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Chapter 1

Introduction

1.1 Shuffling cards

Consider the problem of card shuffling of a deck of 52 cards. Suppose we are shuffling the
deck with a usual riffle shuffle: we cut the deck roughly from the middle into two packs and
then “riffle” (interleave) the two packs together, see Figure 1.1.

Figure 1.1: A riffle shuffle, Johnny Blood, CC-by-sa 2.0

In a normal situation we will observe that the order of the cards in the deck begin to look
random (see Figure 1.2 below) so that it is very hard to predict the order of the cards.

Figure 1.2: A relatively random looking order of cards in a deck of 52 cards.
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It should be noted that if we are doing a “perfect shuffle” in the sense that we split the
deck into exactly two piles of 26 cards and then manage to riffle the cards perfectly on top
of each other (with no errors), then one can check that the shuffle returns to the initial state
after 8 shuffles (this is a so called perfect riffle / faro / dovetail shuffle). However, in
practise this can be hard to do, but some people can do it, see the YouTube video:

https://www.youtube.com/watch?v=7lNk7bfkFq8

In a normal situation there is always some errors in the shuffling and it is very hard to do a
perfect riffle shuffle. These human errors introduces randomness into the situation and are
exactly what explain why the deck eventually becomes very random.

In fact, Gilbert, Shannon, and Reeds (1955) did experiments on skilled human card shuf-
fling and were able to make a probabilistic model that predicts very well how the order of the
cards evolve as we do a riffle shuffle. In the late 80s / early 90s Persi Diaconis realised the card
shuffling problem as question about mixing of a random walk on the symmetric group
S52, that is, the set of all permutations σ of t0, 1, . . . , 51u. Then Diaconis applied methods
from harmonic analysis and the statistical predictions done by Gilbert, Shannon, and Reeds
to obtain estimates on how fast does a deck mix in a human riffle shuffle.

Figure 1.3: The New York Times article “In Shuffling Cards, 7 Is Winning Number”, January
9, 1990 by Gina Kolata. © The New York Times Archives, available at https://www.
nytimes.com/1990/01/09/science/in-shuffling-cards-7-is-winning-number.html

Diaconis obtained a very surprising answer in the case of riffle shuffle model done by
Gilbert, Shannon and Reeds: it turned out that after roughly 6 shuffles the deck will still be
quite ordered, but at the 7th shuffle the deck suddenly becomes very random, see for example
The New York Times article from 1990 in Figure 1.3). The “very random” here means that
almost every possible order of cards is possible in the deck (which can be formalised using
something so called total variation distance to uniform or entropy, see later of the course).
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Let us give some notation and model card shuffling as a random walk on the symmetric
group. We say that σ : t0, 1, . . . , 51u Ñ t0, 1, . . . , 51u is a permutation if σ is a bijection.
Write

S52 :“ tσ is a permutation of t0, 1, . . . , 51uu

and equip S52 with the binary operation, which assigns to two permutations σ, σ1 P S52 a new
permutation, the product, defined for j P t0, 1, . . . , 51u by

σσ1
pjq :“ σpσ1

pjqq.

Hence, σσ1 is just formally the composition σ ˝ σ1 of the functions σ and σ1, we just do
not want to repeat the notation ˝ everywhere. In S52 let us write e P S52 just the identity
permutation defined by

epjq :“ j

that keeps each j P t0, 1, . . . , 51u fixed.

Figure 1.4: The initial state of the deck of cards.

To model card shuffling, let us now think the deck has 52 slots ordered from 0, 1, . . . , 51,
where 0 denotes the top card and 51 denotes the bottom card. Suppose initially we have the
following order for the cards (as in Figure 1.4):
we have for clubs:

K♣, Q♣, . . . , A♣ are in slots 0, 1, . . . , 12;
for diamonds:

K♢, Q♢, . . . , A♢ are in slots 13, 14, . . . , 25;
for hearts:

K♡, Q♡, . . . , A♡ are in slots 26, 27, . . . , 38;
and for spades:

K♠, Q♠, . . . , A♠ are in slots 39, 40, . . . , 51.
Now if we perform permutations σ P S52 of t0, 1, . . . , 51u, we move the card around from the
initial order 0, 1, . . . , 51. For example, the top card of the deck is initially K♣ (corresponds
to the label 1), so if the permutation σp0q “ 51, this means that we move K♣ to the bottom
of the deck. Also, if we apply the identity permutation, we keep the deck order the same and
the deck is not shuffled at all. Using this identification, every permutation σ P S52 is a shuffle
of the deck.
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If we have n permutations σ1, σ2, . . . , σn P S52, then their product

σ1σ2 . . . σn P S52

corresponds to a permutation where we have shuffled the deck n times with some choices of
shuffles σ1, σ2, . . . , σn. If the permutation is always the same, that is, σ1 “ σ2 “ ¨ ¨ ¨ “ σn “ σ,
we just write σn as the product n times.

Now the big question in the course is that how many times should we shuffle a deck of 52
cards to make it “sufficiently random”? What types of shuffling work best? These questions
can be relevant when trying to maximise unpredictability of outcomes. As we mentioned
earlier, in riffle shuffles we seem to be able to get random orders for cards. If we do not
have randomness though, then it is possible that we end up to the original state. A classical
example of such behaviour is the faro shuffle (also known as dovetail shuffle or perfect riffle
shuffle):

The perfect riffle shuffle splits the deck into exactly two piles of 26 cards and then
riffles the cards perfectly on top of each other. How do we model this as a permutation
σ P S52? Define

σpjq :“
#

2j, 0 ď j ď 25;
2j ´ 51, 26 ď j ď 51.

This is the same as saying that for j “ 0, 1, . . . , 50 we have:

σpjq :“ 2j mod 51

and σp51q “ 51 (the last card remains in the same position). Now for 0 ď j ď 25,
i.e. the first 26 cards on a pile, are put to even slots on t0, 1, . . . , 51u, and then the
rest (26 ď j ď 51) are put to odd slots, which is precisely a perfect riffle shuffle.

Example 1.1 (Perfect riffle shuffle / dovetail shuffle / faro shuffle)

For perfect riffle shuffles, there is no randomness present, and it turns out that after 8
shuffles we return to the initial state of the deck:

Let σ be the perfect riffle shuffle. Then after 8 times we return to the initial state of
the deck, that is,

σ8
“ e.

Theorem 1.2

Proof
By definition the perfect riffle shuffle σ assigns to j P t0, 1, . . . , 50u the value

σpjq “ 2j mod 51.

Thus for k P N we have
σk

pjq “ 2kj mod 51.
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Thus in order for us to have σkpjq “ j, we need to find the minimal k P N such that

1 ” 2k mod 51,

or equivalently, we want to find the minimal k P N such that

2k
” 1 mod 51.

This is the so called “multiplicative order” in number theory, which we will not go into here,
but in this case it is straightforward to compute by looking at the powers up to 8:

21
“ 2 ” 2 mod 51

22
“ 4 ” 4 mod 51

23
“ 8 ” 8 mod 51

24
“ 16 ” 16 mod 51

25
“ 32 ” 32 mod 51

26
“ 64 ” 13 mod 51

27
“ 128 ” 26 mod 51

28
“ 256 ” 1 mod 51

so k “ 8 is the minimal k we looked for. Hence 8 perfect riffle shuffles returns the the deck to
its initial state.

However, in a real world situation, typically humans make errors in the riffle shuffles and
thus at every step we choose ‘random’ permutations σ1, σ2, . . . , σn and the product

σ1σ2 . . . σn

after n steps tells us the distribution of the cards after n steps. However, as we mentioned
earlier, in human trials we make errors in the riffle shuffles and these errors will eventually
accumulate into the order of the cards in the deck to become very hard to predict. How would
we formalise this? We can ask the following questions:

Q1. How many shuffles does it take for the deck to reach a given order of cards in
the deck?

Q2. How many shuffles does it take for the card order to have gone through every
possible combination of cards?

Q3. How many shuffles do we need to do such that the deck is close to “close to
random”?

Questions 1.3
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First we need to talk about what is a very “uncertain” order of cards. There are in total
52! different permutations σ P S52 and each permutation σ P S52, when applied to the initial
order of cards we agreed in the beginning, gives out some new order of cards. Hence if we
don’t know which shuffle σ P S52 we use, then there are in total 52! different possible orders
of the cards. Then we have no knowledge at all on the ordering of the cards: can define this
as “very random” state of the cards. Later in the course we will see that this corresponds to
the uniform distribution or Lebesgue distribution of possible permutations σ P S52.

Let us now give the first random shuffle example to demonstrate the situation, which is
called the random transposition shuffle:

Place the ordered deck of 52 cards on a table into a single row:

K♣, Q♣, . . . , A♣, K♢, Q♢, . . . , A♢, K♡, Q♡, . . . , A♡, K♠, Q♠, . . . , A♠.

We call a permutation σ P S52 a transposition if it changes the places of two cards,
that is, for some i ‰ j we have σpiq “ j and σpjq “ i. The random transposition
shuffle goes as follows: left hand chooses a random card with probability 1{52, and
the right hand chooses a random card with probability 1{52. Then these cards are
interchanged. If both hands chose the same card, nothing happens.

Formally this means that if the card i was chosen with probability 1{52 and the
card j was chosen with probability 1{52, then the transposition σ that swaps these
is chosen with probability

1
522 `

1
522 “

2
522 .

If the same card is chosen, then σ “ e, the identity permutation, so the probability
of choosing that is 1{52.

Answers to all the Questions 1.3 is then that 270 random transposition shuffles is
enough to make the deck sufficiently random as we will see in the final chapter of
the course.

Random transpositions

Let us give the example of Gilbert, Shannon and Reeds from 1955 on experiments on
human riffle shuffles:
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The riffle shuffle model by Gilbert-Shannon-Reeds consists of two steps like how
humans typically do the riffle shuffle: we first do a random cut roughly from the
middle and split the deck into two piles, and then do a riffle, which may not be
completely perfect, to produce the shuffle.

(1) Random cut: Firstly, we choose 1 ď k ď 52 randomly with probability:
`52

k

˘

252 .

In probability this would mean that k has binomial distribution Binpn, pq with
n “ 52 and p “ 1{2. Then the player will have k cards on the left hand and
52 ´ k cards on the right hand.

(2) Random riffle: Now, given the randomly chosen k cards on the left hand
of the player, and 52 ´ k cards on the right hand of the player, we choose a
random card either from the bottom of the left pile with probability k{52 or
and bottom of the right hand pile with probability p52 ´ kq{52.
Then we are remaining with two piles with x cards on the left pile and y cards
on the right pile (in total x ` y cards, which is in this case 51 cards). Now we
continue and choose a random card either from the bottom of the remaining
left pile (of x cards) with probability x{px ` yq or from the bottom of the right
pile (of y cards) with probability y{px ` yq and place that card on the top of
the card chosen in the previous step.
Iterate this until we have gone through all the 52 cards. Then the resulting
pile of 52 cards we produced gives us a random permutation σ P S52 that gives
us this random order of cards.

Answers to all the Questions 1.3 is then that 7 riffle shuffles is enough to make the
deck sufficiently random.

Riffle shuffle (Gilbert-Shannon-Reeds, 1955)

Borel and Cheron (1955) suggested also the following type of shuffle in the book of math-
ematics of Bridge:

Remove the top card of the deck and then insert it into the deck into a random
position (it could be any of the 52 positions with probability 1{52). Then also
the bottom card of the deck is removed and inserted at a random position of the deck.

This is a relatively slowly mixing shuffle process and answers to all the Questions 1.3
is then that 465 Borel shuffles is enough to make the deck sufficiently random.

Borel’s shuffle

Finally we give another popular way to shuffle cards, which is the overhand shuffle:
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In the overhand shuffle we transfer a small number of cards at a time from the
shuffles right hand to the left. The person shuffling slides a couple of cards from the
top of the deck from their right hand to the left. Then we repeat this process until
all the cards on the right hand are transferred. Thus cards near the top of the deck
end up near to the bottom of the new deck. Since the packet sizes transferred are
typically random, this will eventually mix up the deck.

More mathematically we can define overhand shuffle by first choosing k random cut
points that split the deck into k ` 1 piles of cards. The sizes of these packets have
random size and also the number k ` 1 of packets. Then the overhand shuffle just
reverses the order of the packets on the deck producing a new order. Depending on
the random k ` 1 packets, this gives a random permutation σ P S52.

Answers to all the Questions 1.3 is then that 2500 overhand shuffles is enough to
make the deck sufficiently random (proved by R. Pemantle, 1988). This makes sense
as overhand shuffle mixes up much more slowly than the riffle shuffle unless the
packet sizes chosen are very small.

Overhand shuffles

In all these cases, answering to Questions 1.3 requires us to understand what is the statistics
of the random product permutation

σ1σ2 . . . σn

for randomly chosen σ1, σ2, . . . , σn P S52 permutations, say, riffle shuffles, overhand shuffles,
random transpositions or Borel shuffles. This is also known as understanding the mixing of
the random walk Xn “ σ1σ2 . . . σn on the group S52..
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1.2 Mutations in the gene order of chromosomes

One influential motivation for random walks on groups come from the evolution of deoxyri-
bonucleic acid (DNA) sequences, which form a chromosome. Chromosomes can be found from
the nucleus of every cell and form the central unit of heredity. Mathematically a chromosome,
c, is an element c P t1, 2, . . . , num, where n is the number of possible genes g1, . . . , gn, and m
is the length of the chromosome. Each gene gj itself is a sequence (or a block) of DNA, see
Figure 1.5 for an illustration.

Figure 1.5: A chromosome is formed of blocks (genes) of DNA strings. Picture (c) Wikimedia
Commons.

Each gene gj, j “ 1, 2, . . . , n, itself is a sequence of nucleotides in DNA. In cell biology it
has been observed that chromosomes c evolve in various transmutations:

(1) substitutions: a gene gi in a chromosome c is substituted with another gene (length m
remains the same)

(2) insertions: a gene is inserted into the chromosome c to some location (making the length
m ` 1)

(3) deletions: a gene is deleted from a chromosome c from some locartion (making the length
m ´ 1)

(4) inversions: between two markers of the chromosome c invert the genes, that is, if c “

gi1 , . . . , gim and we choose two markers ij ă ik, then reverse the order of the genes

gij`1 , gij`2 . . . , gik´1

ino
gik´1 , . . . , gij`2 , gij`1 ,
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and various other transformations. Thus if the number of genes is n, then an transmutation
evolution of a chromosome c to a chromosome c’ (say along random substitutions of genes)
can be modelled as a random walk of random substitutions in the symmetric group Sn, when
we identify each label t1, 2, . . . , nu by the corresponding gene tg1, . . . , gnu.

An example for the study of this can be traced to the work of Durrett [6], where he
considered the comparisons found by Ranz et al. [11] of the chromosomes found in
two fly species: Drosophila repleta and Drosophila melanogaster. Durrett considered
the chromosome 2 of Drosophila repleta, denoted by c2, and compared it to the
chromosome arm 3R of Drosophila melanogaster, denoted by c3R. In these examples
the number of genes n “ 26. If we order the genes as g1, g2, . . . , g26, then what was
observed was that the c3R chromosome of Drosophila melanogaster is equal to the
string of genes

c3R “ pg12, g7, g4, g2, g3, g21, g20, g18, g1, g13, g9, g16, g6, g14,

g26, g25, g24, g15, g10, g11, g8, g5, g23, g22, g19, g17q

where all the underlined parts match those of the chromosome 2 c2 of Drosophila
repleta.

Durrett asked and made a model to answer the question: how many (random)
inversions (see (4) above for a definition) from the chromosome c2 has happened to
form c3R? Data analysis on the species suggests that all possible random inversions
could have occured with equal probability, why is this true theoretically? Here
the model for random inversion is that we choose the end-genes gij

and gik
, where

ij ă ik, at uniformly randomly, that is, each edge is chosen with equal probability.
(Due to biological reasons, one has to do this as a ’continuous time process’ in the
sense that in practise one expects these random edges are chosen at times of a rate
of a Poisson process, but now we just consider this as a discrete time process.)

Durrett then proved that, with high probability, when starting from a gene c2, then
it will take around 85 random inversions of genes to form c3R, which was consistent
with the data Ranz et al. [11] observed. More details can be found from Durrett’s
work [6], but this can all be formalised using the tools of this course using the total
variation distance for a random process on the symmetric group S26 formed of random
inversions, similarly to card shuffling above.

Example 1.4 (Shuffling genes of flies)

More examples of genetic applications can be read for example when comparing the
genomes of a mouse and human:
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The differences between the X chromosome of a human cXphumanq and of a mouse
cXpmouseq may be encoded as as follows:,

cXphumanq “ B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, B11
cXpmouseq “ B1, ´B7, B6, ´B10, B9, ´B8, B2, ´B11, ´B3, B5, B4

The notation above for cXphumanq means that the X chromosome of a human
cXphumanq consists of 11 blocks of genes Bk “ gi1 . . . gik

of various lengths, k “

1, 2, 3, . . . , 11, and so does the mouse, and the numbers denote how cXphumanq is
shuffled to get cXpmouseq as follows:

(1) The first block cXpmouseq of the X chromosome of the mouse is equal to the
first block of the human’s X chromosome’s block B1.

(2) The second block of cXpmouseq is ´B7 indicates that the second segment
of a mouse is 7th block B7 human segment cXphumanq with the orientation
reversed in B7 (hence ´1).

(3) The third block in cXpmouseq is B6 so it indicates that the 6th block B6 of a
human cXphumanq is 3th mouse block in cXpmouseq

... etc.

The parsimony approach in evolutionary changes of the X chromosome asks about
estimating the minimum number of reversals of the blocks in the mouse

cXpmouseq “ B1, ´B7, B6, ´B10, B9, ´B8, B2, ´B11, ´B3, B5, B4

back to that of a human

cXphumanq “ B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, B11?

Hannehalli and Pevzner [9] developed an algorithm to find that the minimal distance
can be computed as 7, that is, 7 is the number of reversals needed to transform the
X chromosome of a mouse into that of a human. However, there are thoudands of
different solutions how the minimum can be achieved, also if one wants to develop
the change in practise through mutations, one can ask if this can be modelled as
a random walk using random inversions or other transmutations. This was done
for example by Berestycki and Durrett [3] using more complex random models of
shuffling genes based on graph theory.

Example 1.5 (Comparing human and mouse genomes)
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1.3 Scrambling the Rubik’s cube

Rubik’s cube is a puzzle invented by the Hungarian architect and sculptor Ernő Rubik in 1974.
The standard Rubik’s cube has six squares at the center of each face, which are fixed to a core
that enables the other 20 squares to rotate around.

Figure 1.6: Rubik’s cube in three states: (1) solved state, (2) an application of a face rotation
and (3) a relatively randomly looking scrambled version.

The standard Rubik’s cube thus has 6 faces and each face has 9 smaller squares we will
call facets. Thus the whole cube as in total 6 ˆ 9 “ 54 facets. We will say that the cube is
in a solved state if all the facets of each corresponding face share the same colour.

