation:

,—[Deﬁnition 6.28 (Regular representation)} \

The map pg : G — U(L*(G)) defined by

pa(x)fly) = f(z™y), yeG, fel*G)

is called the regular representation of G.

Now, our aim is to formally decompose pg into a direct sum over the irreducible repre-
sentations, and then take traces of this, and for this purpose we will define the direct sum of
representations first.

,—[Deﬁnition 6.29 (Direct sum of representations)} \

If py : G > U(V,,) and p, : G — U(V,,) are representations, then we can define their
direct sum as p; @ p, : G - U(V,, @V,,) formally as

P1 @p2($)(vl77}2) = (pl(l')’ljl,p2<l')1)2), T e G7 (UDUQ) € ‘/Pl S ‘/027

where V, ®V,, =V, xV,, is the direct sum of the vector spaces equipped with the
operation (vy,vs) + (v, v4) = (v1 + v}, v2 + vh) for vy, v] € Vi and vq, v} € V. Then
in particular the trace

Try, ev,, (01 ® pa(z)) = Try, (p1(x)) + Try,, (p2(2)). (6.2)

If we now have a direct sum p; @ - - - @ pg such that each pq, ..., Py are isomorphic to each
other, that is, they all belong to the same equivalence class { € G, then we write dpg =
p1 @D - D pg. Now the reason we introduced this notation is that we will now justify why

pe =P dim(Ve)pe, z€eG. (6.3)
ge@

In other words, L?(G) splits into a direct sum of the spaces V¢, £ € V;, each counted dim(V%)
times. To justify why this is true, we need to introduce character theory.
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,—[Deﬁnition 6.30 (Characters)} .

Given an irreducible representation p¢, the corresponding character is the mapping
Xe : G — C, defined by

Xe(g) == Try (pe(g)), g9€G.

Characters are examples of class functions, that is, constant along the so called conju-
gacy classes

Clg) = (h'gh:heG)

of the group G, which form a partition of GG in terms of the equivalence relation z ~ y if and
only if x = h=tyh for some h € G-

Lemma 6.31]

Let C(g) be a conjugacy class in G for some g € G. Then x¢(z) = xego for all
ze C(g).

Proof
indeed, if h € G, then as trace always satisfies Try, (AB) = Try, (BA) for any two linear maps
A, B, we have by the homomorphism property of p¢ that

Xe(h™'gh) = Try, (pe(h) ™ pe(g)pe(h)) = Trv, (pe(9)pe(h) " pe(h)) = xe(9)-

]

Also, an important property of characters are that there are exactly the same number of
them as the number of conjugacy classes:

Lemma 6.32}

The cardinality of G is the same as the number of conjugacy classes in G.

Proof
We leave this as an exercise, but it is done in e.g. [7, Proposition 2.30]. O]

Lemmas 6.31 and 6.32 together give rise to the notion of character tables, two dimen-
sional tables of the (constant) values x¢(g) on each conjugacy class, where on rows we list each
irreducible representation pg, § € (A}, and on the columns we have chosen a single conjugacy
class representative g € G.

Characters satisfy an important orthogonality relation that follows from Schur’s lemma
(Lemma 6.18):
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,—[Lemma 6.33 (Schur orthogonality relations)} \
We have
‘G‘a 1f€ =15
e Xm) = 2, Xe(9)xn(9) = .
! gEZG ! 0, if&#n.
Proof

First of all, if (e;) and (€;) be orthonormal bases of V¢ and V|, respectively, then by the

definition of trace
Xe> Xn) = 22 2<P£(9)€z‘, eipvelPn(9)€j, €)v,-
i J geG
Let us prove that this equals to 0 if £ # n and if £ = 7, it is equal to

dim(Vg) dim (V¢

)
G -
%3 iy e = el

First of all, if f : Ve x V,, — C is sesquilinear, that is, linear on the first coordinate and
conjugate linear in the second, then there exists a linear map ¢ : Ve — V,, such that f(v,w) =
(¢(v), w)y,. Indeed, by sesquilinearity f(v,w) = f(X,; vie;, 25;w;€;) = >5;(D; f(ei, €;)vi)w; =
(¢p(v), w)y, with the matrix ¢ = (f(e;,€;))i;. Fix now vy € Ve and wo € V;; and define

f(vo, wo, v, w) Z<P£ v UO>V5<P77( Jw, w0>vn
geG

Now, (v, w) — f(vo, wo, v, w) is sesquilinear, so we can find a linear ¢y, ., : Ve — V;, such that
f (v, wo, v, w) = { Py, (V), w)y, for all v and w. Moreover, by the definition of f(vo, wo, v, w)
we see that ¢ is a morphism of representations: ¢p¢(g) = p,(g)¢ for all g € G. Thus by Schur’s
lemma (Lemma 6.18) there exists g(vg, wp) € C such that

4 _ ) 9lvo, wo)lv,, if & = n;
o0, if € #n.

Thus this completes the proof if n # & since we can use this for v = vy = ¢; and w = wy = W;.

Now if n = € and v, w € V¢ are fixed, the map (vo, wp) — f(vo, wo, v, w) from Ve x Ve — C
also is also sesquilinear. This then implies that the map g : Ve x Ve, — C is sesquilinear. Thus,
by Schur’s lemma, we can find a constant x € C such that

9(vo, wo) = kv, w0>vg-

Since pg(x) is unitary, we have

dim(V)

D1 Kpe(@)er, e =1

i=1

so by the earlier formula applied with v = e, vy = ¢;, w = €1, wy = e; we have

dim(Vg) dim(Vg)
G| = Z Z<P£(9)€17€i>%<p§(9)€1>€i>vn = Z /€<€i,€i>vg<€1,€1>v§ = rdim(V¢)
i=1 zeG i=1
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by the orthonormality of (e;). Thus k = |G|/ dim(V¢). Now, as
(Xes Xe) = ZZ Z<p£(9)€i, €i>V5<P£(9)€j, €j>V5 = ZZ rei, €j>Vg<eia €j>Vg
i j geG i g
the proof is complete. O

Finally, we need the following decomposition lemma that allows us to split any represen-
tation (e.g. the regular one pg) into direct sum of its subrepresentations. This will be crucial
for proving (6.3) later.

Lemma 6.34}

Let p: G — GL(V) be a representation and W < V' a p-invariant subspace. Then
There exists p-invariant U < V with W n U = {0} such that V =W @ U.

Proof
We can always choose a vector space W/ <V such that V =W @W'. Let #/ : W@ W' — W
be the projection n’'(w @ w') = w, for w e W and w' € W’. For v = w @ w' € V, define

Since W is p invariant and Im(7') ¢ W, we see that Im(w) < W and the restriction to W
satisfies: 7|lw = Iw = 7’|w. Thus 7 : V — W is a projection. Writing U = Ker(r) = {veV :
m(v) = 0} we see that V' = W @ U but also that U is p invariant. Indeed, if 7(v) = 0, then at
any h € GG, as the map g — hg is a bijection and p a homomorphism we see that

0=p(h Z plgh™thv) = Z (hg)™ (p((hg)*hv) = 7 (p(h)v).

]

We can then use Schur’s lemma to establish the following, which is the analogue of the
geometric summation formula in Z, which was the cornerstone for many of the proofs.

,—[Lemma 6.35 (Trace lemma)} \

Let x € G. Then

Zdlm Ve)xe(z) =

£EG

deG dlm(%) - |G|7 lfl' = 1;
0, if v # 1.

\ J

Proof
By definition of the trace and as the pg(1) action on the orthonormal basis of L?(G) is identity:
pc(1)6, = o, for all y € G, we have

Tri2c Z<PG 75y> = 2<5y75y> = |G]|.

yeG yeG
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Moreover, when = # 1, we have pg(2)d, = 4y, S0 as zy # y, we have by the orthonormality
{pa(x)dy, d,) = 0 proving the trace

TI‘LQ(G)pg<JZ> = 0.

Now, we can conclude the claim if we can verify for all x € G that

Trr2cypa( Z dim(Ve) Try, pe(z). (6.4)
§eG
Now this follows if we can argue that pg is isomorphic to

@ dim(Ve) pe

56@

Notice that we can identify L?(G) as the vector space C¢ and for any irreducible representation
pe of G, the space V; as a dim(V;) dimensional subspace of C/¢l. Thus by iterating Lemma
6.34 until we reach irreducible representations Vg, we see that pg is isomorphic to

P mepe

56@

for some mg = 0. We now just need to verify m, = dim(Vg). Indeed, by the definition of trace

dim (1) = Fm() = Xe(D) = 15 3, Tasieypole) D)
zeG
since
|CTY|7Q7 =1
T =
ti2e)pa(e) {O,x 21,

Now, as p¢ is isomorphic to @5eé mepe, we have

1
‘G‘ Z Trye G),OG( Z Z My X (2 (1) = Zmn@@(m Xe) = M
zeCG zeG’neG n

by Lemma 6.33, so we are done. O]

We can now first establish the inverse Fourier transform that we will also use in the
proof of Plancherel’s theorem:

,—[Theorem 6.36 (Inverse Fourier transform)} \

Given F' € LQ(@), the inverse Fourier transform fVV’(x) of F' at x € G is given by

~

Fla) = ,Zdlm Vo) Tryg (pela™ ) F(€)).