A move of the cube is one of the following rotations of the 6 faces: 90 degrees, 180 degrees
or ´90 degrees. In a move of the cube the center facet attached to the mechanism does rotate
around its center but will not change its face. The Singmaster notation to the Rubik’s cube
moves are the following:

Face rotations of the Rubik’s cube
90 degrees 180 degrees ´90 degrees

F - front clockwise F 2 - front clockwise twice F ´1 - front counter-clockwise
B - back clockwise B2 - back clockwise twice B´1 - back counter-clockwise
U - top clockwise U2 - top clockwise twice U´1 - top counter-clockwise
D - bottom clockwise D2 - bottom clockwise twice D´1 - bottom counter-clockwise
L - left face clockwise L2 - left face clockwise twice L´1 - left face counter-clockwise
R - right face clockwise R2 - right face clockwise twice R´1 - right face counter-clockwise

We can identify each of the Rubik’s cube moves as a permutation on the set of non-center
facets. Recall that there were in total 54 ´ 6 “ 48 non-center facets. Suppose at the initial
state we are have the non-center facets of the solved Rubik’s cube’s assigned to these slots.
More precisely this means that each facets corresponding to 0, 1, . . . , 7 share the same color,
8, 9, . . . , 15 share the same color, and so on. Then each of the Rubik’s cube moves listed above
is a bijection

σ : t0, 1, . . . , 47u Ñ t0, 1, . . . , 47u,

i.e a permutation. That is, σ P S48. Note that some of the permutations of t0, 1, . . . , 47u is
not possible as all the possible moves are listed above.

The key moves are the six face rotation tF, B, U, D, L, Ru Ă S48 since all the other can
be obtained as their combinations (for example, FF “ F 2 or FFF “ F ´1). Hence all the
possible states of the Rubik’s cube can be identified with an element σ P S48 that is obtained
as a finite composition of the maps F, B, Y, D, L, R. This gives rise to the Rubik’s cube group:
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The Rubik’s cube group R is the subgroup of S48 generated by the 6 face rotations
tF, B, U, D, L, Ru, that is,

R “ xF, B, U, D, L, Ry.

Rubik’s cube group

As in the case of card shuffling, we can model “scrambling” of the Rubik’s cube by random
choices of the permutations σ P R. One such scramble choice could be, for example, choosing
the face rotation F with probability 1{2 and the face rotation L with probability 1{2. It is
interesting to ask which random choices produce a very random scramble.

The most uniformly random state would then correspond to the random permutation
with equal probability 1{|R| chooses a permutation from R. Since each σ P R corresponds
to a some order of the non-center facets of the Rubik’s cube, then the probability of knowing
what is the order of the colors of the non-center facets of the Rubik’s cube will be very the
smallest possible, that is, 1{|R|. Then with very high probability such a permutation will
produce a very randomly looking scramble of the Rubik’s cube, see Figure 1.6(3).

We can then ask questions such as:

Starting from the solved state of the Rubik’s cube, apply the face rotation F with
probability 1{3, the face rotation L with probability 1{3 and the face rotation U with
probability 1{3.

Q1. When we keep on applying these two rotations randomly, is the distribution of
the Rubik’s cube “close to random”?

Q2. If yes, then how many rotations we need to be close to random?

Q3. After how many rotations of the cube we can reach a given state of the cube
with high probability?

Q4. After how many rotations of the cube we have reached every state of the cube
with high probability?

Questions 1.6

These questions can be answered with the same probabilistic language as in the case of
card shuffling: by considering random walks on the group R. Thus, we need to find out what
is the probability of achieving a given permutation with a given random process and how close
is this probability distribution to the uniform distribution.

To attack Questions 1.6, we first need to us to understand the situation in a far simpler
settings that do not involve such large groups like S48 and its large subgroups. The two key
examples we will consider in this course will be based on the symmetric group S4 of 4 elements,
which we can use to model dice rolling in the next section (and it is also a very simple non-
abelian group), and then the even simpler setting of cyclic additive group of p elements Zp
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(also noted Cp in some literature), which is an abelian group. However, we emphasise that
proving similar results in the simpler setting carry on also to the more abstract setting of
Rubik’s cube, card shuffling and even Lie groups beyond this course, and we will come back
to these in the end of the course.
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1.4 Dice rolling

This section will describe another model based on dice rolling, which, like the card shuffling,
can be described as a random walk on a symmetric group. However, this time we only have
to work with the symmetric group S4, which makes the computations also easier towards the
end of the course.

Figure 1.7: Two 6 sided dice (D6), picture from OpenClipart

When we throw a dice, we will perform a symmetry of the cube, which permutes the 8
cornes of the dice but in a way that an edge is sent on another edge. It turns out that there
are exactly 24 physically possible symmetries that can be represented by an actual dice throw.
Formally, you could also have symmetries that map the inside of the cube to the outside, but
these are impossible physically and would require deformation of the dice.

Write D as the group of (physical) rotations of the dice, which we will describe now. A
rotation of the dice will always have an axis, which can go through the dice in three possible
ways:

(1) opposite faces,

(2) centers of opposite edges,

(3) opposite corners (i.e. diagonal axis).

In the case (1), there are two possible 90˝ rotations around the axis, and as we have three
possible face pairs, this produces in total 6 possible 90˝ rotations. We can also go 180˝ rotation
in these 3 cases, and in which case both ways would produce the same rotation. Thus in total
we have 9 rotations in the case (1).

In the case (2), it is only possible to rotate by 180˝, so we have in total 6 rotations in the
case (2) as there are 6 possible pairs of edges on the opposite sides of the dice.

In the case (3), if we fix one such axis, the only possible rotations here are 120˝ one- or
the other way. As there are four possible pairs of corners on the opposite side of the dice, we
have 8 possible rotations.

These describe the D and show also that the number of elements in D, |D| “ 24. This
description also helps to see why actually D can be identified with the symmetric group S4
(i.e. in the language of group theory, they are isomorphic). We do not formally prove this
here, the proof is done e.g. in [8, Theorem 7.4], but we give now the basic idea. First of all,
consider the set of 4 diagonals d1, d2, d3, d4 that go through the cube. When you now rotate
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a cube using any of the rotations (1), (2) or (3) (i.e. an element r P D), then r will permute
the diagonals d1, . . . , d4 into some new order (take for example a dice in your hand and see
what happens to the diagonals when you rotate, or Figure 1.8), so any r gives rise to some
permutation σr P S4. It turns out that this identification is 1 ´ 1: any permutation σ P S4
(i.e. a permutation of the diagonals d1, . . . , d4) corresponds to one of the three rotations (1),
(2) or (3). This can be done by first showing two simple rotations of type (1) (see Figure 1.8)
correspond to two permutations α “ p1234q and β “ p1423q in cycle notation of permutations,
which then can be used to form a larger subgroup of S4.

Figure 1.8: Two rotations α and β that will be used to identify D with S4, image from [8,
Figure 7.3].

This way we can think physical dice rolling as a random walk on the symmetric group
S4. One natural random walk here would be defined as follows, which we can answer these
formally in the end using the tools of this course:

Consider the two rotations α and β from Figure 1.8 and the rotation corresponding
to permutation γ “ p123q. Then randomly roll dice applying the rotation α with
probability 1{3 and β with probability 1{3, and γ with 1{3.

Q1. When we keep on applying these three rotations randomly, is the distribution
of the dice “close to random”?

Q2. If yes, then how many rotations we need to be close to random?

Q3. After how many rotations of the dice we can reach a given state of the dice
with high probability?

Q4. After how many rotations of the dice we have reached every state of the dice
with high probability?

Questions 1.7
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1.5 Pass the broccoli

In this section we will provide a simple setting/example, where we can prove analogous results
as we asked in the case of card shuffling, Rubik’s cube scrambling and dice rolling with not
much background assumed from the reader. Suppose there is a dinner gathering with p people
sitting in a round table such as the King Arthur and the Knights of the Round Table. Let us
assign to each person sitting at the round table a label from t0, 1, . . . , p ´ 1u.

Figure 1.9: King Arthur and the Knights of the Round Table.

Suppose now that that King Arthur is sitting on the chair labeled 0 and has a bowl of
broccoli, which they would like to pass to either to the knight to their left or to their right so
that they can get their share of vitamins. However, King Arthur does not know to which one
they would like to pass the bowl, so they will flip a coin. If the outcome is heads, they will
pass is to the knight sitting to the right (label 1) or to the knight sitting to their left (label
p ´ 1). After this pass, the knight who received the bowl of broccoli (either knight 1 or knight
p ´ 1) will do the same: they will flip a coin and pass the bowl of broccoli either to the knight
sitting to their right or to their left.

Figure 1.10: Passing the broccoli process with the Knights of the Round Table: the broccoli
is first with the knight sitting on the chair 0, and then gives with probability 1{2 the broccoli
either to the knight sitting to their left or to their right.

This forms a “random walk” of the bowl of broccoli around the table. Depending on your
preferences, you may or may not want to taste the broccoli. Hence you could ask for example

17



what is the best place to sit on the table to avoid the bowl of broccoli for the longest possible
time? Or is there a place where we could avoid it completely? Unfortunately, the answer to
the second question is no: there is no escape from the broccoli! As we can see in Figure
1.11, the people the bowl of broccoli has visited begins to “spread” around the table (starting
from the King Arthur sitting at 0).

Figure 1.11: The “orbit” of the broccoli: as time evolves, the broccoli has visited larger and
larger arc around 0 eventually reaching to the other end of the table. And, there is no
escape! Eventually the broccolis become uniformly distributed around the table.

However, we can still ask formally how fast is the spreading, or what is the distribution of
it? For example, consider the following questions:

Q1. How many passes does it take for the bowl of broccoli to reach a given person?

Q2. How many passes does it take for the bowl of broccoli to reach every person?

Q3. How many passes do we need to take that the distribution of the people who
may hold the bowl of broccoli is “close to random”?

Questions 1.8

It turns out that the answer to all of these questions is roughly p2, where p is the number
of people dining. We can prove these by formalising the questions as a long-time behaviour
of a ergodic random walk (Chapter 3) on the additive cyclic group pZp, ‘q (Chapter 2)
and use harmonic analysis (Chapter 4) to estimate the distribution of the broccoli after n
steps (Chapter 5), which us to find the optimal mixing times (Chapter 5) of the random
walk (i.e. the pass the broccoli process).

It is also possible that the person at 0 chooses to use some other method of passing the
broccoli. Suppose for example the number of people p is even and assume the person 0 flips
a coin and throws the bowl of broccoli to either the person right to the person right of 0 (i.e.
person 2) or the one left the left of 0 (person p ´ 2). Then the person who got the bowl of
broccoli does the same, and so on. In this process it turns out that the bowl of broccoli can
only be on those people on the table whose label is an even number, i.e. the labels

Γ “ t0, 2, 4, . . . , p ´ 2u.
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In the language of group theory (see Chapter 2), the set Γ forms a proper subgroup of
the additive cyclic group pZp, ‘q. In Chapter 3 we see that the random walk formed by
such process that concentrates on this type of proper subgroup cannot have similar mixing
properties as the pass the broccoli process described above (it is not ergodic, see Chapter
3). In particular, the distribution fo the broccoli cannot be uniform in the whole table, but
only within the subgroup Γ.

The course will mostly concentrate on the pass the broccoli process modelled by a random
walk on pZp, ‘q. This may sound too “easy” for some readers but Zp is simple enough to
make most of the theory of random walks and harmonic analysis very short, but still contain
most of the crucial ideas. In Chapter 6, we will formalise these ideas in more general groups
G, such as the symmetric group discussed above and other more complicated groups that lack
the pleasant properties of the group pZp, ‘q. We will see that the general idea is still more or
less the same as in Zp and the success of the method relies more on what is known about the
algebraic structure of the group G.

As a final note, we also mention that many of the ideas presented for Zp also can be
adapted even in continuous setting, such as in the analysis of dynamical systems or random
walks on R, Rd or even hyperbolic spaces but requires then more abstract measure theory
(such as Lebesgue integration and Haar measures) and Fourier analysis on Euclidean spaces
or hyperbolic spaces.
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1.6 Goals of the course and references

It will be helpful throughout the course to keep in mind the following Intended Learning
Outcomes (ILOs), which are also available on the course’s official website. The Chapter(s)
below each ILO indicate the location where the content related to each ILO is taught in these
notes.

On successful completion of this course unit students will be able to:

1. Model card shuffling as a random walk on the symmetric group
(Chapter 1: Introduction & Chapter 6: Applying the ideas beyond Zp)

2. Define total variation distances between probability distributions on the dis-
crete circle, group Zp and calculate these distances for simple examples in Zp,
(Chapter 2: Probability theory on the group Zp)

3. Define convolutions of probability distributions on Zp, model random walks as
iterated convolutions and estimate probabilities of events using iterated convo-
lutions,
(Chapter 3: Dynamics)

4. Define Fourier transforms on the group Zp and estimate Fourier transforms of
probability distributions and their convolutions on Zp,
(Chapter 4: Harmonic Analysis)

5. Outline the calculations of computing total variation distances of convolutions
of probability distributions to the uniform distribution on Zp and alter these
proofs in other examples with different constants or parameters,
(Chapter 3: Dynamics, Chapter 5: Finding the mixing time)

6. Explain the key ideas of the theorems and methods presented in the course
and describe how each component (harmonic analysis, random walks and group
theory) come into play,
(Chapter 5: Finding the mixing time)

7. Apply the methods presented in the course and prove similar results for anal-
ogous contexts such as random walks on higher dimensional lattices, matrix
groups, models for card shuffling, Rubik’s cube scrambling or dice rolling.
(Chapter 1: Introduction, Chapter 6: Applying the ideas beyond Zp)

Intended Learning Outcomes

The ILOs will be basis of the summative examination of the course (final exam) and we
will build the teaching materials and assignments around them. They can be helpful to keep
track on what is your learning level and where there might still be things to improve.

20



This course does not have a fixed source and much of the material has been taken from
various scattered sources. However, the key sources for the Zp part and modelling card shuffling
come from the following two books:

(1) P. Diaconis: Group Representations in Probability and Statistics, IMS Lecture Series
volume 11, Institute of Mathematical Statistics, Hayward, California, 1988

(2) F. Ceccherini-Silberstein, T. Scarabotti, F. Tolli: Harmonic Analysis on Finite
Groups. Cambridge University Press, New York, 2008.

The book (1) by Diaconis is the classical source and contains a vast amount of examples
and goes very much beyond the scope of the course. The book (2) by Ceccherini-Silberstein,
Scarabotti and Tolli has a far more followable Section 2: “Two basic examples on abelian
groups” which discuss the group Zp and also the torus Zd

p, which we will go through in this
course more in detail.

Another useful source that goes more into the Harmonic Analysis side of the course is the
book by Stein and Shakarchi:

(3) E. Stein, R. Shakarchi: Fourier Analysis: An Introduction (Princeton Lectures in
Analysis), 2011

This book by Stein and Shakarchi goes again beyond the scope of this course but can
provide helpful support for surrounding material in Fourier analysis and further example.

Finally more on the probability side is the following book by Lyons and Peres:

(4) R. Lyons, Y. Peres: Probability on Trees and Networks, Cambridge Series in Statistical
and Probabilistic Mathematics, 2017

This book goes far close to applications such as on the theory of trees and networks, but
can be helpful to provide a better background on probabilistic notions.

Finally, on the notions such as ergodicity and mixing of dynamical systems, a recommended
introduction is given by the following book by Walters:

(5) P. Walters: An Introduction to Ergodic Theory, Springer, 1982

To summarise the core aims of the course: we will

• first concentrate on the additive cyclic group pZp, ‘q,

• develop random walks and harmonic analysis in Zp,

• prove quantitative mixing rates for random walks in Zp using harmonic analysis,

• formalise these ideas for card shuffling models by using the symmetric group S52,

• apply the ideas to more general groups.

Good luck with the course!
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1.7 Preliminary notations/definitions for the course

We will now give some preliminary notations and definitions we will use in the course. They
should be familiar from basic courses on algebra, analysis, complex numbers and probability,
but we will give them here for reference.

On the analysis side, we assume basic familiarity with concepts of analysis in the fields
of real and complex numbers.

Complex numbers are denoted by

C “ tz “ x ` iy : x P R, y P Ru,

where i2 “ ´1.

(1) The complex conjugate of a complex number z “ x ` iy P C is denoted by

z “ x ´ iy.

(2) The modulus of a complex number z “ x ` iy is denoted by

|z| “
a

x2 ` y2.

(3) The exponential map is defined by

eix :“ cospxq ` i sinpxq, x P R,

which are complex numbers on the unit circle in C.

Definition 1.9 (Complex conjugate and modulus)

Let panqnPN be a sequence of complex numbers. Then a P C is limit of the sequence,
denoted by,

a “ lim
nÑ8

an

if for any ε ą 0 there exists n0 P N such that for all n ě n0 we have

|an ´ a| ă ε.

Definition 1.10 (Limits)
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On the probability side we will assume some basic familiarity with the probabilistic
language, which we will give below. We will only do probability theory here in finite sets, so
we do not need to assume any language on algebras or σ-algebras of sets.

(1) A sample space is any finite set Ω. Elements ω P Ω are called outcomes.

(2) Given a sample space Ω, we call any subset A Ă Ω an event.

(3) Given an outcome ω P Ω, we associate to each ω a probability Ppωq P r0, 1s

such that their sum over all the possible outcomes is 1 (full probability):
ÿ

ωPΩ
Ppωq.

Then we define the probability of an event A Ă Ω by

PpAq :“
ÿ

ωPA

Ppωq

with the convention Pp∅q “ 0 for the empty set ∅.

(4) A S-valued random variable (for some set S) is a map X : Ω Ñ S.

Definition 1.11 (Sample space, events, probabilities and random variables)

In the random trial of coin tossing, the outcomes are either heads or tails. Thus the
sample space is

Ω “ theads, tailsu.

An event is a subset A Ă Ω, so for example in a random trial getting heads is the
singleton

A “ theadsu,

or getting heads or tails is the union

theadsu Y ttailsu “ Ω.

Then we can associate a probability P to events A Ă Ω by defining

Ppheadsq “
1
2 and Pptailsq “

1
2 .

Then for example
Ppwe get heads or tailsq “ PpΩq “ 1

or
Ppwe get heads and tailsq “ Pptheadsu X ttailsuq “ Pp∅q “ 0

Example 1.12 (Coin tossing)
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On the algebraic side this course assumes some familiarity with basic group theory,
mainly the notations and some examples.

A pair pG, ¨q is called a group if the binary operation ¨ : G ˆ G Ñ G satisfies the
axioms:

(1) Closure: If a, b P G, then
a ¨ b P G.

(2) Associativity: For all a, b, c P G we have

a ¨ pb ¨ cq “ pa ¨ bq ¨ c.

(3) Identity element: There exists an element e P G such that

e ¨ a “ a ¨ e “ a

for all a P G.

(4) Inverse element: For each a P G there exists a´1 P G such that

a ¨ a´1
“ a´1

¨ a “ e.

Definition 1.13 (Group)

A group pG, ¨q is called a Abelian group if it satisfies the axiom:

(5) Commutativity: For each a, b P G we have

a ¨ b “ b ¨ a.

Definition 1.14 (Abelian group)

Let pG, ¨q be a group. A subset Γ Ă G is a subgroup if pΓ, ¨q is also a group. We
sometimes write Γ ă G is Γ is a subgroup.