EeG

Then f = f forall f: G — C.
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Proof
Fix x € G. We need to verify

~

§eG

Any function f : G — C can be written as f = > ., f(y)d,, so by linearity it is enough to
verify the above for just f = ¢, for some y € G. We have 5;(5) = pe(y) so the right-hand side
with f = 0, equals as pe(z7")pe(y) = pe(2~y) that

mgmwmw<mw mgmmm%@m

which, by Lemma 6.35 equals to d,(x) as claimed. O
We can now prove Plancherel’s theorem in G:

Proof
(Proof of Plancherel’s Theorem) We want to prove

3 fla)e(@) ||2mmwﬁm%mww

zeG
Define the involution map ¢g* : G — C by
g*(z) == g(z™"), zed

where Z denotes the modulus of a complex number. Then by the definition of convolution of
f and g*, we have

1) =2, fe g (@) = 3, fla g™ = ) fle)g(x)
zeG zeG zeG

1

as the map x — x~! is a bijection (every element in G has a unique inverse).

On the other hand, using the inverse Fourier transform to the map f = ¢g* at 1, we have

- 3 dim (V) T (e (1) T+ 47(6)) = ,qz$m%ﬁMf g7(9)).

¢eG ceG

**1
fxg*(1) ~ G

Then note that for all £ € G we have the following relation:

Thus by the convolution theorem we have

~ ~

Trv(f = g*(€)) = Trve (F(€)g*(9) = Trv (F(©)3(€)")

which gives the claim. O

Now we are ready to prove the Upper Bound Lemma by Diaconis and Shashahani for
general finite groups G:
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,—[Theorem 6.37 (Upper Bound Lemma for G)W \

J
For any probability distribution p: G — [0,1] and n € N:

1
d(u*", \) 5 Zdlm Ve)| (e nH2HS,§‘
.feG
41

Proof
We follow the same general steps as the proof of the Upper Bound Lemma (Theorem 5.1)

(1)

(2)

Use the L' identity for the total variation distance and Cauchy-Schwartz inequality to
obtain the inequality:
4d(p™, A)* < |G| = A3

Now using the Fourier transform formula, we obtain

éeG

At the trivial representation p;, as p*" is a probability distribution, we have

e~

M*n(l) = I,

where [ is the identity matrix of Vi. Recall that for the uniform distribution \(x) =
1/|G| we have for all £ € G that

N I ) 6 = 17

M@—{l

0, &#1,

where 0 is the zero-representation: 0(x) = 0 the zero matrix for all x € G. Hence we
have by the convolution theorem

D dim(Ve) [ (€) — ME) s = D dim(Ve) ()" B
&G €<

which gives the claim.

]

Finally to understand the ergodicity and mixing of a random walk (X,,) driven by u in
G, we need again need to talk about the notion of spectral gap for u. In our context this
means that we need to analyse what are the dimensions of the irreducible representations and
how close the Hilbert-Schmidt norm |1(€)||luse, € # 1, is to 1 = |7i(1)|ns,1 that corresponds to
the the trivial representation. This is where understanding the character table of the group in
question becomes crucial, which will open the door on bounding the Fourier transform of p,
and thus d(p*", \). Let us demonstrate in the following sections we will see how this is done
more precisely in the cases of dice rolling and random transposition shuffles mentioned in the
beginning of the course.
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6.5 Representation theory of symmetric groups.

As the next applications to dice rolling and card shuffling need us to find the character tables
for symmetric groups (in dice rolling it is Sy and for card shuffling Ss5). Let us now give an
introduction to the representation theory of symmetric groups S, that allow us to then bound
the characters in the upper bound lemma.

First, we consider two important irreducible one-dimensional representations of S,,:

(1) trivial representation
pe,(0) = idy, (0),0 € Sy,
where dim V,, = 1.
(2) sign representation:
pe,(0) = sgn(o)idy, (0),0 € 5,
where sgn(o) is the sign of the permutation o, that is, +1 if o even and —1 if ¢ is odd.

Recall that a permutation is even, if there are even number of inversions for o, i.e. pairs
i < j such that o(j) > o(i).

Up to isomorphisms, these turn out to be the only irreducible representations of S,,;:

Lemma 6.38 (Classification of dimension 1 irreducible representations of .S,,)

Let n > 2. Then all one dimensional irreducible representations of S,, are isomorphic
to either the trivial representation or the sign representation.

Proof

If p is a one-dimensional representation of S, then the transposition 7 = (1,2) (i.e. 7(1) =2
and 7(2) = 1) must satisfy p(7) = 1 or p(7) = —1 since 72 = e. On the other hand, any other
transposition 7 = (i, j) satisfies (1,4)(2,7)(1,2)(2,4)(1,4) = (4,4) so 7" can be conjugated to
7. Thus p(7') = p(7), which means p maps every transposition to a fixed number, either
1 or —1. Now the trivial representation pe, maps all transpositions to 1 and sgn to —1 as
a transposition always contains one inversion. The trivial and sign representations are not
isomorphic as they are distinct and the only way to conjugate them is by 1 x 1 matrix that is
trivial. [

Case S3. Let us now write down the character table for S3. First of all, we know that S3 has
three conjugacy classes given explicitly by the collection {{e}, {(12), (13),(23)}, {(123), (132)}}
so there are exactly three non-isomorphic irreducible representations and the dual group is
S3 = {&1,&2,&3}. By Lemma 6.38, we have two different one dimensional irreducible represen-
tations given by the trivial one and

(1) trivial irreducible representation:

Pe (U) = idVgl (0)7 o€ 5’47

where we have dim(Vg,) = 1 due to irreducibility. Thus
Xa(€) = 1,x&((12)) = 1,x6 ((123)) = 1
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(2) sign irreducible representation:
pe,(0) = sgn(o)idy, (0),0 € Sy.

Thus, Vg, = Vg, dim(Vg,) = 1, and
Xe:(€) = 1 Xe,((12)) = =1, xe,((123)) = 1

Finally, the third one is given by the following two dimensional representation:

(3) standard representation: pe,(0)(x1,%2,23) = (Zo-1(1), Zo-1(2); Zo-1(3)) Mapping Sz —
Vg i={(21, 22, 23) € C* : 21 + 25 + 23 = 0}. Then dim(Vg,) = 2 and pg, is irreducible and using
the definition of pg, we can work out

szs(e) = 2>X£3((12)) = —1,X§3((123)) =0

Thus we have worked out the character table and dimensions of irreducible representations

for Ss.

Case S4. Let us now write down the character table for S; and the dimensions of the
irreducible representations. This goes slightly beyond the scope of the course and is thus not
examinable.

First of all, it turns out that there are exactly 5 disjoint conjugacy classes: determined
whether the permutation is an identity, transposition, product of two disjoint transpositions,
cycle of length 3 or a cycle of length 4 of 54, and we can list the classes C(0;) by the elements:

o1 =e,00 = (12),03 = (12)(34), 04 = (123), 05 = (1234),

and the cardinalities of each of these classes are 1,6, 3, 8,6 respectively which add to 24, the
cardinality of S;. Recall that the number of irreducible representations will be the same as
the number of conjugacy classes, so we can list the dual group Sy = {&1,...,&5}.

What are these 5 irreducible representations p¢; corresponding to each &; € §4, and their
character table? From Lemma 6.38 we know the first two already:

(1) trivial irreducible representation:
pe,(0) = idy, (0),0 € Sy,
where we have dim(Vg,) = 1 due to irreducibility. Thus
Xei(€) = 1 xe (12)) = 1, xe (12)(34)) = 1, X6 (123)) = 1, xe, (1234)) = 1
(2) sign irreducible representation.:
pe,(0) = sgn(o)idy, (0),0 € Sy.
Thus, Ve, = Vg, dim(Vg,) = 1, and

X§2(6> = 17X€2((12)) = _17X€2((12)(34)) = 17X§2((123)) = 17X$2((1234)) =—1

Next we will work out a third one, similarly as in S3, but a bit more elaborately now:
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(3) standard representation pe, is defined as follows. Consider the representation p, which
maps any o € Sy to the corresponding permutation matrix P,,, which permutes the columns
of the 4 x 4 identity matrix I, according to . Then the subspace W = span(e; + e + e3 +¢€4),
where e; are the basis vectors of R*, is p-invariant. Then the standard representation pe, is
the subrepresentation of j to the j invariant orthogonal complement W+ = span(e; — €1, €3 —
e1,eq —e1), so dim(Vg,) = 3. Using this basis one could compute the character ye,:

Xes(€) = 3, X ((12)) = 1, X6, ((12)(34)) = —1, X, ((123)) = 0, x, ((1234)) = -1

Moreover, using the definition of our inner product:

1
@O{Es’ X£3> =1,

we see that pg, is irreducible. This follows from the fact that p is a representation of Sy, then
g = Try,(p(g)) is a linear combination of characters of S5 with integer coefficients (Exercise).

This allows us to find a fourth one:

(4) sign tensored with standard representation: this is an irreducible representation formally
defined as the tensor product pg, = pe, ® pe,, that is,

Pées (U)(Ul ® U2) = (p§2 (U)U1> ® <p§3 (U)UQ)> V1 Vg € ‘/52 ® V£37

where Ve, ® Vg, is the tensor product of the vector spaces. The tensor product of vector spaces
can be defined using their basis vectors and then extended to all vectors. In particular, if B
is the basis of V and B’ is the basis of V', then v ® v’ for v € B,v' € B’ is defined as the
mapping that maps (v, w) onto 1 and all other elements of B x B’ to 0. In particular, this
gives Vg, = Ve, ® Vg, giving dim(Vg,) = 3. This goes slightly beyond the scope of this course,
but with the method of inner tensor products in the literature, using the already computed
characters of & and &3, we can work out that

Xea(€) = 3, xe((12)) = =1, xe, ((12)(34)) = =1, x,((123)) = 0, x¢, ((1234)) = 1
(5) Finally, the last representation pg, can be formally defined as follows:

Pes = Pes @ Pes — Per — Pes — Peu
where for W = Vg, ® Ve, we have
Terﬁs ® Pées (6) = 97 Ter§3 X pﬁs((12)) =1

Triw pe, ® pe, ((12)(34)) = 1, Trw pey ® e, ((123)) = 0, Trw pey @ pe, ((1234)) = 1,

from which we work out:

Xes (€) = 2, X6 ((12)) = 0, xg; ((12)(34)) = 2, x5 ((123)) = =1, X ((1234)) = 0

Moreover, using the definition of our inner product:

1
@O{&n X§5> =1,
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we see that pg; is irreducible. Finally dim(Vg;) = 2 since >, g dim(V;)? = |S4| by Lemma
6.35.