Definition 1.15 (Subgroups)

Let pG, ¨q be a group and A Ă G any subset. The subgroup generated by A is
the smallest subgroup Γ ă G containing A. Equivalently, xAy set of all a P G that
can be written as finite products of elements (or their inverses) from A:

xAy “ ta1 ¨ a2 ¨ ¨ ¨ ¨ ¨ an : aj P A or a´1
j P A, j “ 1, . . . , n, n P Nu.

Definition 1.16 (Generators of groups)
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Chapter 2

Probability theory on the group Zp

2.1 Group Zp

The vast majority of the course will concentrate on the additive cyclic group pZp, ‘q for some
p ě 2, which is formally just the integers 0, 1, . . . , p ´ 1 placed on the unit circle with equal
distance to each other equipped with the binary operation between each points is just addition
modulo p. Note that p is just an integer, so it does not have to be prime for example.

Let p P N, p ě 2, be an integer. We write formally

Zp “ t0, 1, . . . , p ´ 1u.

We equip Zp with the following operation: for t, s P Zp, we define

t ‘ s :“
#

t ` s, if 0 ď t ` s ď p ´ 1;
t ` s ´ p, if t ` s ě p.

Definition 2.1 (Group pZp, ‘q)

Visually we can think about the group pZp, ‘q as a circle with p points.

Figure 2.1: Visual representation of the group Z21: if we take t P Z21 and add, say, 3, we will
move 3 steps counterclockwise. Adding an inverse of an element ´3 “ 21 ´ 3 “ 18, say, 3
means we move clockwise 3 steps from t.
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This is the definition of mod p you may have seen in fundamental mathematics
courses, and so t ‘ s is with this definition the same as

t ‘ s :“ t ` s mod p.

The operation t ‘ s means that we move s steps right on the circle Zp from t.
For this purpose we sometimes also use the following “minus notation” to denote the
movement to the left instead of right: if t, s P Zp, we define

t a s :“ t ´ s mod p.

This means that we move s steps left from the point t on the circle Zp.

Remark 2.2

pZp, ‘q is a group, that is, it satisfies the group axioms

(1) Closure: If t, s P Zp, then
t ‘ s P Zp.

(2) Associativity: For all t, s, r P Zp we have

t ‘ ps ‘ rq “ pt ‘ sq ‘ r.

(3) Identity element: There exists an element 0 P Zp such that

0 ‘ t “ t ‘ 0 “ t

for all t P Zp.

(4) Inverse element: For each t P Zp there exists ´t P Zp such that

t ‘ ´t “ ´t ‘ t “ 0.

Formally the inverse is, by definition, for t P Zp the number

´t mod p “ ´t ` p “ p ´ t P Zp.

Theorem 2.3

Proof
Exercise.
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pZp, ‘q is also Abelian group, that is, it also satisfies the commutativity axiom

(5) Commutativity: For each t, s P Zp we have

t ‘ s “ s ‘ t.

Theorem 2.4

Proof
Exercise.

(1) In Z3 we have 2 ‘ 3 “ p2 ` 3q ´ 3 “ 2 “ p3 ` 2q ´ 3 “ 3 ‘ 2.

(2) In Z4 we have 2 ‘ 2 “ p2 ` 2q ´ 4 “ 0 so 2 is the inverse of 2 in Z4.

Example 2.5

(1) In Z6 find the inverse of 4.

(2) In Z7 find the inverse of 4.

Exercise 2.6

An important notion in the theory of random walks on groups and also in Fourier analysis
are the notions of subgroups, which are algebraic structures within Zp. Random walks
could get trapped into these spaces and the analysis might need to be reduced to these cases
separately.

(1) A subset Γ Ă Zp is a subgroup if pΓ, ‘q is also a group.

(2) A typical way to construct a subgroup is to take the subgroup generated
by A Ă Zp:

xAy “ tt1 ‘ ¨ ¨ ¨ ‘ tn : ti P A or ´ ti P A, i “ 1, . . . , n, n P Nu.

In other words, every element in xAy can be constructed as a finite sum of the
elements in A.

Definition 2.7 (Subgroups)
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Suppose p P N is even. Then all even numbers Γ Ă t0, 1, . . . , p ´ 1u form a subgroup
Γ in pZp, ‘q and the subgroup Γ is generated by 2:

Γ “ x2y.

Indeed, if t, s P N are even, then their sum t ` s is even so as p is even so is t ` s
mod p.

Example 2.8

Subgroups of Zp depend heavily on the properties of the integer p, and we have the fol-
lowing:

(1) If p is prime, then Zp has only the “trivial” subgroups t0u and Zp.

(2) If p is not prime, then all the subgroups of Zp are t0u, Zp and the generated
subgroups

xty,

for those t P t1, . . . , p ´ 1u, which divide p.

Theorem 2.9 (Subgroups of Zp)

Proof
Left as an exercise.
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2.2 Probability distributions on Zp

The aim of this section is to define probability distributions on Zp in order to formalise the
notion of a Random Walk. Here we let r0, 1s to be the closed unit interval in R.

We want to formalise the idea of choosing a point t P Zp “at random”. For this purpose
functions µ : Zp Ñ r0, 1s that assign each point t P Zp a value µptq P r0, 1s such that they sum
to 1 gives us formally the probability µptq of a point t P Zp to be chosen in a random trial.

A function µ : Zp Ñ r0, 1s is called a probability distribution if it satisfies

p´1
ÿ

t“0
µptq “ 1.

Definition 2.10 (Probability distribution)

There are two fundamental probability distributions that we will often use in our analysis:

(1) The uniform (or Lebesgue) distribution on Zp is the function λ : Zp Ñ

r0, 1s defined by
λptq :“ 1

p
, t P Zp.

(2) Fix some s P Zp. Then singular (or Dirac) distribution at s is the function
δs : Zp Ñ r0, 1s defined by

δsptq :“
#

1, if t “ s;
0, if t ‰ s.

Definition 2.11 (Uniform and singular distributions)

(1) The uniform distribution λ is a probability distribution:

p´1
ÿ

t“0
λptq “

p´1
ÿ

t“0

1
p

“ p{p “ 1.

(2) The singular distribution δs at s P Zp is a probability distribution:

p´1
ÿ

t“0
δsptq “ δspsq “ 1.

Example 2.12

29



In the case of uniform distribution λ all t P Zp have equal chance of being chosen: each
have probability 1{p. However, in the case of singular distribution δs at s P Zp it will be with
probability 1 that we choose s and with probability 0 that we choose any other t P Zp.

Uniform and singular distributions are important as they give the two natural distributions
often defined and in later sections we will see how they are related to uncertainty, uniformity
and entropy of a probability distribution µ, that describe “how random” the choices we made
according to µ are.

In the pass the broccoli process we will assign a natural probability distribution to
describe the evolution of the broccoli, which we will given in the following exercise:

Define a function µ : Zp Ñ r0, 1s by

µptq :“

$

’

&

’

%

1
2 , t “ 1;
1
2 , t “ ´1;
0, otherwise.

Prove that µ is a probability distribution. Note that ´1 is the inverse of 1 in Zp,
that is, p ´ 1.

Exercise 2.13 (Pass the broccoli distribution)

We will see later how this µ is related to the pass the broccoli process, but we can see
already that if t P Zp is chosen randomly according to µ in Exercise 2.13, then either t “ 1
with 50% probability or t “ ´1 with 50% probability. Thus this describes the location of the
broccoli after the first step when the King Arthur (person at t “ 0) has given the broccoli
either the knight on their right 0 ‘ 1 or left 0 a 1.

In probability theory, we often encounter the word event and probability of an event.
Events are formally just subsets A Ă Zp of the space of outcomes Zp and probability is the
sum of the weights µptq on each t P A. The following definition makes these notions precise:

(1) An event is any subset A Ă Zp.

(2) Given a probability distribution µ : Zp Ñ r0, 1s and an event A Ă Zp we define
the probability of the event A as the finite sum:

µpAq :“
ÿ

tPA

µptq.

Moreover, for A “ ∅, we just define µp∅q :“ 0. Thus this extends the definition
of µ to all subsets of A Ă Zp and we have for singletons ttu Ă Zp for t P Zp

that
µpttuq “ µptq.

Definition 2.14 (Events and measures)
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In probability theory one says that µ, when defined on all events A Ă Zp, is a probability
measure which satisfies the axioms of a (finitely additive) probability measure:

Given a probability distribution µ : Zp Ñ r0, 1s, the quantity µpAq defined on subsets
A Ă Zp satisfies

(1) monotonicity: If A Ă B Ă Zp, then

µpAq ď µpBq.

(2) additivity: if A1, . . . , An Ă Zp are disjoint (that is, Ak X Aℓ “ ∅ for k ‰ ℓ),
then

µ
´

n
ď

k“1
Ak

¯

“

n
ÿ

k“1
µpAkq.

(3) Zp has probability 1: we have

µpZpq “ 1

Theorem 2.15

Proof
Left as an exercise.

In literature a probability measure is often called a function satisfying the conditions (1),
(2) and (3) of Theorem 2.15 but the condition (2) on additivity is replaced by σ-additivity:
if A1, A2, ¨ ¨ ¨ Ă Zp are disjoint, then

µ
´

8
ď

k“1
Ak

¯

“

8
ÿ

k“1
µpAkq.

In general additivity in more complicated spaces does not imply σ-additivity (such examples
can be found from the literature on the field of Measure Theory). However, in our setting of
Zp this is true:

If µ : Zp Ñ r0, 1s is a probability distribution, then the associated quantity µpAq on
subsets A Ă Zp is σ-additive.

Theorem 2.16

Proof
Left as an exercise.

When we have a probability distribution µ, we often have some function f : Zp Ñ C whose
values we would like to “observe” with respect to µ. For example, we could take the following
oscillating function:

fptq “

#

1; t is even;
´1; t is odd.
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Then if we try to observe the value of f at random with respect to µ, we would ask for
the expected value of f given the random choice of µ. If p is even and µ “ λ, the uniform
distribution, then we will see that the expected value of f is 0 as there are equal number of
odd and even numbers in t1, 2, . . . , p ´ 1u.

This leads to statistical concepts such as expectation/integral which measure the average
value of fptq when we choose t randomly with respect to µ.

Let f : Zp Ñ C be a function. Then the integral (or expectation) of f with respect
to a probability distribution µ on Zp is given by the value

µpfq :“
ÿ

tPZp

fptqµptq.

In literature notations
ż

f dµ or Eµpfq

are used for these.

Definition 2.17 (Integral/expectation µpfq)

Note that if f “ 1A, the indicator function of a set A Ă Zp, that is

1Aptq :“
#

1, t P A;
0, t R A.

Then the integral of 1A is the measure µpAq:

µp1Aq “

ż

1A dµ “ Ep1Aq “ µpAq “
ÿ

tPA

µptq.

Example 2.18

Consider the function

fptq “

#

1; t is even;
´1; t is odd.

If p is even, then there are p{2 even and p{2 odd numbers in t0, 1, . . . , p ´ 1u. Thus

λpfq “
ÿ

tPZp

fptqλptq “
p

2 ¨
1
p

´
p

2 ¨
1
p

“ 0

Example 2.19

A good way to construct new probability distributions from a given set of probability
distributions is by taking their convex combinations:
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Let µ1, . . . , µn : Zp Ñ r0, 1s be probability distributions and let α1, . . . , αn P r0, 1s be
real numbers summing to one:

n
ÿ

j“1
αj “ 1.

Then the function
µptq “

n
ÿ

j“1
αjµjptq, t P Zp,

is a probability distribution.

Theorem 2.20 (Convex combinations)

The pass the broccoli process given by the probability distribution µ : Zp Ñ r0, 1s

can be written as a convex combination of the singular distributions at 1 and ´1 as
follows:

µ “
1
2δ1 `

1
2δ´1.

Example 2.21 (Pass the broccoli as a convex combination)

Let 0 ă α ă 1 and define the following probability distribution:

µα “ αδ1 ` p1 ´ αqδ´1.

Then µα describes a variation of the pass the broccoli process but where we are
biased to one direction. For example, if α ă 1{2, then it is more likely we give the
broccoli to the clockwise (i.e. use ´1).

Example 2.22 (Biased passing the broccoli)

What is the integral of

fptq “

#

1; t is even;
´1; t is odd.

with respect to the biased passing the broccoli distribution

µα “ αδ1 ` p1 ´ αqδ´1?

Exercise 2.23
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2.3 Formalising uncertainty

The aim of this section is to formalise the notion of uncertainty within a probability distribu-
tion µ : Zp Ñ r0, 1s. The uncertainty means here that if we choose t P Zp randomly according
to µ, then under much “uncertainty” it will be hard to predict the value of t. An extreme
example is the uniform distribution λptq “ 1{p, t P Zp, see Figure 2.2.

Figure 2.2: Uniform distribution on Zp: the location of the broccoli is with equal probability
1{p at a place t P Zp. Therefore, the “uncertainty” is maximal: there is no information we can
use to say t would be, say, more likely be at 0 than, say, 7.

If the distribution µ is not equal to λ, then we have some extra information about the
location of t P Zp. For example, if µ “ δ0, the singular distribution at 0, then we know with
100% certainty that t “ 0. However, typically the distributions considered are not such but
of something in between singular and uniform, see Figure 2.3

Figure 2.3: An example of a probability distribution µ : Zp Ñ r0, 1s with the height of each
“broccoli tower” telling us where it is more likely to find the broccoli. Note that some t P Zp

have µptq “ 0, so we know with 100% certainty a randomly chosen t P Zp is not any of those.
There seems to be concentration around one side of the circle Zp.

There are many ways to define “uncertainty” formally. One clear way to do this is to just
simply measure the distance of µ to uniform λ using the total variation distance
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Let µ, ν : Zp Ñ r0, 1s be probability distributions. The total variation distance
between µ and ν is defined by the maximal distances of the probabilities µpAq and
νpAq over all the events A Ă Zp, that is,

dpµ, νq :“ max
!

|µpAq ´ νpAq| : A Ă Zp

)

.

Definition 2.24 (Total variation distance)

Now total variation distance can be used to measure how uniform (or singular) a distribu-
tion µ is. In particular, we will be interested of the distance to uniform:

dpµ, λq “ max
!

|µpAq ´ λpAq| : A Ă Zp

)

.

Recall that λptq “ 1{p for all t P Zp.
For those who are familiar with metric spaces, it can be checked that the total variation

distance provides a natural notion of metric in the set of all probability distributions:

Prove that total variation distance between two probability distributions satisfies the
following properties of a metric: if µ, ν, τ are probability distributions, then

(1) They satisfy the triangle inequality:

dpµ, νq ď dpµ, τq ` dpτ, νq;

(2) Symmetry: dpµ, νq “ dpν, µq; and

(3) Equality: dpµ, νq “ 0 if and only if µ “ ν.

Exercise 2.25 (Total variation distance is a metric)

Computing total variation distance directly using its definition of finding the measures
µpAq for all sets A Ă Zp can be hard and it is helpful to use the following identity that links
the total variation distance to the so called “L1-distance”:

We have the following formula for the total variation distance

dpµ, νq “
1
2

p´1
ÿ

t“0
|µptq ´ νptq|

Theorem 2.26 (Total variation distance and L1 distance)

Proof
Consider the set

B “ tt P Zp : µptq ě νptqu.
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(1) Firstly, we have that

µpBq ´ νpBq “ νpBc
q ´ µpBc

q.

Indeed, by definition µpBq ě νpBq so in particular

|µpBq ´ νpBq| “ µpBq ´ νpBq.

On the other hand, by the additivity of µ and ν, we have:

pµpBq ´ νpBqq ´ pνpBc
q ´ µpBc

qq

“ pµpBq ` µpBc
qq ´ pνpBq ` νpBc

qq

“ µpZpq ´ νpZpq

“ 1 ´ 1
“ 0.

(2) Secondly, we see that the set B maximises the total variation distance:

dpµ, νq “ |µpBq ´ νpBq|.

Indeed, fix any set A Ă Zp. We use additivity of µ and ν to write

µpAq ´ νpAq “
ÿ

tPAXB

pµptq ´ νptqq `
ÿ

tPAzB

pµptq ´ νptqq

By definition, we have for all t P AzB we have µptq ´ νptq ă 0. Hence
ÿ

tPAzB

pµptq ´ νptqq ă 0.

Hence

µpAq ´ νpAq ď
ÿ

tPAXB

pµptq ´ νptqq “ µpA X Bq ´ νpA X Bq ď µpBq ´ νpBq. (2.1)

A symmetric argument (Exercise!) shows that

νpAq ´ µpAq ď νpBc
q ´ µpBc

q. (2.2)

By (1) we thus have
νpAq ´ µpAq ď µpBq ´ νpBq.

This proves that
|µpAq ´ νpAq| ď |µpBq ´ νpBq| ď dpµ, νq

so as A Ă Zp is arbitrary we have

dpµ, νq “ |µpBq ´ νpBq|.

(3) Thirdly, we have that

|µpBq ´ νpBq| “
1
2

p´1
ÿ

t“0
|µptq ´ νptq|.
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Indeed by (2), we have

|µpBq ´ νpBq| “
1
2 |µpBq ´ νpBq ` νpBc

q ´ µpBc
q|

By definition

µpBq ´ νpBq “
ÿ

tPZp,µptqěνptq

µptq ´ νptq “
ÿ

tPZp,µptqěνptq

|µptq ´ νptq|

and
νpBc

q ´ µpBc
q “

ÿ

tPZp,µptqăνptq

´pµptq ´ νptqq “
ÿ

tPZp,µptqăνptq

|µptq ´ νptq|

Hence

µpBq ´ νpBq ` νpBc
q ´ µpBc

q “

p´1
ÿ

t“0
|µptq ´ νptq|.

(4) Finally, combining (2) and (3) then gives us the claim:

dpµ, νq “ |µpBq ´ νpBq| “
1
2

p´1
ÿ

t“0
|µptq ´ νptq|.

Theorem 2.26 introduces the L1 distance between two probability distributions, and we
can give a notation for it using the so called L1 norms:

Define the L1 norm of a function f : Zp Ñ R by

}f}1 “
ÿ

tPZp

|fptq|.

Definition 2.27 (L1 norm)

The difference of two probability distributions µ ´ ν is a function that is defined by t P Zp by

pµ ´ νqptq “ µptq ´ νptq.

Hence Theorem 2.26 says the following:

dpµ, νq “
1
2}µ ´ ν}1.

Other useful lemma, which we can use to bound total variation distance from below is the
following that allows use “integrals”/“expectation” with respect to probability distributions.
Recall Definition 2.17 for the definition. Here we need the notion of the L8 norm:

Define the L8 norm of a function f : Zp Ñ R by

}f}8 “ maxt|fptq : t P Zpu.

Definition 2.28 (L8 norm)
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dpµ, νq “
1
2 maxt|µpfq ´ νpfq| : }f}8 ď 1, f : Zp Ñ Ru

Theorem 2.29 (Variational formula)

Proof
Exercise.

(1) Compute the total variation distance

dpλ, δ0q

between the uniform distribution λ and the singular distribution δ0 at 0.

(2) Give a formula for the total variation distance

dpδs, δrq

in terms of s, r P Zp.

(3) Define µ : Zp Ñ r0, 1s by
µ “

1
2δ1 `

1
2δ´1.

What is the total variation distance

dpµ, λq?

(4) Define µ : Zp Ñ r0, 1s by

µα “ αδ1 ` p1 ´ αqδ´1.