Thus we have worked out the precise character table for Sj.

Case S, for general n. Now to go to cases n > 4 like n = 52, the character tables can
be come very complicated to work out. However, there is a very powerful method to study
these using a method of identifying each irreducible representation of p of S,, with a partition
A= (A,...,\) of n, where A\; = Ay = ...\, > 0and n = A\ + -+ + A, we refer to [4]
for more details on this. Using this identification, one has a very effective way to compute
characters, given by the following Frobenius’ theorem, that we will use later also in the card
shuffling application instead of working out the whole character table:

,—[Theorem 6.39 (Frobenius’ theorem)} \

Let A = (A1,...,\.) be a partition associated to an irreducible representation p; :
Sn — U(Vg). Then for any o € S,, we have

Xe(o) 1 iy -
dirfl(vp) " aln—1) lej —@=DX;

See e.g. [4] for more details on this and references.
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6.6 How many dice rolls are enough?

Recall the dice rolling group D, which we can identify as S;. In Questions 1.7, recall that we
described the random dice rolling using the three rotations «, 8 and « with probability 1/3
each: Thus to model this random dice rolling in our language, we can model this as a random

|
2 f 1
\ /
\ | / 2 1
N / N /
/ \ /
\
3~ \\ 3 =1 4 % //
N / |
NN e 3F<~ v M 4
B0 £ AN s
N N 7
N 7
Ny Lo
AN -
7 M e i — i P
R RN / 270N
- / % -7 N
< d N A7 RIS
4 ~ 3 o / \\\
3 K, 2 / ~
/ N 4 a3
/ \ / N
/ \ 7 N
/ \
1 2 / A

o =(1234) B =(1423)

Figure 6.2: Three rotations a = (1234), § = (1423) and v = (123) (cycles diagonal 1 to 2 and
2 to 3, and 3 to 1) that we use to describe the random dice rolling, image from [8, Figure 7.3].

walk on Sy driven by the measure:

1 1 1

= —0q + 503 + 50,.
Thus, in order to calculate the probabilities in Questions 1.7, we need to control the total
variation distance d(u*", \) for n € N, where A is the uniform distribution on Sj.

By the upper bound lemma (Theorem 6.37 earlier), we have

d(p™"; A) 5 Z dim(Ve)[7i(¢ nH?{s,g'

€eSy
£#£1

Thus to continue, we need to use the character table of Sy in order to bound the Fourier
transform of p corresponding to & € Sy, € # 1. Using now the character table for S, we did
earlier in Section 6.5, let us now proceed with bounding the right-hand side of the inequality

(™", A) Z dim(Ve)[7i(& nH?{sg'
€eSy
£#1

bs\ —

Fix € € §4 and an irreducible unitary representation pg : Sy — U(Vg) for some vector space V¢
of dimension dim(Vg). Then we have

ae) = Y uo)pe(o).

U€S4
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Now, if we fix a permutation v € Sy, then for any o € S; we have
po) = u(y~'ov)
Taking Fourier transform from both sides in the representation pg gives us

€)= >, n(y'ov)pe(o)

0€Sy

= > u(v oy)pe(pe(v o) pe(v )

UES4
= pe() (2 1O o per o) ) pelr )
o€SY
= pe(MAE)pe(v™),
where we used pg(7) = pe(7)pe(v1oy)pe(7™1) as pe is a homomorphism and that u has scalar

valued (in [0, 1] in fact). Hence the map ji(§) is a morphism so as pg is irreducible, Schur’s
lemma (Lemma 6.18) implies

(&) = rele
for some constant ¢ € C and I : Ve — V¢ is the identity matrix. Now, if we take a trace from
both sides, we we have Try, fi(§) = dim(V)xe, so we have arrived to the formula:

) - i e

On the other, hand, by the definition of u, if we directly plug-in to the definition of i and
take a trace, using linearity and the definition of characters, we obtain:

Tov, 2€) = 5 (xel) + xel) + xe()) = 7(6).
This in particular gives us
e = (75 )1,

dim (V%)
Notice that as a diagonal matrix (€)™ is in particular now self-adjoint: (72(£)")* = (&)™ so
€)™ (a(€)")* = rg"Ie. Thus the Hilbert-Schmidt norm

1(6)" [fis.e = Trve (R(E)"(A(€)™)*) = dim(Ve)rg" = dim(%)< r(€) >2n

dim (V)
Thus o
i ~cen|?2 . T n
EEZEZ dlm(vs)HN({f) HHs,g = 56252 dlm(VE)z(dim(VEQ '
70 £#0

Now, provided that we can prove that |r(§)| < dim(Vg) whenever £ # 1, that is,
[r(&)] < dim (V)

for j = 2,3,4,5, we can ensure decay for the total variation distance and exponential mixing
for the dice rolling. Here we can finally use the character table and dimensions, which which
we need to have a look at the chosen permutations o = (1234), f = (1423) and v = (123).
Note that § = (1423) € C((1234)), so the characters have same value here as on o. We can
thus compute:
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J =2: We have dlm(‘/&) =1, sz(a/) = -1, XfQ(/B) = -1, X{z(/)/) = —1,0

—1-1+1 1 )
r(§2)| = [zi-1+ 3 | =3< 1 = dim(Vg,)

J = 3: In this case dlm(‘/&) =3, st(a) = -1, XES(B) =—1, Xf3<’7) =1,s0

—1—-14+0 2 .
7(&3))| :|3|:3<3=d1m(V£3)

J =4 As before dim(v&) =3, X£4(a) =1, Xﬁ4(ﬁ) =1, X£4(7) =—1,s0

1+1+0 2 ,
el = U2 s am)

J =95 We have dlm(‘/§5) =2, Xﬁs(a) =0, X£5(B) =0, X55(7) =0, so

0O+1-1 i
el = 2 0 <2 = aim(vg,)

We have proved exponential mixing of u:
d(p™,A\) —0

exponentially as n — oo by the previous estimate on d(u*", \), which now allows us to compute
the answers to Questions 1.7 by estimating the mixing time, which follows by taking e.g. the
worst estimate above of the characters, which we can use as the spectral gap and rate.
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6.7 How many shuffles is enough?

Let us now concentrate on the symmetric group S,,, with n > 2. In particular, we are interested
of the case n = 52, which corresponds to the case of card shuffling. We will concentrate on
the random transposition shuffle measure p Example 6.6, defined as p : Ss2 — [0, 1] with the
formula

1 . .
5, lo=g¢

po) = =z, if 0 1s a transposition
0, otherwise .

The Fourier transform of i is easiest to understand in our context. The case of u defining
riffle shuffle is similar, but the Fourier transform attains a bit more complicated form. The
main result of Diaconis and Shahshahani for the random transposition shuffle is the following,
which says 270 random transposition shuffles is enough to make the deck sufficiently random:

,—[Theorem 6.40 (Diaconis—Shahshahani)} \

For the random transposition probability distribution p defined in Example 6.6, we
have for any ¢ > 0 that

d(p™™ \) < 6e”°
for n > 103 + 26¢. Hence if n > 270, we have

1
d *n )\ < -

so 270 shuffles is enough to make the deck random enough under random transposi-
tions.

\. J

Let us now outline how to approach Theorem 6.40. Fix £ € 5/'5\2 and an irreducible unitary
representation pg : Sso — U(V,) for some vector space V¢ of dimension dim(V;). Then we have

ae) = 3, nlo)pe(o).

0'6552
. Now, similarly as with the dice rolling, Schur’s lemma (Lemma 6.18) implies
j(g) = kel

for some constant x¢ € C and I : Ve — V; is the identity matrix. Now, if we take a trace from
both sides, we get that
Try, fi(€) = dim(Ve)re

Since the support of the random transposition measure p is by definition
spt u = {e} U {7 € Ss9 : T is a transposition}

we have, as we defined characters y¢(o) = Try, pe(o) that

Try i(€) = Y, m(0)xe(€) = ple)xe(e) + >, p(m)xe(n).

TES52 T is a transposition
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On the other hand

1
p(e) = 59
and
pe(e) =1 == xe(e) = dim(Vg)
Thus

ple)xe(e) = g5 - dim(VE).

If 7 and 7" are transpositions, then the measures

and the characters
Xe(T) = xe(7)
as transpositions are in the same conjugacy class of Ss2. Let N be the number of transpositions.
Then
52 52! 52! 51-52
N = = = == .
2 21(52—-2)!  2-50! 2

Thus by fixing some (in fact any one is fine) transposition 7¢ € Sso, then

> %KT)X£@?:=ZVMCQ)X§UZ)=:51552'532'X§@Z>=:g;'XX@E)

T is a transposition
Therefore we have proved

~ 1. 51
Try, 1(§) = 0 dim(Ve) + = Xe(7e)-
On the other hand, we earlier saw that Schur’s lemma implied Try, 11(§) = dim(Vg)ke so after
dividing by dim(V) gives
_ 15 xe(m)
52 ' 52 dim(V;)

and so the Fourier transform takes the form

~ . 1 51 Chig(Tg)
e) = (53 5 dim(%))lé’

ke

where I is the identity matrix of V¢ so

~ 151 xe(Te) )"
ne (2 L.
) (52 52 dim(V;)
Notice that as a diagonal matrix (£)™ is in particular now self-adjoint: (72(£)")* = (&)™ so
A" (a(€)")* = rg"le. Thus the Hilbert-Schmidt norm