What is the total variation distance

dpµα, µβq

for 0 ă α ă β ă 1?

(5) Given two probability distributions µ, ν : Zp Ñ r0, 1s and 0 ă α ă 1, define
their convex combination

τα :“ αµ ` p1 ´ αqν.

Prove that the mapping α ÞÑ dpµα, µq, α P r0, 1s, is continuous.

Exercise 2.30
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2.4 Information and entropy

Another way to measure uncertainty comes from information theory, which was formalised and
popularised by Shannon inspired by ideas from statistical mechanics and Maxwell’s equations.
The basic concept here is entropy, which roughly speaking tells us information about how
much uncertainty a random choice t P Zp with probability µptq has.

The entropy of a probability distribution µ : Zp Ñ r0, 1s is given by

Hpµq “ ´

p´1
ÿ

t“0
µptq log µptq.

Here log is taken in base e, that is, log “ ln.

Definition 2.31 (Entropy)

Entropy is formally the expected information Iµptq of µ at t P Zp, which is defined by:

Iµptq :“ ´ log µptq, t P Zp.

Indeed, using the expected value / integral notation, we have that the entropy of µ is

Hpµq “ µpIµq “ EµpIµq.

(1) In Zp the uniform distribution λ has entropy

Hpλq “ log p.

Indeed, by definition

Hpλq “ ´

p´1
ÿ

t“0
p´1 log p´1

“ plog pq

p´1
ÿ

t“0

1
p

“ log p.

(2) In Zp, given t0 P Zp, the singular distribution δt0 at t0 has entropy

Hpδt0q “ 0.

Indeed, as δt0pt0q “ 1 and 0 for t ‰ t0, we have

Hpδt0q “ ´

p´1
ÿ

t“0
δt0ptq log δt0ptq “ log 1 “ 0.

Example 2.32
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For 0 ă α ă 1 define the probability distribution

µα “ αδ1 ` p1 ´ αqδ´1.

Express the entropy
Hpµαq

as a function of α. Compute also the total variation distances

dpµα, δ1q and dpµα, δ´1q

as a function of α and compare the results.

Exercise 2.33

2.5 Entropy and total variation distance

The entropy relates naturally to the total variation distance through Pinsker’s inquality
(not examinable, but the idea is useful):

Let µ : Zp Ñ r0, 1s be a probability distribution. Then the distance to uniform
satisfies the following comparison to entropy distances

1
2pHpλq ` 1q

|Hpµq ´ Hpλq| ď dpµ, λq ď
a

2|Hpµq ´ Hpλq|.

Recall that the entropy Hpλq “ log p, recall Example 2.32.

Theorem 2.34 (Pinsker’s inequality)

Proof

Let us first prove
dpµ, λq ď

a

2|Hpµq ´ Hpλq|

Define
rptq :“ pµptq ´ 1, t P Zp.

Recall that Hpλq “ log p and 0 ď Hpµq ď log p, so

|Hpµq ´ Hpλq| “ log p ´ Hpµq.

Using the definition of rptq as
ř

tPZp
µptq “ 1 we can write

log p ´ Hpµq “
1
p

ÿ

tPZp

rp1 ` rptqq logp1 ` rptqq ´ rptqs.
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Logarithm satisfies the following equality for x ě ´1:

p1 ` xq logp1 ` xq ´ x ě
1
2 ¨

x2

1 ` x{3 .

Thus
1
p

ÿ

tPZp

rp1 ` rptqq logp1 ` rptqq ´ rptqs ě
1
2p

ÿ

tPZp

rptq2

1 ` rptq{3 .

Since
ÿ

sPZp

p1 ` rpsq{3q “ p `
1
3

ÿ

sPZp

ppµpsq ´ 1q “ p,

the right-hand side is equal to

1
2p2

ÿ

tPZp

rptq2

1 ` rptq{3
ÿ

sPZp

p1 ` rpsq{3q.

Define
fptq “

a

rptq2{p1 ` rptq{3q, and gptq “
a

1 ` rptq{3.

Then
1
2

ÿ

tPZp

rptq2

1 ` rptq{3
ÿ

sPZp

p1 ` rpsq{3q “
1
2

ÿ

tPZp

fptq2
ÿ

sPZp

gpsq
2

Cauchy-Schwartz inequality for sums (see Theorem 4.13 in the later sections) gives that
´

ÿ

tPZp

fptqgptq
¯2

ď
ÿ

tPZp

fptq2
ÿ

tPZp

gpsq
2

and we see that
fptqgptq “ |rptq|

so as λptq “ 1{p we have
ÿ

tPZp

fptqgptq “
ÿ

tPZp

|rptq| “
ÿ

tPZp

|pµptq ´ 1| “ p
ÿ

tPZp

|µptq ´ λptq| “ p}µ ´ λ}1 “ pdpµ, λq.

Thus we have proved
1
2p2dpµ, λq

2
ď p2

|Hpµq ´ Hpλq|,

which gives the claim after dividing by p2.
Now let us prove the other inequality

1
2pHpλq ` 1q

|Hpµq ´ Hpλq| ď dpµ, λq

Write
B “ tt P Zp : µptq ě λptqu “ tt P Zp : µptq ě 1{pu.

Since Hpλq “ log p we have

|Hpµq ´ Hpλq| “ log p ´

´

´
ÿ

tPZp

µptq log µptq
¯

“
ÿ

tPZp

µptq log µptq

λptq
.
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and as log µptq

λptq
ă 0 for t R B, we have

ÿ

tPZp

µptq log µptq

λptq
ď

ÿ

tPB

µptq log µptq

λptq
.

Add and substract:
ÿ

tPB

µptq log µptq

λptq
“

ÿ

tPB

pµptq ´ λptqq log µptq

λptq
`

ÿ

tPB

λptq log µptq

λptq
(2.3)

Firstly as µptq ď 1 and λptq “ 1{p, we have

log µptq

λptq
ď log p,

which gives for the first term in (2.3) the bound

ÿ

tPB

pµptq ´ λptqq log µptq

λptq
ď plog pq

ÿ

tPB

pµptq ´ λptqq.

For the second term in (2.3), we write µptq{λptq “ 1 ` pµptq ´ λptqq{λptq and obtain

ÿ

tPB

λptq log µptq

λptq
“

ÿ

tPB

λptq log
´

1 `
µptq ´ λptq

λptq

¯

.

Applying logp1 ` xq ď x with x “
µptq´λptq

λptq
we obtain

ÿ

tPB

λptq log
´

1 `
µptq ´ λptq

λptq

¯

ď
ÿ

tPB

pµptq ´ λptqq.

Hence by (2.3) we have

ÿ

tPB

pµptq ´ λptqq log µptq

λptq
ď plog p ` 1q

ÿ

tPB

pµptq ´ λptqq.

Finally, the sum
ÿ

tPB

|µptq ´ λptq| “
1
2

ÿ

tPZp

|µptq ´ λptq|,

which is equal to dpµ, λq by Theorem 2.26. Hence as Hpλq “ log p we have proved

|Hpµq ´ Hpλq| ď 2pHpλq ` 1qdpµ, λq.
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Chapter 3

Dynamics

3.1 Convolution on Zp

In the previous section we talked about uncertainty and randomness of the location of t P Zp.
For example, in the passing the broccoli process, we knew that the broccoli was at location
t “ 0 and then we randomly chose t P Zp according to the probability distribution µ given by

µ “
1
2δ1 `

1
2δ´1.

In other words, we choose t “ 1 with probability 1{2 and t “ ´1 “ p ´ 1 with probability 1{2,
see Figure 3.1. However, the idea is to continue at each step passing the broccoli either to the
person on their right/left. Hence we would like to talk about the evolution of the process.

Figure 3.1: Passing the broccoli process: the broccoli is first with the person sitting on the
chair 0, and then gives with probability 1{2 the broccoli either to the person sitting to the left
or the right.

Assume we have started with the broccoli being with the person sitting at t “ 0 and then
they have given the broccoli either to their left or their right. This point is t “ 1 or t “ ´1.
Now, assume that at the next step we do the same: the person either at t “ 1 or ´1 gives the
broccoli to the person at their left or their right. In the case t “ 1, this would be t “ 0 or
t “ 2, and in the case of t “ ´1 “ p ´ 1 this would be t “ 0 or t “ p ´ 2. Is there a probability
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distribution µ̃ : Zp Ñ r0, 1s that would give us the location of the broccoli after the second
step?

We would need to define a new distribution µ̃ : Zp Ñ r0, 1s that would take into account
the choice where we landed if choosing the location of the broccoli randomly with respect to
µ. We can see that in the process we can only go once left or right, so we know that whatever
µ̃ is, it can only give positive values to the arc tp ´ 2, p ´ 1, 0, 1, 2u Ă Zp since after two steps
the broccoli could have only travelled at most 2 steps right or left. However, after the second
step it is impossible t “ 1 or t “ ´1 because we always give the broccoli to their left or right
from t “ 1 or t “ ´1 and those points are p ´ 2, 0 and 2. Hence the distribution after second
step should be concentrated on tp ´ 2, 0, 2u.

This distribution µ̃ : Zp Ñ r0, 1s is the so called convolution µ ˚ µ of µ with itself.

Let f, g : Zp Ñ C be functions. The convolution f ˚ g : Zp Ñ C of f and g is

f ˚ gptq “

p´1
ÿ

s“0
fpt a sqgpsq, t P Zp.

Recall that t a s “ t ‘ p´sq “ t ´ s mod p.

Definition 3.1 (Convolution)

In the case of f “ g “ µ for a probability distribution µ : Zp Ñ r0, 1s we see that

µ ˚ µptq “

p´1
ÿ

s“0
µpt a sqµpsq.

Recalling the notation of “expectation” from the previous chapter, we see that

µ ˚ µptq “ Eµpftq

for ft : Zp Ñ r0, 1s defined by

ftpsq “ µpt a sq, s P Zp.

Hence formally convolution µ ˚ µptq describes the expected value of the probability µpt a sq

when s P Zp is chosen randomly according to µ. In the case of µ “ 1
2δ1 ` 1

2δ´1, we thus have

µ ˚ µptq “

p´1
ÿ

s“0
µpt a sqµpsq

“ µpt a 1q{2 ` µpt ‘ 1q{2
“ δ2ptq{4 ` δ0ptq{4 ` δ0ptq{4 ` δ´2ptq{4
“ δ2ptq{4 ` δ0ptq{2 ` δ´2ptq{4,

where in the last line we used the identities (for t P Zp):

δ1pt a 1q “ δ2ptq;
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δ´1pt a 1q “ δ0ptq;
δ1pt ‘ 1q “ δ0ptq;

δ´1pt ‘ 1q “ δ´2ptq.

Hence if we choose t P Zp randomly according to µ ˚ µ, we have t “ 2 with probability 1{2,
t “ 0 with probability 1{2 and t “ ´2 with probability 1{4. Thus the resulting distribution
µ ˚ µ is also a probability distribution, which is true in general:

Suppose µ and ν are probability distributions on Zp. Prove that µ˚ν is a probability
distribution Zp.

Theorem 3.2

Proof
Exercise.

Probabilistically, we can think about the convolution as an evolution of a random walk on
Zp, where the transition is given by “transition kernel”

P pt, sq “ µpt a sq,

which is the probability of the walk to transition from the state s to the state t. The transition
kernel P pt, sq when ordered t, s P Zp gives a matrix p ˆ p matrix P with entries given by
P pt, sq. This matrix is very important in the study of the evolution of the random walk and
it is sometimes called the “transfer operator” of the process. In this course we will not pursue
much into this, but for those interested in graph theory or dynamical systems might encounter
this more.
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One good way to understand convolution is through the probabilistic idea: if t1 P Zp

has distribution µ and t2 P Zp has distribution ν, then the sum t1 ‘t2 has distribution
µ ˚ ν. Indeed, for any t P Zp we can write

Ppt1 ‘ t2 “ tq “ Epδtpt1 ‘ t2qq

for the two dimensional Dirac mass function δt : Zp ˆ Zp Ñ r0, 1s, which is 1 when
t1 ‘ t2 “ t and 0 otherwise. On the other hand as t1 has distribution µ and t2 has
distribution ν, we have

Epδtpt1 ‘ t2qq “

ż ż

δtpt1 ‘ t2q dµpt1q dνpt2q

and as t1 ‘ t2 “ t if and only if t1 “ t a t2, we obtain
ż ż

δtpt1 ‘ t2q dµpt1q dνpt2q “

ż

µpt a t2q dνpt2q “
ÿ

t2PZp

µpt a t2qνpt2q “ µ ˚ νptq.

Here formally the expectations are taken with respect to the product distribution
µ ˆ ν : Zp ˆ Zp Ñ r0, 1s, defined by µ ˆ νpt, sq “ µptqνpsq, pt, sq P Zp ˆ Zp.

Remark 3.3 (Probability vs convolution)

Convolution also enjoys the following useful identities:

For all f, g, h : Zp Ñ C we have

(a) Commutativity: f ˚ g “ g ˚ f

(b) Associativity: f ˚ pg ˚ hq “ pf ˚ gq ˚ h

(c) Linearity: if α, β P C, then f ˚ pαg ` βhq “ αf ˚ g ` βf ˚ h

Theorem 3.4

Proof
Exercise.

Geometrically or information theoretically, convolution should be thought as “smoothen-
ing” operation. If we convolve, say, two probability distributions µ and ν, then the resulting
convolution µ˚ν should somehow be more smooth than the original. Information theoretically
this means that the “uncertainty” of choosing a point t P Zp according to µ ˚ ν increases. This
can be formally done in the following theorem:
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If µ, ν : Zp Ñ r0, 1s are probability distributions, then the entropy

Hpµ ˚ νq ě maxtHpµq, Hpνqu.

Theorem 3.5 (Entropy grows under convolutions)

Proof
Exercise.

In the case of uniform distribution λptq “ 1{p, t P Zp, the convolution with any other
µ : Zp Ñ r0, 1s does not change the situation at all:

For the uniform λptq “ 1{p, t P Zp, we have

µ ˚ λ “ λ.

Theorem 3.6

Proof
Exercise.

If we convolve with a singular distribution δs : Zp Ñ r0, 1s at some s P Zp, then convolution
works as a translation with s P Zp:

For the singular distribution δs at s P Zp we have

δs ˚ µptq “ µpt a sq.

Theorem 3.7

Proof
Exercise.

For 0 ă α ă 1
µ “ αδ1 ` p1 ´ αqδ´1

compute µ ˚ µ and µ ˚ µ ˚ µ.

Exercise 3.8

Prove that if µ, ν : Zp Ñ r0, 1s are probability distributions, then

Hpµ ˚ νq ď Hpµq ` Hpνq.

Exercise 3.9
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3.2 Sumsets in Zp and relation to convolutions

Convolution is closely related to an additive combinatoric notion of a sumset:

Let A, B Ă Zp. Then their sumset is the formal sum

A ‘ B “ tt ‘ s : t P A, s P Bu.

Definition 3.10 (Sumset)

If A Ă Zp, let us write |A| as the cardinality of A. That is, if A “ ta1, . . . , anu, then
|A| “ n. Additive combinatorics concerns the relationship between the structure of A and B
and the cardinality of their sumset A ‘ B.

(1) Prove that
maxt|A|, |B|u ď |A ‘ B| ď |A||B|.

(2) Give an example of sets A, B Ă Zp such that

|A ‘ B| “ maxt|A|, |B|u.

(3) Give an example of sets A, B Ă Zp which are not Zp such that

|A ‘ B| “ |A||B|.

Exercise 3.11

If p is prime, then Zp has no nontrivial subgroups (i.e. the only subgroups are t0u and Zp.)
Thus it is hard to have

|A ‘ B| “ maxt|A|, |B|u

achieved. The Cauchy-Davenport inequality gives the common lower bound in these cases:

If p is prime, then for all A, B Ă Zp we have

|A ‘ B| ě mint|A| ` |B| ´ 1, pu.

Exercise 3.12 (Cauchy-Davenport inequality)

See [14, Proposition 5.4] for a proof.
The connection to sumsets comes from the notion of support of the convolution.
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Let µ : Zp Ñ r0, 1s be a probability distribution. The subset of Zp

sptpµq “ tt P Zp : µptq ą 0u

is defined to be the support of µ.

Definition 3.13 (Support of a probability distribution)

If we consider the support of the convolution µ ˚ ν, it reveals that the support is contained
in the sumset of the supports sptpµq and sptpνq. Thus this creates a link between the group
theoretic properties of Zp and the probabilistic heuristics behind convolution and we formalise
it in the following theorem:

Let µ, ν : Zp Ñ r0, 1s be probability distributions. Then the support

sptpµ ˚ νq “ sptpµq ‘ sptpνq.

Theorem 3.14 (Support of convolutions and the sumset of supports)

Proof
Ă Let r P sptpµ ˚ νq. Then µ ˚ νprq ą 0. We need to prove that r “ t ‘ s for some t P sptpµq

and s P sptpνq. By the definition of the convolution

µ ˚ νprq “
ÿ

sPZp

µpr a sqνpsq

so if this is positive then we know that

µpr a sqνpsq ą 0

for some s P Zp. This is only possible if µpr a sq ą 0 and νpsq ą 0 so s P sptpνq. Define

t :“ r a s.

Then µptq ą 0 so t P sptpµq and
r “ t ‘ s.

Thus as r P sptpµ ˚ νq is arbitrary, we have

sptpµ ˚ νq Ă sptpµq ‘ sptpνq.

Ą Take t P sptpµq and s P sptpνq. We want to prove that µ ˚ νpt ‘ sq ą 0. By the
definition of convolution

µ ˚ νpt ‘ sq “
ÿ

rPZp

µpt ‘ s a rqνprq.

If now µpt ‘ sq “ 0, then µpt ‘ s a rqνprq “ 0 for some r P Zp, which means that

µpt ‘ s a rq “ 0
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or
νprq “ 0.

Suppose r “ s. Then
t ‘ s a r “ t ‘ s a s “ t.

If the first case happens, then
µptq “ µpt ‘ s a rq “ 0,

which is a contradiction with t P sptpµq. If the second case happens, then

νpsq “ νprq “ 0,

which is also a contradiction with s P sptpνq. Hence µ ˚ νpt ‘ sq ą 0 so t ‘ s P sptpµ ˚ νq. In
particular, as t P sptpµq and s P sptpνq are arbitrary, we have

sptpµ ˚ νq Ą sptpµq ‘ sptpνq.

For 0 ă α ă 1, let
µ “ αδ1 ` p1 ´ αqδ´1.

Compute sptpµ ˚ µ ˚ µq.

Exercise 3.15
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3.3 Convolutions model a random walk on Zp

The aim of this section is to introduce formally random walks on the group Zp, give
notations for it and link it to convolutions.

The core idea behind a random walk is that we have a sequence of probability distributions
µ1, µ2, ¨ ¨ ¨ : Zp Ñ r0, 1s and at step one, we choose a random point t1 from Zp according to
µ1, then add (using ‘ operation) a random point t2 to t1 obtaining t1 ‘ t2. The distribution
of this random variable will be µ1 ˚ µ2. If we continue this process we obtain a random point
t1 ‘ t2 ‘ ¨ ¨ ¨ ‘ tn P Zp with distribution µ1 ˚ µ2 ˚ ¨ ¨ ¨ ˚ µn.

For example, the pass the broccoli process we have the distribution µ “ µ1 “ µ2 “ . . .
defined by

µ “
1
2δ1 `

1
2δ´1.

Then if we choose a random point t1 according to µ, we obtain either ´1 or 1 with probability
1{2, and then the next point t2 is again chosen according to µ and added to the value t1, which
gives us t1 ‘ t2, and so on.

Commonly we deal with a single distribution µ “ µ1 “ µ2 “ . . . as in the pass the broccoli
process, and we will mostly concentrate on that case. The case of different distributions gives
arise to a more complicated theory.

To formalise what we said above, let us introduce some notation.

Let µ be a probability distribution and n ě 1. Then the n-iterated convolution is
defined recursively by

µ˚n
“ µ˚pn´1q

˚ µ

with µ˚0 :“ δ0.

Definition 3.16 (Iterated convolution)

Thus we have

µ˚0
“ δ0, µ˚1

“ µ, µ˚2
“ µ ˚ µ, µ˚3

“ µ ˚ µ ˚ µ, and so on.

In the case of the passing the broccoli, the probability distribution

µ˚n : Zp Ñ r0, 1s

tells us the distribution of the broccoli after n steps: we know first that the Broccoli
is with the person sitting on the chair 0, and then with probability 1{2 we pass the
Broccoli either left or right and iterate this n times.

Example 3.17

We can use convolutions to define random walks on the group Zp formally.
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Figure 3.2: Visualisation of the iterated convolution. We first have the distribution µ˚0 “ δ0,
we know that he broccoli begins at the location 0. Then, in the first step, we take µ˚1 “ µ,
that is, with equal probability the broccoli is located at 1 or ´1. The height of the broccoli
towers describe how likely is the broccoli found at t P Zp is. Initially they are in 1 and ´1.
Then the picture in the middle is the iterated convolution µ˚2 “ µ˚µ, which shows the broccoli
starting to spread around the table, and finally µ˚3 “ µ ˚ µ ˚ µ. We observe “flattening” of the
distribution from relatively singular µ to more uniformly distributed µ˚3.

Fix some probability distribution µ : Zp Ñ r0, 1s and let t1, . . . , tn be Zp valued
random variables with for each j “ 1, 2, . . . , n that

Pptj “ tq “ µptq, t P Zp.

We define a random walk on Zp by the random variable

Xn :“ t1 ‘ ¨ ¨ ¨ ‘ tn P Zp.

This new random variable Xn on Zp has distribution µ˚n, that is,

PpXn “ tq “ µ˚n
ptq, t P Zp.

We say that X1, X2, . . . is then driven by the probability distribution µ.

Definition 3.18 (Random walk on Zp)

Here we see that for example
PpX1 “ tq “ µptq
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and if A Ă Zp, we have
PpX1 P Aq “ µpAq.

A common theme in random walks is to understand the return probabilities of random
walks or probabilities we reach from one state to other. In the case of Zp, this could mean
that what is the probability that X1 “ s (we begin from the state s P Zp) and after n steps
we reach state t P Zp, that is, Xn “ t?

There are two ways to approach this. First of all, notice that the values of X1 and Xn

statistically independent of each other, that is, X1 “ s and Xn “ t do not influence each
other. This is because we have

X1 :“ t1
1

for some t1
1 P Zp with distribution µ and

Xn :“ t1 ‘ ¨ ¨ ¨ ‘ tn

for some t1, . . . , tn with distribution µ, but here the random variables t1, t1
1 P Zp may not be

the same, they just have the same distribution µ.
Thus we can define the probability of the event that X1 “ s and Xn “ t as follows:

If s, t P Zp, then define

PpX1 “ s, Xn “ tq :“ PpX1 “ sqPpXn “ tq “ µpsqµ˚n
ptq.

Definition 3.19 (Probability of the event X1 “ s, Xn “ t)

If we would like to consider the probability when assuming the first element in Xn

is s, that is, then we are fixing t1 “ s in Xn, then there is dependence: we would be
asking the probability of the event

Pps ‘ t2 ‘ ¨ ¨ ¨ ‘ tn “ tq,

which is by definition as s ‘ t2 ‘ ¨ ¨ ¨ ‘ tn has distribution δs ˚ µ˚pn´1q given by

δs ˚ µ˚pn´1q
ptq “ µ˚pn´1q

pt a sq.

Remark 3.20 (Fixing initial t1 “ s in Xn)
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We need to emphasise here that PpX1 “ s, Xn “ sq does not mean conditional
probability you may have seen in a probability course. If we write

PpXn “ t|X1 “ sq (3.1)

we mean the probability of the event that the random walk X1, X2, X3, . . . in Zp

driven by a probability distribution µ : Zp Ñ r0, 1s satisfies Xn “ t assuming that
the same walk started with X1 “ s. This is more information about the location
and it is possible that Xn “ t might be harder/easier to achieve if we have X1 “ s.
Formally one defines

PpXn “ t|X1 “ sq “
PpX1 “ s, Xn “ tq

PpX1 “ sq
,

which as PpX1 “ sq “ µptq is equal to

PpXn “ t|X1 “ sq “
PpX1 “ s, Xn “ tq

PpX1 “ sq
“

µpsqµ˚nptq

µpsq
“ µ˚n

ptq.

Remark 3.21 (Conditioning X1 “ s)

Define
µ “

1
2pδ1 ` δ´1q,

i.e. the pass the broccoli random walk. Then

PpX1 “ 1, X2 “ 1q “ µp1qµ ˚ µp1q

“
1
2µ ˚ µp1q

“
1
2

ÿ

sPZp

µp1 a sqµpsq

“
1
2pµp1 a 1qµp1q ` µp1 ‘ 1qµp´1qq

“ 0

However, if we assume the first summand in X2 is 1, then we are computing the
probability

Pp1 ‘ t2 “ 1q “ Ppt2 “ 0q “ µp0q “ 0.

Finally, the conditional probability

PpX2 “ 1|X1 “ 1q “
PpX1 “ 1, X2 “ 1q

PpX1 “ 1q
“ 0.

Example 3.22

54



Define
µ “

1
2pδ1 ` δ´1q,

i.e. the pass the broccoli random walk. Then

PpX1 “ 1, X2 “ 2q “ µp1qµ ˚ µp2q

“
1
2µ ˚ µp2q

“
1
2

ÿ

sPZp

µp2 a sqµpsq

“
1
2pµp2 a 1qµp1q ` µp2 ‘ 1qµp´1qq

“
1
2pµp1qµp1q ` µp3qµp´1qq

“
1
2 ¨ p

1
2 ¨

1
2 ` 0q

“
1
8 .

Example 3.23

Let X1, X2, . . . , be the random walk driven by µα “ αδ1 ` p1 ´ αqδ´1. Compute the
probabilities

(1) PpX1 “ 1, X2 “ 2q.

(2) PpX1 “ 0, X2 “ ´2q.

(3) PpX1 “ 1, X4 “ 1q.

Compare these to the probabilities

(1) Pp1 ‘ t2 “ 2q.

(2) Pp0 ‘ t2 “ ´2q.

(3) Pp1 ‘ t4 “ 1q.

Exercise 3.24
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3.4 Ergodic theory and subgroups

Having defined iteration, we can now talk about the long-term asymptotics of the process.
For example, is there a way to associate a limit µ8 probability distribution to the iterated
convolutions µ˚n as n Ñ 8? This limit should give us some information of the long-term
asymptotics of the random walk on Zp with initial distribution given by µ.

For this purpose, let us define formally “limits” of sequences of probability distributions:

Let µ1, µ2, ¨ ¨ ¨ : Zp Ñ r0, 1s be a sequence of probability distributions. Then they
have a limit µ8 : Zp Ñ r0, 1s if for every t P Zp the limit exists:

lim
nÑ8

µnptq “ µ8ptq.

The limit µ8 is a probability distribution (Exercise!).

Definition 3.25 (Limits of probability distributions)

We can characterise them using the total variation distance:

Let µ1, µ2, ¨ ¨ ¨ : Zp Ñ r0, 1s be a sequence of probability distributions. Then they
have a limit µ8 : Zp Ñ r0, 1s if and only if

lim
nÑ8

dpµn, µ8q “ 0.

Theorem 3.26

Proof
Exercise.

Ergodicity of a random walk is a fundamental notion of chaos. The basic idea of an ergodic
random walk that it will forget the initial state and the limit will be independent of where
we began. In the case of non-ergodic random walks the initial state (or distribution) will
completely determine the range of the random walk.

A probability distribution µ : Zp Ñ r0, 1s is ergodic if the limit of the iterated
convolutions is the uniform distribution λ, that is,

lim
nÑ8

µ˚n
ptq “ λptq, t P Zp.

Recall that λ is the uniform distribution λptq “ 1{p for t P Zp.

Definition 3.27 (Ergodicity)
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In other words, recalling the notations from Definition 3.18, if t1, t2 . . . is the associated
random walk on Zp with t1, t2, . . . , have distribution µ, then the distributions of

Xn “ t1 ‘ t2 ¨ ¨ ¨ ‘ tn P Zp

converge in total variation distance to the uniform distribution λ on Zp. For those more
familiar with probability theory, random walks and Markov chains, one can equivalently write
ergodicity using the sites the random walk generated by µ : Zp Ñ r0, 1s attains. We will
discuss this in more detaill at the end of the section.

Recall from the language of group theory:

Let p ě 2.

(1) A subset Γ Ă Zp is a subgroup if

t, s P Zp ùñ t ‘ s P Zp.

We write then Γ ă Zp.

(2) Subgroup Γ ă Zp is trivial if Γ “ t0u and proper if Γ ‰ Zp.

(3) A subset A Ă Zp generates a subgroup Γ if

xAy “ Γ.

(4) A subset A Ă Zp is a coset of a subgroup Γ if there exists t P Zp such that

A “ Γ ‘ t,

where
Γ ‘ t “ ta ‘ t : a P Γu.

Definition 3.28

We will need the following simple lemma that tells us that not a set A Ă Zp not being
concentrated on proper subgroups implies that taking large enough sumsets

A‘n :“ A‘pn´1q
‘ A

for n ě 1 with A˚0 “ ∅, become the whole group Zp.

Let A Ă Zp. If A is not contained in a coset of a proper subgroup of Zp, then there
exists n P N such that

A‘n
“ Zp.

Lemma 3.29 (Non-concentration and sumsets)
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Proof
(Thanks Borys Kuca for the proof, see also an alternative proof in the book by Tao and Vu
[14, Proposition 2.2])

Let us first prove the following property: (˚) If A, B Ă Zp are non-empty and |A ‘ B| “

|A| “ |B|, then A, B are cosets of the same subgroup Γ ă Zp.
To prove this property (˚), fix some t P A and some s P B, and define the translates

A1
“ A a t, and B1

“ B a s.

Then the sumset
A1

‘ B1
“ pA ‘ Bq ‘ pt ‘ sq

so by the assumption on A and B we have

|A1
‘ B1

| “ |A1
| and |A1

‘ B1
| “ |B1

|.

Note that 0 “ t a t P A1 and 0 “ s a s P B1 so A1 Ă A1 ‘ B1 and B1 Ă A1 ‘ B1. Therefore we
have from the cardinality equality that

A1
“ A1

‘ B1
“ B1.

Thus A1 ‘ A1 “ A1. This implies A1 is a subgroup. On the other hand, A “ A1 ‘ t and
B “ A1 ‘ s so A, B are cosets of the same subgroup. Thus the property (˚) above is proved.

Now, let us look at the claim of the lemma. If A is not contained in a coset of a proper
subgroup, then neither is A‘n for any n P N. Hence applying the property (˚) above we obtain

|A‘2
| “ |A ‘ A| ą |A|, |A‘4

| “ |A‘2
‘ A‘2

| ą |A‘2
|, |A‘8

| “ |A‘4
‘ A‘4

| ą |A‘4
| . . .

so we have
|A‘2n

| ą |A‘2n´1
|, n P N,

so the cardinality |A‘2n
| grows as n Ñ 8. However, we always have |A‘2n

| ď |Zp| “ p for all
n P N so that means there exists n P N such that |A‘2n

| “ |Zp|, which implies A‘n “ Zp.
Lemma 3.29 gives us the following fundamental result on supports of iterated convolutions

and concentration on cosets of subgroups:

Let µ : Zp Ñ r0, 1s be a probability distribution. Then the support sptpµq is not
contained in a coset of a proper subgroup of Zp if and only if there exists n P N with

sptpµ˚n
q “ Zp.

Theorem 3.30 (Non-concentration of convolutions on subgroups)

Proof
ñ Write A “ sptpµq. Then Theorem 3.14 gives

sptpµ˚n
q “ A‘n.
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Since A “ sptpµq is not contained in a coset of a proper subgroup of Zp, we can apply Lemma
3.29 with A “ sptpµq to obtain

A‘n
“ Zp

as claimed.
ð Suppose on the contrary that sptpµq Ă Γ ‘ s for some proper subgroup Γ of Zp, but

there exists n P N such that µ˚nptq ą 0 for all t P Zp. Using Theorem 3.14 we see that the
support

sptpµ˚n
q “ pΓ ‘ sq

‘n
“ Γ‘n

‘ pnsq.

However, since Γ is a subgroup, we know that

Γ‘n
Ă Γ

so we have that sptpµ˚nq is also contained in a coset of a proper subgroup Γ of Zp. Since Γ is
proper, that is, not equal to Zp, also sptpµ˚nq ‰ Zp so we know that there exists t P Zp such
that

µ˚n
ptq “ 0.

Contradiction.
Theorem 3.30 relates closely to ergodicity:

A probability distribution µ is ergodic if and only if the support sptpµq is not con-
tained in a coset of a proper subgroup of Zp.

Theorem 3.31 (Ergodic theorem)

Proof
If µ is ergodic, then µ˚nptq Ñ λptq “ 1{p for all t P Zp. Hence there exists n P N such that
µ˚nptq ą 0 for all n P N. Then by Theorem 3.30 the support sptpµq is not contained in a
proper subgroup of Zp.

Thus we just need to check the other direction, where we assume that sptpµq generates Zp

and it is not contained in a proper subgroup of Zp. Let us prove the ergodicity of µ:

lim
kÑ8

µ˚k
ptq “ λptq, t P Zp.

(1) Define the sequences
Mk “ max

tPZp

µ˚k
ptq

and
mk “ min

tPZp

µ˚k
ptq.

By Theorem 3.30, since sptpµq is not contained in a proper subgroup of Zp we know that there
exists k0 P N such that

ε :“ mk0 P p0, 1q.

(2) It is enough to prove that Mk and mk both converge to a common limit ℓ ą 0. Indeed,
since by definition

mk ď µ˚k
ptq ď Mk
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we know that for all t P Zp.
lim
kÑ8

µ˚k
ptq “ ℓ.

The only possibility for such limit is ℓ “ 1{p since by summing over t P Zp and using the fact
that µ˚k is a probability distribution, we have

1 “ lim
kÑ8

ÿ

tPZp

µ˚k
ptq “

ÿ

tPZp

lim
kÑ8

µ˚k
ptq “

ÿ

tPZp

ℓ “ pℓ,

which is claim.
(3) Let us now prove that Mk and mk have a common limit. We know that pMkq and

pmkq both converge to some limits M8 and m8 respectively as the sequences Mk and mk are
monotonic: for mk we have that for all t P Zp we have

mk “
ÿ

sPZp

µpt a sqmk ď
ÿ

sPZp

µpt a sqµ˚k
psq “ µ˚pk`1q

ptq

so taking minimum over t P Zp gives

mk ď mk`1

and similarly for Mk we have

µ˚pk`1q
ptq “

ÿ

sPZp

µpt a sqµ˚k
psq ď

ÿ

sPZp

µpt a sqMk “ Mk

so by taking maximum over t P Zp gives

Mk`1 ď Mk.

Now we just need to prove that M8 “ m8.

(4) To prove M8 “ m8, it is enough to prove that for all r ě 0 we have

Mk0`r ´ mk0`r ď p1 ´ εqpMr ´ mrq. (3.2)

Indeed, by iterating this inequality k times we obtain

Mkk0`r ´ mkk0`r ď p1 ´ εq
k
pMr ´ mrq,

which converges to 0 as k Ñ 8 as 0 ă 1 ´ ε ă 1. Since Mk Ñ M8 and mk Ñ m8 as k Ñ 8

the limits along these subsequences will be the same, so M8 “ m8.
(5) Let us now prove the final claim (3.2). We have

µ˚pk0`rq
ptq “

ÿ

sPZp

µ˚k0pt a sqµ˚r
psq

“
ÿ

sPZp

rµ˚k0pt a sq ´ εµ˚r
p´sqsµ˚r

psq ` ε
ÿ

sPZp

µ˚r
p´sqµ˚r

psq

“
ÿ

sPZp

rµ˚k0pt a sq ´ εµ˚r
p´sqsµ˚r

psq ` εµ˚p2rq
p0q

ě
ÿ

sPZp

rµ˚k0pt a sq ´ εµ˚r
p´sqsmr ` εµ˚p2rq

p0q

“ p1 ´ εqmr ` εµ˚p2rq
p0q.
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The inequality in the above chain follows from the fact that

µ˚k0pt a sq ´ εµ˚r
p´sq ě 0

since by definition ε “ mk0 we have ε ď µ˚k0pt a sq so

µ˚k0pt a sq ´ εµ˚r
p´sq ě µ˚k0pt a sqp1 ´ µ˚r

p´sqq

and here
µ˚k0pt a sqp1 ´ µ˚r

p´sqq ě 0.

We have proved for all t P Zp the inequality

µ˚pk0`rq
ptq ě p1 ´ εqmr ` εµ˚p2rq

p0q.

Now taking the minimum over all t P Zp gives

mk0`r ě p1 ´ εqmr ` εµ˚p2rq
p0q.

A similar argument (left as an exercise) shows the upper bound

Mk0`r ď p1 ´ εqMr ` εµ˚p2rq
p0q.

Combining these gives us the claimed inequality (3.2).

Let µ be a probability distribution on Zp and assume that the support

sptpµq “ tt P Zp : µptq ą 0u

is a proper subgroup of Zp. What is the limit

lim
tÑ8

µ˚k
ptq?

Exercise 3.32
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3.5 Mixing

Having now found out that as long as the support sptpµq is not contained in a proper subgroup
of Zp, then

µ˚n
ptq Ñ λptq

at every t P Zp. Note that this is equivalent to

dpµ˚n, λq Ñ 0.

What is the rate of this? This is very relevant to us if we want to find out the number of card
shuffles we would like to do to properly mix the deck, or say, how many moves of the Rubik’s
cube we would need to perform in order to have a state of the cube that is random enough.
For this purpose, practically one could for example require to find the minimal n P N such
that

dpµ˚n, λq ď
1

100 ,

which implies that all the probabilities µ˚npAq for every event A Ă Zp are very close to the
uniform λpAq “ 1{|A| up to an error of 1%.

This minimal n for which
dpµ˚n, λq ď

1
100 ,

is called the mixing time of the random walk with threshold ε “ 1{100.

Given a threshold ε ą 0, we say that the random walk has mixing time nmixpεq if
for all n ě nmixpεq

dpν ˚ µ˚n, λq ă ε.