[(€)" |fis.e = Trv, (A(€)" (A(6)")*) = dim(Ve)wg" = dim(Vg) (512 T i; . (}m)%
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Thus by the Upper Bound Lemma (Theorem 6.37), we obtain

. L xelm ) 2n

€eS5a €550
£#0 £#0

Since G is finite, there exists the maximum

ro= max{ >‘(§(T§) 1€ £ 1}. (6.5)

By establishing r < 1 (i.e. spectral gap for u), as
7 amtg <@t
we have proved exponential mixing of yu:
d(p*™;\) -0
exponentially as n — oo by the previous estimate on 4d(u*", \)?.

In order to prove r < 1 and give quantitative estimates to it and thus the mixing time of
the random walk driven by p, we just need to again use the bounds for the character table as
we did with the case of S;. Now, instead of working out the whole large character table for
Ssa, we can rely on the Frobenius theorem (Theorem 6.39) mentioned earlier in Section 6.5.
Write 2 € §;2 corresponding to the class, which realises the maximum 7 in (6.5). It turns out
the representation ps : Ss2 — U(V4) corresponds to the partition A = (51, 1) of 52 for which
the dimension dim(V3) = 51, see [4] for more details on this. Frobenius theorem (Theorem
6.39) applied to the partition A = (51,1) then gives

X2(72) 1 2 2 1
TS dm(vy) szoat U I3l =5

so we have r < 1. But we can use this exact form for r to get the desired quantitative estimate
as follows.
In particular as dim(V2) = 51, we have

dim(V3)? (5—2 + g; 7“) < 517 (1 - 522>2n

Since 1 —x < e~ * this is bounded from above by e™*¢ when n > 103+ 26¢ and ¢ > 0. Moreover,
again using Frobenius theorem for the other irreducible representations, we can then bound

5 Xe(Te) \2n -2
dim(Ve) | —= + — - < 144e .
Z m(Ve) ( 52 d1m(V)> ¢

—2c

56552
£40

Dividing by 4 and taking square root gives the claim. In particular, we see with n := 270 and
¢ := —11og(1/14400) ~ 4.78749... > 0 so that n > 103 + 26¢ and thus

*n —2c
d(p™,\) < 14de™ = = 100°
How about riffle shuffles? In this case we need to again understand the irreducible rep-
resentation p, “closest” to the trivial one p; and what values the Fourier transform of the
Gilbert-Shannon-Reeds probability distribution g corresponding to the riffle shuffle gives at
1(2). This is done in the works of Bayer and Diaconis “ Trailing the dovetail shuffie to its lair”
from 1992, see [1], which we refer to the interested reader.
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6.8 Random walks on the circle

Let a € (0,1). Consider the following i.i.d. random walk X;, X»,... on the circle S! = R/Z
where with probability 1/2 we add « and with probability 1/2 we substract & modulo 1. Now,
if a is a rational number o = p/q, then we can see that X; + X5 + ... gets trapped into a
periodic orbit and an arithmetic progression depending on the integers p and q.

However, if « is irrational, then things get more interesting. It can be proven, but we do
not do it in this course, that if « is irrational, then the random walk X; + X5 + ... spreads
around evenly in the whole circle S' (equidistribution), which is an analogue of the ergodicity
of the random walk in Z,. Formally this can be written as follows: for any interval I < [0, 1)

lim P(X; 4+ -+ X,el)=|I],

n—0o0

where |I| is the length of I.

Then if we want a rate for the equidistribution of the random walk, that is, rate of mixing,
it highly depends on how 'well approximated’ by rationals « is, or more quantitatively, how
close na gets to a rational number when n grows. Thus we find a connection to Diophantine
approximation.

,—[Deﬁnition 6.41 (Badly approximable numbers)} \

We say that a real number a € (0, 1) is badly approximable (with rational num-
bers) if there exists a constant ¢ > 0 such that for any integer n € N we have

c
[nal = —,
n
where ||z|| = min{|z — p| : p € Z}. In order words, for some ¢ > 0 we have for all
rationals p/q € Q
p c
‘Oé - == )
q q

If « is badly approximable by rational numbers, the random walk X; + --- + X, on the
group S! behaves quite chaotically:

r—[Theorem 6.42] N

Prove that if o € (0,1) is badly approximable, then there exists a constant C' > 0
such that for any interval I < [0,1) and n € N we have

C
P(Xi+ - +X,el)— ||| < —.
P(X, =D -lill<

In order to prove Theorem 6.42, we can use a similar idea what we have done with Z,. How-
ever, we need to introduce analogues of harmonic analysis to this context. Here, thankfully,
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the random walk associated to £a mod 1 can be described similarly as a discrete probability
distribution as the pass the broccoli random walk in Z, as follows. Each X, is identically
distributed according to the probability distribution

1 1
=0 *5—on
2 * 2

where —a = 1 — a mod 1 in S', where ,, at y € S*, is called a Dirac delta mass, which we
here define formally just as a function with the property d,(x) = 1 if + = y and d,(x) = 0
otherwise.