Definition 3.33 (Mixing time)

To find the mixing time nmixpεq it is thus very important to know the quantitative rate at
which

dpµ˚n, λq Ñ 0.

One usually called the rate of mixing of the random walk.

We say that the random walk driven by µ : Zp Ñ r0, 1s is mixing with a rate
ϕpnq Ñ 0 as n Ñ 8 if for all initial distributions ν we have

dpν ˚ µ˚n, λq ď ϕpnq

for all n P N.

Definition 3.34 (Mixing)

Commonly we see that the rate of mixing is exponential, and in the case of Zp, but to
prove this we need harmonic analysis.
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Chapter 4

Harmonic analysis

4.1 Introduction

Suppose we have a function f : r0, 1s Ñ C that has a relatively messy looking graph. One
could consider this as a sound signal with various high and low frequencies in it (like a tape of
a music record), or a very fractal like function. In order to understand the behaviour of f , one
needs to find ways to decompose the function into simpler pieces from which one could read
properties of it. This can be useful in signal processing to find which high or low frequency
sounds are contributing to the signal.

It was observed by Fourier that using sums of simple trigonometric functions (waves)
x ÞÑ cosp2πkxq, if the function f has enough regularity (such as differentiability), it can be
expressed as a sum of cosine waves:

fpxq “
ÿ

kPZ
ak cosp2πkxq

for some coefficients ak that represent the amplitude (or height) of the wave, and the integer
k corresponds to a frequency (or number of oscillations) of the wave.

Figure 4.1: The core idea behind Fourier analysis: we would like to represent a complicated
function/signal f : r0, 1s Ñ C (e.g. the red saw-tooth function) as a sum of simpler cosine
functions x ÞÑ ak cosp2πkxq, k P Z (the blue waves) with the coefficients (“amplitudes”) ak

given by the Fourier transform of the function ak “ pfpkq. The values of ak thus tell how
“high” the oscillations of x ÞÑ ak cosp2πkxq become and k tells the frequency of the waves
x ÞÑ ak cosp2πkxq. Picture copyright CC0.

The amplitudes ak are in most cases given by the cosine transform pf cospkq of the function
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µ at a frequency k, which can be formally defined using integration:

ak “ pf cos
pkq “

ż 1

0
fpxq cosp´2πkxq dx.

This number represents a kind of expected value of the wave. If it is close to 0, then one
expects not to have many oscillations in high frequencies.

However, due to theoretical advantages (and also connections to quantum mechanics, which
we will not explore in this course), it is more beneficial to use complex valued waves

e2πkix
“ cosp2πkxq ` i sinp2πkxq, x P r0, 1s,

when defining the waves. The advantage of this is that we have many useful theoretical
formula at our disposal (like convolution theorem and Plancherel theorem below) and one can
still recover similar intuition. In this case, the Fourier transform of f : r0, 1s Ñ C at frequency
k P Z is defined by

pfpkq “

ż 1

0
fpxqe´2πkix dx

and one looks for a representation of f as a Fourier series:

fpxq “
ÿ

kPZ

pfpkqe2πkix, x P r0, 1s.

In this course, we will not go into this “continuous” side of Fourier analysis, but more consider
the case for functions f : Zp Ñ C instead. However, we emphasise that many of the ideas
presented in the simpler case Zp carry to the continuous setting with sums replaced by integrals.
The proofs in the case Zp are just much simpler and do not require to take into account the
intricacies of real numbers.
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4.2 Fourier transform in Zp

In the case of the group Zp where we study our random walks, we can also study similar
representations of functions f : Zp Ñ R using waves. In literature such Fourier transforms are
also known as Discrete Fourier Transforms (DFT).

The Fourier transform of f : Zp Ñ C in the frequency k P Zp is given by

pfpkq “

p´1
ÿ

t“0
fptqe´2πikt{p. (4.1)

Definition 4.1 (Fourier transform in Zp)

The functions t ÞÑ e´2πikt{p, t P Zp for a given frequency k P Zp are called characters or
stationary waves, and they have a notation: χk : Zp Ñ C, defined by

χkptq :“ e´2πikt{p.

Thus the Fourier transform of f : Zp Ñ C can be written as

pfpkq “

p´1
ÿ

t“0
fptqχkptq.

In this chapter we will consider mostly functions f : Zp Ñ C but we mostly apply the Fourier
transforms to probability distributions µ : Zp Ñ r0, 1s, which are a special case of this theory.

An useful way to think Fourier transforms of, say, a probability distribution µ : Zp Ñ r0, 1s

is that each we choose each complex number χkptq with probability µptq and sum over them.
For computing such resulting exponential sums, the exponential sum formula will be useful:

As long as θ ‰ 0, we have
p´1
ÿ

t“0
eitθ

“
1 ´ eipθ

1 ´ eiθ
.

Theorem 4.2 (Exponential sum formula)

Proof
Exercise.

To demonstrate the use of Theorem 4.2 we can use it to directly compute the Fourier
transform of the uniform distribution:
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For the uniform distribution λptq “ 1{p, t P Zp, we have for k ‰ 0 by the geometric
sum formula with θ “ ´2πk{p ‰ 0 that

pλpkq “

p´1
ÿ

t“0

1
p

e´2πikt{p
“

1
p

1 ´ eipθ

1 ´ eiθ
“

1
p

1 ´ e´2πki

1 ´ e´2πik{p
“ 0

and for k “ 0 we have

pλp0q “

p´1
ÿ

t“0

1
p

e´2πi0t{p
“

p´1
ÿ

t“0

1
p

“ 1

Example 4.3

For the singular distribution a complete opposite happens: the Fourier transform has
constant modulus 1 everywhere!

For the singular distribution δs at s P Zp, we have

pδspkq “ e´2πiks{p

for all k P Zp. Note that in particular |pδspkq| “ 1 for all k P Zp and for s “ 0 we have

pδ0pkq “ 1.

Example 4.4

Suppose now we have a general probability distribution µ : Zp Ñ r0, 1s. What does pµpkq

tell us about µ? We see that for the uniform distribution pλ being 0 at every k ‰ 0 and for the
singular distribution pδ0 being 1 shows that the Fourier coefficients pµpkq being “large” for most
k P Zp should mean µ is close to being singular and pµpkq being “small” for most k P Zp should
mean µ is close to being uniform. Let us look at the case of the pass the broccoli distribution.

Recall the initial distribution µ : Zp Ñ r0, 1s defining the passing the broccoli process
was given by µp1q “ µp´1q “ 1

2 and µptq “ 0 otherwise. The Fourier transform of µ
is then given by

pµpkq “

p´1
ÿ

t“0
µptqe´2πikt{p

“
1
2e´2πik{p

`
1
2e2πik{p

“ cosp2πk{pq.

Thus depending on k, we see that pµpkq can attain large and small values, which
means it is neither uniform or singular.

Example 4.5 (Fourier transform of the pass the broccoli distribution)
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Fourier coefficients allow us to represent any function f : Zp Ñ C as trigonometric series
with coefficients given by pfpkq as follows:

Any function f : Zp Ñ C has the following Fourier expansion:

fptq “
1
p

p´1
ÿ

k“0

pfpkqe2πikt{p, t P Zp.

Theorem 4.6 (“Fourier series”)

Proof
By definition of Fourier coefficients

p´1
ÿ

k“0

pfpkqe2πikt
“

p´1
ÿ

k“0

p´1
ÿ

s“0
fpsqe´2πiks{pe2πikt{p

“

p´1
ÿ

s“0

p´1
ÿ

k“0
fpsqe´2πiks{pe2πikt{p

“

p´1
ÿ

s“0
fpsq

p´1
ÿ

k“0
e´2πiks{pe2πikt{p

“

p´1
ÿ

s“0
fpsq

p´1
ÿ

k“0
e´2πikps´tq{p

Now we see that
p´1
ÿ

k“0
e´2πikpt´sq{p

“

#

p, t “ s;
0, t ‰ s.

(4.2)

Let us argue (4.4) this in the following two cases.

t “ s We are summing 1 in total p times, so the sum is p.

t ‰ s Write θ “ ´2πpt ´ sq{p ‰ 0. Then by the geometric sum formula

p´1
ÿ

k“0
ekθi

“
1 ´ epθi

1 ´ eθi
.

However, since t ´ s is an integer we have that

epθi
“ e´2πpt´sqi

“ 1,

as the value of eix at any integer multiple of 2π is 1. Thus

1 ´ epθi

1 ´ eθi
“ 0
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as claimed in (4.4).
Continuing now first computation, we see that

p´1
ÿ

s“0
fpsq

p´1
ÿ

k“0
e´2πikps´tq{p

“ fptqp,

which gives the claim.

The formula for the Fourier series is also called the Inverse Fourier transform,
denoted for g : Zp Ñ C by

qgptq :“ 1
p

p´1
ÿ

k“0
gpkqe2πikt{p, t P Zp.

Definition 4.7 (Inverse Fourier transform)

Notice that by definition
qgptq “

1
p

pgp´tq, t P Zp.

Inverse Fourier transform returns from Fourier transform back the function:

If f : Zp Ñ C, then
q

pf “ f.

Theorem 4.8

Proof
This is precisely Theorem 4.6.
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4.3 L2 theory

One of the fundamental properties of Fourier transform is that it forms an isometry with
respect to the so called “L2 norm” on the space of functions f : Zp Ñ C. This property helps
us to transfer questions for probability distributions µ : Zp Ñ r0, 1s to their Fourier transforms
pµpkq, prove something for them, and then transfer this information back to the probability
distribution µ.

(1) The inner product between two functions f, g : Zp Ñ C is by

xf, gy “

p´1
ÿ

t“0
fptqgptq,

where z is the complex conjugate of z P C.

(2) The L2 norm of f : Zp Ñ C is given by

}f}2 :“
a

xf, fy “

g

f

f

e

p´1
ÿ

t“0
|fptq|2.

Definition 4.9 (Inner product and L2 norm)

Recall that for k P Zp the character χk : Zp Ñ C was defined by

χkpxq :“ e´2πixk{p, x P Zp

Recall that by the Fourier series representation we can write every f : Zp Ñ C as a sum of
these characters times the Fourier coefficients. A bit more is true: these functions form an
orthonormal basis:

Show that the characters χk are orthonormal (with respect to the inner product
above) to each other, that is,

xχk, χℓy “

#

0, k ‰ ℓ;
1, k “ ℓ.

Exercise 4.10 (Orthonormality of the characters)

A fundamental inequality we will often need in the analysis is the Cauchy-Schwartz in-
equality that links the inner product to the L2 norms:
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Let f, g : Zp Ñ C be any functions. Then

|xf, gy| ď }f}2}g}2.

Theorem 4.11 (Cauchy-Schwartz inequality)

Proof
There are many ways to prove this. We will give just one example proof here.

Firstly we may assume both }f}2 ą 0 and }g}2 ą 0. If one of them is 0, say, }f}2 “ 0, then
fptq “ 0 for all t P Zp so also |xf, gy| “ 0 no matter what g is.

Let a, b ě 0. Then 0 ď pa ´ bq2 “ a2 ´ 2ab ` b2 so

ab ď
a2

2 `
b2

2 . (4.3)

Fix t P Zp. Apply (4.3) to the non-negative real numbers

a “
|fptq|

}f}2
and b “

|gptq|

}g}2

to obtain
|fptq|

}f}2

|gptq|

}g}2
ď

|fptq|2

2}f}2
2

`
|gptq|2

2}g}2
2

Sum both sides over t P Zp so we obtain
ÿ

tPZp

|fptq|

}f}2

|gptq|

}g}2
ď

ÿ

tPZp

|fptq|2

2}f}2
2

`
ÿ

tPZp

|gptq|2

2}g}2
2

“ 1.

Multiply both sides by }f}2}g}2 to obtain
ÿ

tPZp

|fptq||gptq| ď }f}2}g}2.

Finally, by the triangle inequality (as |gptq| “ |gptq|) we have

|xf, gy| “

ˇ

ˇ

ˇ

ÿ

tPZp

fptqgptq
ˇ

ˇ

ˇ
ď

ÿ

tPZp

|fptq||gptq|,

so the proof is complete.
There is also an analogue of this for higher order moments, the so called Lp norms:

Let f : Zp Ñ C. For 1 ă p ă 2 define the Lp norm of f by

}f}p “

´

ÿ

tPZp

|fptq|
p
¯1{p

.

Definition 4.12 (Lp norms)
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Let f, g : Zp Ñ C be any functions. Suppose 1 ă p, q ă 8 satisfy the relation
1{p ` 1{q “ 1. Then

|xf, gy| ď }f}p}g}q.

Theorem 4.13 (Hölder’s inequality)

Proof
Exercise. Hint: Use Young’s inequality for products: if a, b ě 0 and 1{p ` 1{q “ 1, then

ab ď ap
{p ` bq

{q.

A key property for Fourier analysis is the so called Parseval’s identity, which says that, up
to a normalisation by p´1{2, the Fourier transform operator

f ÞÑ pf

is an isometry.

If f, g : Zp Ñ C, then
xf, gy “

1
p

x pf, pgy.

In particular, the L2 norm
}f}2 “

1
?

p
} pf}2.

Theorem 4.14 (Plancherel’s Theorem / Parseval’s Identity)

Proof
By the definition of the inner product and Fourier transform, we have, after changing the
order of summation that

x pf, pgy “
ÿ

kPZp

pfpkqpgpkq

“
ÿ

kPZp

p´1
ÿ

t“0
fptqe´2πikt{p

p´1
ÿ

s“0
gpsqe´2πiks{p

“
ÿ

kPZp

p´1
ÿ

t“0
fptqe´2πikt{p

p´1
ÿ

s“0
gpsqe2πiks{p

“

p´1
ÿ

t“0
fptq

p´1
ÿ

s“0
gpsq

ÿ

kPZp

e´2πikpt´sq{p
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Now we see that

ÿ

kPZp

e´2πikpt´sq{p
“

p´1
ÿ

k“0
e´2πikpt´sq{p

“

#

p, t “ s;
0, t ‰ s.

(4.4)

Let us argue (4.4) this in the following two cases.

t “ s We are summing 1 in total p times, so the sum is p.

t ‰ s Write θ “ ´2πpt ´ sq{p ‰ 0. Then by the geometric sum formula

p´1
ÿ

k“0
ekθi

“
1 ´ epθi

1 ´ eθi
.

However, since t ´ s is an integer we have that

epθi
“ e´2πpt´sqi

“ 1,

as the value of eix at any integer multiple of 2π is 1. Thus

1 ´ epθi

1 ´ eθi
“ 0

as claimed in (4.4).
Using (4.4) we see that for any t P Zp we have

p´1
ÿ

s“0
gpsq

ÿ

kPZp

e´2πikpt´sq{p
“ pgptq.

Hence
p´1
ÿ

t“0
fptq

p´1
ÿ

s“0
gpsq

ÿ

kPZp

e´2πikpt´sq{p
“ p

p´1
ÿ

t“0
fptqgptq “ pxf, gy,

which gives the claim.
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4.4 Convolution Theorem

The Convolution Theorem is a very basic identity but it is very powerful and enables us
to translate convolutions of probability distributions (which describes dynamics of a random
walk) into products of their Fourier transforms. Recall that the convolution of two functions
f, g : Zp Ñ C is defined by

f ˚ gptq “
ÿ

sPZp

fpt a sqgpsq.

If f, g : Zp Ñ C, then
zf ˚ g “ pfpg.

Theorem 4.15 (Convolution Theorem)

Proof
Firstly, we have the following invariance for summations: for every h : Zp Ñ C and s P Zp we
have

ÿ

tPZp

hptq “
ÿ

tPZp

hpt a sq. (4.5)

This is just a reparametrisation: the map t ÞÑ t a s is a bijection Zp Ñ Zp so we will count
each value in both sums in (6.1) exactly once.

Fix now k P Zp. Then after changing the order of summation and using t “ pt a sq ‘ s, we
have

zf ˚ gpkq “
ÿ

tPZp

f ˚ gptqe´2πikt{p

“
ÿ

tPZp

´

ÿ

sPZp

fpt a sqgpsq

¯

e´2πikt{p

“
ÿ

tPZp

ÿ

sPZp

fpt a sqgpsqe´2πikt{p

“
ÿ

sPZp

ÿ

tPZp

fpt a sqgpsqe´2πikt{p

“
ÿ

sPZp

ÿ

tPZp

fpt a sqgpsqe´2πikptasq{pe´2πiks{p

“
ÿ

sPZp

gpsqe´2πiks{p
ÿ

tPZp

fpt a sqe´2πikptasq{p

“
ÿ

sPZp

gpsqe´2πiks{p
ÿ

tPZp

fptqe´2πikt{p

“ pfpkqpgpkq.

In the second last equality we applied (6.1) for hptq “ fptqe´2πikt{p, t P Zp.
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Let µp1q “ µp´1q “ 1{2 and µptq “ 0 for other t P Zp. That is, µ is the driving
distribution for the pass the broccoli process. Recall that

pµpkq “ cosp2πk{pq.

Therefore by the convolution theorem

zµ ˚ µpkq “ cosp2πk{pq
2.

Example 4.16

4.5 Heisenberg Uncertainty Principle in Zp

We want to finish the harmonic analysis section by a fundamental consequence of the Plancherel’s
theorem that relates functions f : Zp Ñ C to their Fourier transforms pf : Zp Ñ C. Using a
bit of terminology from quantum mechanics, if we take f : Zp Ñ C with }f}2 “ 1 (a “wave
function”), then the function µf : Zp Ñ r0, 1s defined by

µf ptq :“ |fptq|
2, t P Zp,

is by definition a probability distribution:
ř

tPZp
µf ptq “ }f}2

2 “ 1. In quantum physics one
thinks then the values µf ptq measuring the probability of finding a particle a position t P Zp

given the quantum state f of a particle. Now by Plancherel’s theorem, the Fourier transform
pf also satisfies } pf}2 “ }f}2 “ 1, so

µ
pf pkq :“ | pfpkq|

2, k P Zp,

is also a probability distribution Zp Ñ C where µf pkq measures the probability of the particle
at quantum state f having velocity k P C.

Heisenberg Uncertainty Principle fundamentally limits what information we can say
about the position and velocity of a particle simultanously: essentially, it is impossible to
measure the position µf and µ

pf with equal accuracy. One can write this formally using
entropy in the following:

There exists Cp ą 0 such that if f : Zp Ñ C and }f}2 “ 1, then

Hpµf q ` Hpµ
pf q ě Cp.

Theorem 4.17 (Entropic Heisenberg Uncertainty Principle in Zp)

In other words, it is impossible for entropies of µf and µ
pf be small simultaneously, which

would mean, using the heuristics of entropy being the expected amount of information, that
it is impossible to have very accurate information on the µf random position t P Zp and the
µ

pf random velocity k P Zp.
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We do not prove entropic Heisenberg Uncertainty Principle here, and we leave it as an
exercise (find out e.g. what is the optimal Cp?). Instead, we prove a weaker version, which is
slightly easier to prove, and that involves only the supports of µf and µ

pf or equivalently the
supports of f and pf . Recall that the support of f : Zp Ñ C is given by sptpfq “ tt P Zp :
fptq ‰ 0u:

Let f : Zp Ñ C with f ‰ 0. Then

| sptpfq|| sptp pfq| ě p.

Thus if }f}2 “ 1, then
| sptpµf q|| sptpµ

pf q| ě p.