For distributions of the form above, we can form some basic Fourier theory as we did for Z,.
Let X be a discrete random variable on the group S! = R/Z with the probability distribution

N
H= Z pjéxj
j=1

where z; € St and p; + -+ + py = 1 with 0 < p; < 1. We can then define the Fourier
transform of y by

N
A(E) == D Aay)e e
j=1

at £ € R. This notion of Fourier transform satisfies the convolution theorem in the same form
w = p". Moreover, we have the following analogue of the Upper Bound Lemma:

,—[Theorem 6.43 (Erdos-Turan inequality)} .

For any interval I < [0, 1) and integer M € N we have

4

P(Xel)—|I]| <
P(XeD) -l < 57—

_l’_

|a(m)].

1
m

SRS
M=

1

3
I

Towards Theorem 6.42, using Erdos-Turan inequality, we obtain:

r—[Lemma 6.44] N

For any 0 < a < 1, and for the measure
1 1
= =0q + z0_q
H= %™y

we have for the random walk X, X5, ..., X,, driven by p that for any interval I <
[0,1), k€ N and M € N we have

4
M+1

—4n|2mal?

P(Xy+--+X,el)— ||| <

1
+ —e
m

SHES
=

1

m
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Proof
First of all, we have
cos(2mr) < 1— 42z

for all x € R.
Moreover, the Fourier transform is by the cosine identity
o~ 1 2mimao 1 —2mimao
a(m) = 3¢ +5e = cos(2mma).

Hence we have
[i(m)| <1 —4)2mal?

Moreover, we can bound using the exponential as follows:
_ 2
1 — 4)2ma)? < e~ *Pmel

using the Taylor series of exponential function for example.
Hence by the convolution theorem

e~

e (m) = fi(m)
and the Erdos-Turdn inequality we have that

4
+1
4

M=

P(X;+ -+ X,el)—|I]| < +

=

3
)

SN AN
3|~ 3=

3
I

e—4k’H2maH2

M=

< +

=

+1

as claimed. O

We are now ready to prove Theorem 6.42:

Proof
(Proof of Theorem 6.42) Write

M1
S Z 76—4n\\2maH2
— m

m=1
By Lemma 6.44, it is enough for us to find a constant ¢y > 0 such that

Co

S < .
M+1

Choose M such that 1
M < 50 n<M+1,

where ¢ is the constant from the definition of badly approximability of a. Choose an integer
J such that
277t < M <2/ 1.
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Group the sum S into J cohorts of integers m € [2771,27 — 1] for j = ,J and apply
the badly approximability of « in each cohort in the way

12ma| = . S;
2m ~ 29+1

for each m € [2771,27 — 1]. Moreover, we have that my, my € [2/71,27 — 1] distinct that
[2(my —ma)al = s

Thus any subinterval of [0,1] of length s; can contain at most one of the points |2ma],
me 271,27 —1].

With this in mind, divide now [0, 1] into disjoint intervals of side length s; starting from
0 until 1, with the last interval being of length at most s;. As any interval of length s; can
contain at most one |2ma|, the distance |2ma| > ¢s; for some integer ¢. In the worst case
they are in all of the intervals nearest to 0 or 1, except the ones containing 0 or 1, and in these
case the integer ¢ is the smallest possible.

Hence we have the following crude upper bound

27 —1 M

— 2 _ )2
Z e 4k|2ma| < Z e 4k(s;0)
/=1

m=27-1

Thus

Now as M > 277! and M < $cy/n we have k > 22/ /c? and s; = 5% so we have from above

J
1
EAPIED

(2473

HMS

The sum over ¢ is decreasing and a geometric series so the the inner sum is bounded by
the first term ¢ = 1 times the constant 1/(1 —e™!). Thus there exists a constant ¢; > 0 such

that y
i1 —gd-i
<0122 JHle=a

j=1

Again, the terms in the sum over j are decreasing in j and the sum decreases geometrically
with ratio at least 1/2, so the sum is therefore bounded by twice the final term at j = J,
which gives

S < 2¢27 e
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We have M < 27 — 1 so there does indeed exist a constant ¢y > 0 such that

Co
M+1

S <

]

Going beyond S' and other random walks, we would need to introduce the notion of
Lebesgue measure and Lebesgue integration and Haar measures. This would allow us to talk
about random walks on matrix groups and other more general Lie groups, which is currently
a very active field of research. We refer to the book by Benoist and Quint [2] for an overview
of the field and future topics.
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