Theorem 4.18 (Heisenberg Uncertainty Principle in Zp for supports)

Proof
Define the indicator function of sptp pfq by:

1sptp pfq
pkq :“

#

1, k P sptp pfq

0, k R sptp pfq.

Fix t P Zp. Then by Fourier inversion:

fptq “
1
p

ÿ

kPZp

pfpkqe2πikt{p
“

1
p

ÿ

kPZp

1sptp pfq
pkq pfpkqe2πikt{p.

Applying Cauchy-Schwartz inequality to the functions

k ÞÑ 1sptp pfq
pkq and k ÞÑ pfpkqe2πikt{p,

we obtain

|fptq|
2

“
1
p2

ˇ

ˇ

ˇ

ÿ

kPZp

1sptp pfq
pkq pfpkqe2πikt{p

ˇ

ˇ

ˇ

2

ďCS
1
p2

ÿ

kPZp

|1sptp pfq
pkq|

2
ÿ

kPZp

| pfpkqe2πikt{p
|
2

“
1
p2 | sptp pfq|

ÿ

kPZp

| pfpkq|
2

“
1
p2 | sptp pfq|} pf}

2
2

so taking max over all t P Zp we obtain

}f}
2
8 ď

1
p2 | sptp pfq|} pf}

2
2.
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By Plancherel theorem
} pf}

2
2 “ p}f}

2
2

and here the L2 norm is, after summing over the support, bounded by

}f}
2
2 “

ÿ

sPZp

|fpsq|
2

“
ÿ

sPsptpfq

|fpsq|
2

ď | sptpfq|}f}
2
8

so we have
}f}

2
8 ď

1
p

| sptp pfq|| sptpfq|}f}
2
8

Thus as the support of f is non-empty, we know }f}2
8 “ maxt|fptq| : t P Zpu ą 0 so we can

divide by it and obtain
| sptpfq|| sptp pfq| ě p

as claimed.
The case of µf and µ

pf follows since sptpfq “ sptpµf q and sptp pfq “ sptpµ
pf q.

Heisenberg Uncertainty Principle also has an inverse that relates to the algebraic structure
of the wave function f :

If f : Zp Ñ C with 0 P sptpfq satisfies the equality:

|sptpfq||sptp pfq| “ p,

then sptpfq is a subgroup of Zp.

Theorem 4.19 (Inverse the Heisenberg Uncertainty Principle in Zp for supports)

Proof
Left as an exercise.

Note that for prime p the only subgroups of Zp are t0u or Zp. Here Heisenberg Uncertainty
Principle for supports can be improved from products to sums by the work of T. Tao [13],
who proved:

Suppose p is a prime number. Let f : Zp Ñ C with f ‰ 0. Then

| sptpfq| ` | sptp pfq| ě p ` 1.

Moreover, this inequality is sharp.

Theorem 4.20 (Improved Heisenberg Uncertainty Principle in Zp for supports)

This result is useful as it can be used to give a short proof of the fundamental Cauchy-
Davenport inequality from additive combinatorics, we refer to [13] for details.
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Chapter 5

Finding the mixing time

5.1 Distance to uniform and Fourier transform

This section is the culmination of all the ideas presented in the previous sections. Here we will
present the Upper Bound Lemma proved by Diaconis and Shashahani, which in the case of the
group Zp can be done simply with Fourier transforms. It allows one to estimate quantitatively
the rate of convergence of the convolution µ˚n to the uniform distribution in terms of the
Fourier coefficients of µ, which may be easier to compute than the actual weights.

Let µ : Zp Ñ r0, 1s be a probability distribution. Then for all n P N we have

dpµ˚n, λq ď
1
2

d

ÿ

kPZpzt0u

|pµpkq|2n.

Theorem 5.1 (“Upper Bound Lemma”)

Proof
By Theorem 2.26 connecting total variation distance to L1 distance, we have

4dpµ˚n, λq
2

“

´

p´1
ÿ

t“0
|µ˚n

ptq ´ λptq|

¯2
.

Since λptq “ 1{p for all t P Zp, we have
´

p´1
ÿ

t“0
|µ˚n

ptq ´ λptq|

¯2
“ p2

´

p´1
ÿ

t“0
λptq|µ˚n

ptq ´ λptq|

¯2
.

Using the definition of the inner product for the functions

fptq :“ λptq, and gptq :“ |µ˚n
ptq ´ λptq|, t P Zp,

and Cauchy-Schwartz Inequality (Theorem 4.13) we obtain
´

p´1
ÿ

t“0
λptq|µ˚n

ptq ´ λptq|

¯2
“ |xf, gy|

2
ď }f}

2
2}g}

2
2.
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The L2 norms here are
}f}

2
2 “

ÿ

tPZp

λptq2
“

ÿ

tPZp

p´2
“ p´1

and by definition of g:
}g}

2
2 “

ÿ

tPZp

|µ˚n
ptq ´ λptq|

2.

Hence we have proved

4dpµ˚n, λq
2

ď p
ÿ

tPZp

|µ˚n
ptq ´ λptq|

2
“ p}µ˚n

´ λ}
2
2

By Plancherel’s Theorem (Theorem 4.14), we have that

p}µ˚n
´ λ}

2
2 “ } {µ˚n ´ λ}

2
2 “ }yµ˚n ´ pλ}

2
2 “

p´1
ÿ

k“0
|yµ˚npkq ´ pλpkq|

2.

Recall that we already established that

pλpkq “

#

1, k “ 0;
0, k ‰ 0.

On the other hand, as µ˚n is a probability distribution, the Fourier transform

yµ˚np0q “
ÿ

tPZp

µ˚n
ptq “ 1.

Hence the difference
yµ˚npkq ´ pλpkq “

#

0, k “ 0;
yµ˚npkq, k ‰ 0.

Moreover, by the Convolution Theorem (Theorem 4.15) we have

yµ˚npkq “ pµpkq
n.

Thus
p´1
ÿ

k“0
|yµ˚npkq ´ pλpkq|

2
“

ÿ

kPZpzt0u

|pµpkq|
2n.

Dividing by 4 and taking square roots from both sides gives the claim.
There is also a converse to the the upper bound lemma, which we will leave as an exercise:

Let µ : Zp Ñ r0, 1s be a probability distribution. Then for all n P N we have

dpµ˚n, λq ě
1
2

d

1
p

ÿ

kPZpzt0u

|pµpkq|2n.

Theorem 5.2 (“Lower Bound Lemma”)
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Proof
Exercise.

There is also a generalisation of the Upper Bound Lemma for general sequence of measures:

Let µ1, µ2, ¨ ¨ ¨ : Zp Ñ r0, 1s be a sequence of probability distributions. Then for all
n P N we have

dpµ1 ˚ ¨ ¨ ¨ ˚ µn, λq ď
1
2

g

f

f

e

ÿ

kPZpzt0u

n
ź

j“1
| pµjpkq|2.

Theorem 5.3

Proof
Exercise.

The Upper Bound Lemma is a very useful lemma to also answer to our questions on the
growth of entropy for the random walks on Zp. It implies the following growth bound:

Let µ : Zp Ñ r0, 1s be a probability distribution. Then

Hpµ˚n
q ě log p ´ plog p ` 1q

d

ÿ

kPZpzt0u

|pµpkq|2n.

Theorem 5.4 (Entropy growth under convolutions)

Proof
Pinsker’s inequality gives

1
2pHpλq ` 1q

|Hpµq ´ Hpλq| ď dpµ, λq

so the claim follows from the Upper Bound Lemma as Hpλq “ log p.
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5.2 Spectral gap, ergodicity and mixing

Having the Upper Bound Lemma at our disposal, we can now apply it to prove ergodicity and
mixing (of exponential rate) of µ assuming the Fourier coefficients pµpkq, when k ‰ 0, are all
strictly less than 1 in modulus. In this case µ is said to have a spectral gap:

A probability distribution µ on Zp has a spectral gap if

|pµpkq| ă 1

for all k P Zpzt0u.

Definition 5.5 (Spectral gap)

Notice that for k “ 0 we always have

pµp0q “
ÿ

tPZp

µptqe´2πi0t{p
“

ÿ

tPZp

µptq “ 1

as µ is a probability distribution, and for other k, we have by the triangle inequality

|pµpkq| ď
ÿ

tPZp

|µptqe´2πikt{p
| “

ÿ

tPZp

µptq “ 1

since |eix| “ 1 for all x P R.
Recall that by mixing with rate function ϕpnq Ñ 0, as n Ñ 8, we mean that

dpµ˚n, λq ď ϕpnq

for all n P N. We say that the mixing is exponential if for some constant C ą 0 and 0 ď θ ă 1
we have

ϕpnq ď Cθn

for all n P N. The Upper Bound Lemma implies that spectral gap is enough to prove expo-
nential mixing:

If a probability distribution µ on Zp has a spectral gap, then µ is exponentially
mixing.

Theorem 5.6 (Spectral gap implies exponential mixing)

Proof
Set

θ “ maxt|pµpkq| : k P Zpzt0uu.
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Since µ has a spectral gap, then 0 ď θ ă 1. By the Upper Bound Lemma (recall Theorem
5.1) we have for all n P N that

dpµ˚n, λq ď
1
2

d

ÿ

kPZpzt0u

|pµpkq|2n ď
1
2

d

ÿ

kPZpzt0u

θ2n “

?
p ´ 1
2 θn.

Thus, by setting
ϕpnq “

?
p ´ 1
2 θn

we have that µ is mixing with the rate ϕpnq and as 0 ď θ ă 1 we know the rate is exponential
with C “

?
p´1
2 .

Notice that Theorem 5.6 in particular implies that µ is ergodic if µ has a spectral gap.
Using the lower bound lemma (recall Theorem 5.2) this can be made into a characterisation:

If a probability distribution µ on Zp has a spectral gap if and only if µ is ergodic.

Theorem 5.7 (Spectral gap is equivalent to ergodicity)

Proof
We just need to prove the direction that if µ is ergodic, then µ has a spectral gap, as the other
direction follows from Theorem 5.6. Assume on the contrary that µ does not have a spectral
gap. Then we can find ℓ ‰ 0 such that |pµpℓq| “ 1. By the Lower Bound Lemma (Theorem
5.2) we have for all n P N that

dpµ˚n, λq ě
1
2

d

1
p

ÿ

kPZpzt0u

|pµpkq|2n ě
1
2

c

1
p

|pµpℓq|2n “
1

2?
p

.

On the other hand, we assumed µ is ergodic, so by definition

dpµ˚n, λq Ñ 0, n Ñ 8.

Thus we can find n P N such that

dpµ˚n, λq ă
1

2?
p

.

Contradiction.
Let us now look at this result in a specific example of the “passing the broccoli process”,

which is driven by
µ “

1
2δ1 `

1
2δ´1.

Now, depending on p, we will see that µ typically has a spectral gap. Hence we should be able
to compute explicit estimates using the maximal Fourier coefficient of µ (recall the proof of
Theorem 5.6.

Recall the Questions 1.8 from the introduction:
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Q1. How many passes does it take for the broccoli to reach a given person?

Q2. How many passes does it take for the broccoli to reach every person?

Q3. How many passes do we need to take that the distribution of the broccoli is
“close to random”?

Questions 5.8

We can now answer to all of these questions using the following quantitative estimates
following from the Upper Bound Lemma and the definition of total variation distance. Here
it depends on the mixing time we set, that is, which ε we put for the mixing time. In any
case, if we set, say, ε “ 1{100, then for n ě Cp2 we will have

dpµ˚n, λq ď
1

100
using the following explicit estimate (which follows the same idea as Theorem 5.6 above by
exploiting the spectral gap of µ).

Suppose p ě 7 is odd and let
µ “

1
2δ1 `

1
2δ´1.

Then for all n ě p2 we have
dpµ˚n, λq ď e´αn{p2

for α “ π2{2. Moreover, for any p ě 7 and for any n P N we have a lower bound

dpµ˚n, λq ě
1

2?
p

e´αn{p2´βn{p4

with β “ π4{11.

Theorem 5.9

Proof
In Example 4.5 we computed the Fourier transforms:

pµpkq “ cosp2πk{pq.

Hence by the Upper Bound Lemma (Theorem 5.1) we have

dpµ˚n, λq
2

ď
1
4

ÿ

kPZpzt0u

| cosp2πk{pq|
2n

“
1
4

p´1
ÿ

k“1
| cosp2πk{pq|

2n.

Note that as p is odd, the number pp ´ 1q{2 P Z. Reordering summation gives us (exercise!)
p´1
ÿ

k“1
| cosp2πk{pq|

2n
“ 2

pp´1q{2
ÿ

k“1
| cospπk{pq|

2n.
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Hence

dpµ˚n, λq
2

ď
1
2

pp´1q{2
ÿ

k“1
| cospπk{pq|

2n

We know that if x P r0, π{2s, then
cos x ď e´x2{2

(again, an exercise, or using Taylor series of cosine around 0). This gives by the geometric
series formula

dpδ0 ˚ µ˚n, λq
2

ď
1
2

pp´1q{2
ÿ

k“1
| cospπk{pq|

2n

ď
1
2

pp´1q{2
ÿ

k“1
e´π2k2n{p2

ď
1
2e´π2n{p2

8
ÿ

k“1
e´π2pk2´1qn{p2

ď
1
2e´π2n{p2

8
ÿ

k“1
e´3π2kn{p2

“
1
2e´π2n{p2

¨
1

1 ´ e´3π2n{p2 .

If we now assume n ě p2, then we know that the coefficient

1
2p1 ´ e´3π2n{p2

q
ă 1.

Hence for these n we have
dpδ0 ˚ µ˚n, λq

2
ď e´π2n{p2

as claimed.
As for the lower bound, we can see that in the sum the main contribution comes from the

term k0 “ pp ´ 1q{2, that is, the term

pµpk0q “ cosp2πk0{pq “ cospπ ´ π{pq “ ´ cospπ{pq.

Then, using the Lower Bound Lemma (Theorem 5.2), we obtain

dpµ˚n, λq ě
1
2

d

1
p

ÿ

kPZpzt0u

|pµpkq|2n ě
1
2

c

1
p

|pµpk0q|2n “
1

2?
p

| cospπ{pq|
n.

When x ď 1{2, then cospxq ě e´x2{2´x4{11 (again exercise using approximation of cosine around
0), which gives the desired lower bound.
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Chapter 6

Applying the ideas beyond Zp

6.1 Random walks on general finite groups G

As we have mentioned in the introduction, the methods presented in Zp are possible to gener-
alise into very general settings. However, due to the pleasant algebraic properties of Zp (such
as Abelian), complications will arise in particular in the “harmonic analysis” part, which we
will discuss in a later section.

We will define now the concepts of probability distributions and random walks on a general
finite group G. One could do this in an infinite topological groups (such as Lie groups) or
other more general settings but then one requires theory from those settings (such as Haar
measure), which we not assume the reader to necessary have.

From now on, we will assume G is some finite group, an example could be the symmetric
group Sn and its subgroups like the Rubik’s cube group R. We will think about G being a
multiplicative group in the notation in the sense that we write xy as the group operation
of x P G and y P G. iIf x P G, we will write x´1 P G as its inverse and let 1 P G be the
identity/neutral element, that is,

x1 “ 1x “ x.

A function µ : G Ñ r0, 1s is a probability distribution if
ÿ

xPG

µpxq “ 1.

Definition 6.1 (Probability distributions on G)

The key examples of probability distributions on G are the uniform and singular distribu-
tions:
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The uniform distribution λ on G is defined by

λpxq “
1

|G|
.

The singular distribution δy at y P G is defined by

δypxq “

#

1, x “ y;
0, x ‰ y.

Definition 6.2 (Uniform and singular distributions)

We can extend every probability distribution µ : G Ñ r0, 1s to all subsets A Ă G as we did
in Zp:

µpAq :“
ÿ

xPG

µpxq.

Now, similarly to the case of Zp, we can define the total variation distance between two
probability distributions µ, ν : G Ñ r0, 1s by

dpµ, νq “ maxt|µpAq ´ νpAq| : A Ă Gu,

which can be proven to have a similar L1 formula (exercise):

dpµ, νq “
1
2

ÿ

xPG

|µpxq ´ νpxq|.

Next, we can also define convolutions in general finite groups

Let f, g : G Ñ C be functions. Then the left convolution f ˚L g is defined by

f ˚L gpxq “
ÿ

yPG

fpx´1yqgpyq.

We could also define the right convolution f ˚R g is then defined by

f ˚R gpxq “
ÿ

yPG

fpxy´1
qgpyq.

Note that f ˚L g is not necessarily the same as f ˚R g. If G is Abelian, then ˚L “ ˚R.
From now on, as in the case of Zp, we will concentrate on the definition of the right
convolution ˚R throughout the rest of the analysis and just simply write ˚ “ ˚R.

Definition 6.3 (Convolutions on G)

If we are dealing with a non-Abelian group (like the symmetric group Sn), then to define
a random walk on Sn we need to choose a preference which convolution we use. Commonly
one uses left convolution in literature to model a walk.
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Let µ : G Ñ r0, 1s be a probability distribution. Then the n-iterated convolution
is defined by

µ˚n
“ µ˚pn´1q

˚ µ,

for n ě 1 with µ˚0 “ δ1.

Definition 6.4 (Iterated convolutions on G)

A random walk on G is defined by an i.i.d. sequence of G-valued random variables
x1, x2, . . . with driving distribution µ, that is,

Ppxj “ xq “ µpxq, @x P G.

In particular then the “product”

Xn :“ x1 . . . xn P G

has distribution µ˚n:
PpXn “ xq “ µ˚n

pxq, @x P G.

Take G “ S52, the symmetric group of permutations of t0, 1, . . . , 51u. Say, we con-
sider the riffle shuffle model defined by Gilbert-Shannon-Reeds. We say that a per-
mutation σ P S52 is a riffle shuffle if σ has exactly two rising sequences. A rising
sequence of a permutation σ P S52 is a maximal set of consecutive values that oc-
cur in the correct relative order in σ. Then it can be checked that the probability
distribution µ : S52 Ñ r0, 1s defined by Gilbert-Shannon-Reeds has the formula:

µpσq “

$

’

&

’

%

53 ¨ 2´52, σ “ e;
2´52, σ is a riffle shuffle;
0, otherwise,

where e is the identity permutation. Then µ˚n models the state of random state of
the deck after n riffle shuffles.

Example 6.5 (Gilbert-Shannon-Reeds riffle shuffle)

Recall that the random transposition is driven by the probability distribution µ :
S52 Ñ r0, 1s defined by

µpσq “

$

’

&

’

%

1
52 , if σ “ e;
2

522 , if σ is a transposition
0, otherwise .

Example 6.6 (Random transpositions)

86



Now, as in the case of Zp, we can talk about the dynamics of the random walk generated
by a probability distribution µ : G Ñ r0, 1s. For this purpose, we can define ergodicity as in
Zp by the convergence to uniform:

We say that a probability distribution µ : G Ñ r0, 1s is ergodic if

µ˚n
pxq Ñ λpxq, n Ñ 8,

for all a P G, where λpxq “ 1{|G|, a P G, is the uniform distribution on G.

Definition 6.7 (Ergodicity)

We can again characterise ergodicity using the subgroups of G as follows (left as an exercise,
the proof is very similar to Zp version, but be careful as G may not be Abelian):

A probability distribution µ is ergodic if and only if the support

sptpµq :“ tx P G : µpxq ą 0u

is not contained in a coset of a proper subgroup of G.

Theorem 6.8

The support assumption here rules out µ being a Dirac mass at some y P G, but also not
concentrated in a coset of a large subgroup. Then the question comes that if sptpµq is not
contained in a coset of a proper subgroup of G, which means µ is ergodic, then how fast does

µ˚n
pxq Ñ λpxq, n Ñ 8?

As in Zp, we can see that this is equivalent to the total variation distance converging to 0:

dpµ˚n, λq Ñ 0

so we would like to know a rate of convergence and how many iterations it may take for
dpµ˚n, λq to become sufficiently small that the a P G chosen according to µ˚n is close to being
very uncertain. For example, in the case of G “ S52 and riffle shuffles, having dpµ˚n, λq small
enough means the state of the deck of cards is very close to being very hard to predict.

The way to do this is to introduce harmonic analysis in the group G, but this goes beyond
the scope of this course, but in the final section we will attempt to do this. However, in some
cases, we can write some of the theory of harmonic analysis such as Zd

2 and the torus Zd
p, which

we will do in the next sections.
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6.2 Random walks on the d-torus pZd
p, ‘q

A case where we can establish bounds for mixing times without venturing into the represen-
tation theory is the d-torus Zd

p equipped with the natural sum of coordinates:

Let d P N be a dimension and p P N. Write

Zd
p “ tpt1, . . . , tdq : tj P Zp, j “ 1, 2, . . . , du

Thus the elements of Zd
p are vectors with d entries from the group Zp. Equipping

Zd
p with the binary operation

t ‘ s “ pt1 ‘ s1, . . . , td ‘ sdq,

where
t “ pt1, . . . , tdq P Zd

p and s “ ps1, . . . , sdq P Zd
p

makes pZd
p, ‘q into an Abelian group (exercise!)

Definition 6.9 (Discrete torus Zd
p)

Visually Zd
p could be considered as a d dimensional discrete torus, see for example Figure

6.1.

Figure 6.1: Discrete 2-torus Z2
p with some value p P N. The mod p on both coordinates mean

that we will identify 0 and p ´ 1 on each coordinate (set Zp) so topologically we could think
Z2

p as a subset of the 2-torus in R3.

For simplicity we will consider just the case Zd
2, that is, p “ 2 but a similar analysis can

be carried over for general p ě 2. The set Zd
2 could be regarded as a d-dimensional cube. The

case Zd
2 has also other motivation. It can be used to model the so called Ehrenfest’s urn model

from statistical mechanics:
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Suppose d balls are distributed in two “urns”. Then one of the balls is chosen uni-
formly randomly and moved to the other urn. This process is then repeated and we
would like to know what is the long-time asymptotic behaviour of this process?

Ehrenfest’s urn model

We can solve Ehrenfest’s urn model problem by realising it as a random walk on the group
Zd

2 as follows. Enumerate all the balls from 1, 2, . . . , d. Then we can define a vector

t “ pt1, t2, . . . , tdq P Zd
2

with entry tj “ 1 if the j:th ball is in the right urn and tj “ 0 if the j:th ball is the left
urn. Then if we move a ball from one urn to the other, this can be described as a uniformly
random choice of first a ball j P t1, 2, . . . , du (i.e. a coordinate of t) and then swapping tj to
the opposite (e.g. if tj “ 0 it is changed to 1 and vice versa). This gives us a random t1 P Zd

2,
which gives a new order of the balls.

To get into the language we have used in this course, we will use the “standard basis
vectors” ej, j “ 1, 2, . . . , d, to model this process. Here ej is the j:th coordinate vector in Zd

2
defined by ej

k “ 1 only when j “ k and 0 elsewhere. The link to above is that when starting
from some configuration of d-balls in left and right urns, that is, we have some t P Zd

2, then
the vector t ‘ ej gives a new vector in Z2

p where the j:th coordinate has changed from either
0 to 1 or 1 to 0.

Thus by defining a probability distribution µ : Zd
2 Ñ r0, 1s for all t “ pt1, . . . , tdq P Zd

2 by

µptq “

#

1
d
, if t “ ej for some 1 ď j ď d;

0, otherwise.

We can model the first step of the random choice by considering the convolution

µ ˚ δt.

By computing this at s P Zd
2, we see that

µ ˚ δtpsq “ µps a tq.

Thus
µ ˚ δtpsq “ 0

if t is not obtained from s by adding one of the coordinate vectors ej and otherwise

µ ˚ δtpsq “
1
d

.

Thus µ ˚ δt tells the distribution of the d-balls after the first move. Iterating this we see that
µ˚n ˚ δt tells us the distribution of the d-balls in the two urns after n iterations.

We can use the similar ideas as we did in the case of Zp to prove the following quantitative
rate of mixing for the Ehrenfest Urn model, which is effective when we choose a specific c ą 0:
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For the Ehrenfest urn model probability distribution µ in Zd
2 defined above, we have

for all c ą 0 and n ě dplog d ` cq{4 that

dpµ˚n
˚ δt, λq ď

1
?

2
a

ee´c
´ 1

for all initial configurations of d-balls t P Zd
2.

Theorem 6.10

We will now sketch the idea of the proof. First of all, we need to define harmonic analysis
on Zd

2. Here we can define Fourier transform using the following definition

The Fourier transform of f : Zd
2 Ñ C at k P Zd

2 is defined by

pfpkq “
ÿ

tPZd
2

fptqp´1q
k¨t,

where k ¨ t is the dot product

k ¨ t “ k1t1 ` ¨ ¨ ¨ ` kdtd.

Definition 6.11 (Fourier transform in Zd
2)

This definition of Fourier transform has the same theory as the one in Zp, in particular,
all the L2 theory (Plancherel’s theorem) and convolution theorem. Then the same strategy as
we did in Zp can be used to prove the following Upper Bound Lemma:

Let µ : Zd
2 Ñ r0, 1s be a probability distribution. Then for all n P N we have

dpµ˚n, λq ď
1
2

d

ÿ

kPZd
2zt0u

|pµpkq|2n.

Theorem 6.12 (Upper bound lemma)

Proof
Exercise.

Thus to understand how fast µ˚n converges to uniform, we need to just understand the
Fourier coefficients pµpkq. In the case of the Ehrenfest Urn Model this is not hard to see:
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Consider the probability distribution µ on Zd
2 defined by

µptq “

#

1
d
, if t “ ej for some 1 ď j ď d;

0, otherwise.

Then
pµpkq “ 1 ´

2
d

¨ 7t1 ď j ď d : kj “ 1u.

Lemma 6.13

Proof
Write

wpkq “ 7t1 ď j ď d : kj “ 1u.

Then

pµpkq “
ÿ

tPZd
2

µptqp´1q
k¨t

“
1
d

d
ÿ

j“1
p´1q

k¨ej

“
1
d

d
ÿ

j“1
p´1q

kj

“
1
d

´
d

ÿ

kj“1
p´1q `

ÿ

kj“0
1
¯

“
1
d

´

´ wpkq ` pd ´ wpkqq

¯

“ 1 ´
2
d

wpkq

as claimed.
Using Lemma 6.13 with the Upper Bound Lemma (Theorem 6.12) we obtain for the Ehren-

fest Urn model probability distribution µ the following bound:

dpµ˚n, λq
2

ď
1
4

d
ÿ

j“1

ˆ

d

j

˙

´

1 ´
2j

d

¯2n

.

Now a calculation shows that if c ą 0 and n ě dplog d ` cq{4, then

1
4

d
ÿ

j“1

ˆ

d

j

˙

´

1 ´
2j

d

¯2n

ď
1
2

´

ee´c

´ 1
¯

.

This completes the proof of Theorem 6.10. Note that here we only take µ˚n and not µ˚n ˚ δt,
but in terms of total variation distance the distance to uniform remains unchanged.
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6.3 Dual group pG and Fourier transform in G

Let us now go back to the card shuffling questions. In order thus to continue here, we would
need to define “harmonic analysis” in the symmetric group S52. Here we need to replace
harmonic analysis by an abstract notion of representation theory of the symmetric group.
Here the basic idea is to use the symmetries within the group to form (unitary) representations
we can use to decompose functions f : G Ñ R as we did in the Harmonic analysis section for
Zp. We refer to the book by Diaconis [4] for more details.

(1) A representation of a finite group G is a map

ρ : G Ñ GLpVρq,

which assigns to each x P G an invertible linear map ρpxq : Vρ Ñ Vρ such that

ρpxyq “ ρpxqρpyq, x, y P G.

Here Vρ is some finite dimensional complex vector space depending on ρ with an
inner product (Vρ is formed with complex scalars C) of dimension dim Vρ P N
(known as the dimension of the representation ρ) and GLpVρq is the set of all
invertible linear maps L : Vρ Ñ Vρ (e.g. if Vρ “ Cd, then GLpCdq is the set of
invertible complex d ˆ d matrices and d “ dim Vρ.).

(2) An unitary representation of a finite group G is a representation ρ : G Ñ

GLpVρq such that each ρpxq is a unitary matrix, that is, the inverse ρpxq´1

equals to the adjoint: ρpxq´1 “ ρpxq˚, recall that the adjoint A˚ of A is
defined by xA˚v, wyVρ “ xv, AwyVρ for all v, w P Vρ. Writing UpVρq as the set
of all unitary matrices of Vρ, we have that a representation ρ is unitary if and
only if ρ maps G to UpVρq, that is, ρ : G Ñ UpVρq. It is possible to change the
inner product of Vρ such that ρ becomes unitary in Vρ, so in general one could
assume all representations are unitary.

(2) If ρ : G Ñ UpVρq is a unitary representation and W is a subspace of Vρ, which
is ρ-invariant, that is, W is invariant under all the linear maps ρpxq, x P G:

ρpxqW Ă W,

then the restriction ρ|W : G Ñ UpW q is a called a subrepresentation

Definition 6.14 (Representations and subrepresentations)

An important example of a representation is the trivial representation:
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Given any finite dimensional complex vector space with an inner product V , then
the associated trivial representation idV : G Ñ UpV q is the map that acts as an
identity:

idV pxqv “ v

for all x P G and v P V . That is, idV pxq is the identity matrix of V for all x P G.

Definition 6.15 (Trivial representations)

Moreover, other important examples come from the irreducible representations:

A representation ρ : G Ñ UpVρq is irreducible if the only invariant subspace for
ρpxq is either t0u or the whole space Vρ, that is, if W is a subspace of Vρ and

ρpxqpW q “ tρpxqw : w P W u Ă W,

then W “ t0u or W “ Vρ.

Definition 6.16 (Irreducible representations)

An important concept to analyse representations is to study whether they are isomorphic
or not.

Given two representations ρ1 : G Ñ UpVρ1q and ρ2 : G Ñ UpVρ2q, then a linear map
ϕ : Vρ1 Ñ Vρ2 is called morphism if

ϕ ˝ ρ1pxq “ ρ2pxq ˝ ϕ

for all x P G. We say that ρ1 and ρ2 are isomorphic if there exists a morphism
ρ : Vρ1 Ñ Vρ2 such that ρ´1 is invertible and is also a morphism ϕ´1 : Vρ2 Ñ Vρ1 .

Definition 6.17 (Morphisms and isomorphisms)

Now Schur’s lemma gives us a powerful way to understand the structure of irreducible
representations that are isomorphic:
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(1) Let ρ1 : G Ñ GLpV1q and ρ2 : G Ñ GLpV2q be irreducible representations of a
finite group G and a morphism ϕ : V1 Ñ V2. If ρ1 and ρ2 are not isomorphic,
then ϕpvq “ 0 for all v P V1.

(2) Let ρ : G Ñ GLpVρq be an irreducible representation of a finite group G and a
morphism ϕ : Vρ Ñ Vρ. Then

ϕ “ κρI

for some constant κ.

Lemma 6.18 (Schur’s lemma)

Proof
The proof of (1) is similar to (2). For the proof of (2), write V “ Vρ. Let λ P C be an eigenvalue
of ϕ, that is, there is non-zero v0 P V such that ϕv0 “ λv0. Write Eλ “ tv P V : ϕv “ λvu the
eigenspace associated to λ. Then as ϕ : V Ñ V is a morphism we have for all v P Eλ that

pϕ ´ λqρpaqv “ pϕρpaq ´ λρpaqqv “ pρpaqϕ ´ λρpaqqv “ ρpaqpϕ ´ λqv “ 0.

Thus Eλ is invariant ϕpaq:
ρpgqEλ Ă Eλ.

Since v0 P Eλ is non-zero, we know that Eλ ‰ t0u. Hence, as ϕ is irreducible, we must have
Eλ “ V . The only way this can happen when ϕ “ λI. This completes the proof.

The reason we talk about representations in the context of random walks on groups is that
they give us the building blocks for Fourier analysis. First let us define the notion of dual
group that acts out analogue of the frequencies k P Zp we define the Fourier transform in Zp.
Note that it is not in general a group, but it can be proved to be a finite set as we see later.

The dual group of G, denoted by pG, indexes all the irreducible unitary represen-
tations of G up to an isomorphism. In other words, for any ξ P pG, there exists an
irreducible representation ρξ : G Ñ UpVρξ

q and every irreducible representation of G

is isomorphic to one and only one ρξ. In other words pG is the set of all equivalence
classes of irreducible unitary representation with the equivalence relation given by
the isomorphism. Furthermore, we define 1 P pG to correspond to the class of trivial
representations of G up to an isomorphism.

Definition 6.19 (Dual group pG)

From now on we write Vξ “ Vρξ
, when ξ P pG.
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The Fourier transform of f : G Ñ C at ξ P pG is

pfpξq :“
ÿ

xPG

fpxqρξpxq.

Definition 6.20 (Fourier transforms with respect to a representation)

At trivial representations we can always compute the Fourier transforms of probability
distributions.

Let µ : G Ñ r0, 1s be a probability distribution, then

pµp1q “ I1

for the identity map of V1: I1v “ v for all v P V1.
Proof: Indeed, as ρ1pxqv “ v for all v P V1 and x P G, we have that ρ1pxq “ I1 is
the identity map of V1, identified with I1, so we have

pµp1q “
ÿ

xPG

µpxqρ1pxq “
ÿ

xPG

µpxqI1 “ I1.

In the case G “ Zp, compare this to the identity pµp0q “ 1.

Example 6.21

Moreover, for the uniform distribution, we have:
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Let λ : G Ñ r0, 1s be the uniform distribution λpxq “ 1{|G| we have for all ξ P pG
that

pλpξq “

#

I1, ξ “ 1;
0, ξ ‰ 1,

where 0 is the zero-representation: 0pxq “ 0 the zero matrix for all x P G.
Proof: The case ξ “ 1 was done in the previous example. Suppose ξ ‰ 1 so ρξ

is non-trivial irreducible representation. In particular there exists x0 P G such that
ρξpx0q ‰ Iξ, the identity matrix of Vξ. By computing now the Fourier transform, we
see

pλpξq “
ÿ

xPG

λpxqρξpxq “
1

|G|

ÿ

xPG

ρξpxq.

Define now the set

W :“
ÿ

xPG

ρξpxqVξ “ t
ÿ

xPG

ρξpxqv : v P Vξu

Then W Ă Vξ since every ρξpxqv P Vξ for all v P Vξ and Vξ is a vector space. Moreover,
for since ρξ : G Ñ UpVξq is a homomorphism any x, y P G, as the map x ÞÑ yx is a
bijection, we have

ρξpyq
ÿ

xPG

ρξpxqv “
ÿ

xPG

ρξpyxqv “
ÿ

xPG

ρξpxqv P W.

Thus W is ρξ invariant. Hence W “ t0u or W “ V . We now have two cases:

(1) If W “ t0u, we are done as then
ř

xPG ρξpxq “ 0, the zero representation, so
pλpξq “ 0.

(2) If W “ V , we will have a contradiction with ρξpx0q ‰ Iξ. Indeed, when
W “ V , this means that

ř

xPG ρξpxq is invertible. This is impossible since by
the bijectivity of x ÞÑ x´1

0 x we have
ÿ

xPG

ρξpxq “
ÿ

xPG

ρξpx0qρξpx´1
0 xq “ ρξpx0q

ÿ

xPG

ρξpxq,

which, after taking inverses of
ř

xPG ρξpxq from the right gives

Iξ “ ρξpx0qIξ,

so ρξpx0q “ Iξ, a contradiction.

Example 6.22
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Representation theory and Fourier transforms with respect to representations extend
naturally the case of Zp.

(1) The dual group xZp can be identified with Zp. Indeed, every unitary represen-
tation of Zp is isomorphic to the unitary representation:

ρkptq “ e´2πikt{p, t P Zp,

for each k P Zp. Then we can identify e´2πikt{p P C as a 1 ˆ 1 matrix in C, that
is,

e´2πikt{p
“ pe´2πikt{p

q as a matrix on C.

Then the action on the elements z P C in the vector space C are defined
naturally by

pe´2πikt{p
qz “ e´2πikt{pz P C

so ρkptq is a rotation in C with angle θ “ ´2πkt{p so each ρkptq is an invertible
1 ˆ 1 matrix in C. Thus ρkptq P UpCq with dimension of the representation
dρk

“ 1 for all k P Zp as the dimension of the vector space V “ C is 1 when
thinking C as the scalars.

(2) We see that ρk : Zp Ñ UpCq is a homomorphism: if t, s P Zp, then for all z P C
we have:

ρkpt ‘ sqz “ e´2πikpt‘sq{p
“ e´2πikt{pe´2πiks{pz “ ρkptqρkpsqz.

(3) Finally we see that every ρk is irreducible as the only subspaces of C are the
trivial ones t0u and C. Hence the definition of the Fourier transform on Zp,
after identifying C scalars by 1 ˆ 1 matrices in C, that for any k P Zp we have

pfpkq “
ÿ

tPZp

fptqρkptq “
ÿ

tPZp

fptqe´2πikt{p

Example 6.23 (Relation to harmonic analysis in Zp)

Then Fourier transform on G obeys a convolution theorem. Here, recall, we use always the
right-convolution ˚ “ ˚R.

For all f : G Ñ C and ξ P pG, we have

zf ˚ gpξq “ pfpξqpgpξq.

Theorem 6.24 (Convolution theorem)

Proof
Firstly, we have the following invariance for summations: for every h : G Ñ C and b P G we
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have
ÿ

xPG

hpxq “
ÿ

xPG

hpxy´1
q. (6.1)

This is just a reparametrisation: the map x ÞÑ xy´1 is a bijection G Ñ G so we will count
each value in both sums in (6.1) exactly once.

Fix ξ P pG and thus an irreducible representation ρξ : G Ñ UpVξq. Then after changing the
order of summation and using x “ xy´1x, we have after abbreviating ρ “ ρξ:

zf ˚ gpξq “
ÿ

xPG

f ˚ gpxqρpxq

“
ÿ

xPG

´

ÿ

yPG

fpxy´1
qgpyq

¯

ρpxq

“
ÿ

xPG

ÿ

yPG

fpxy´1
qgpyqρpxq

“
ÿ

yPG

ÿ

xPG

fpxy´1
qgpyqρpxq

“
ÿ

yPG

ÿ

xPG

fpxy´1
qgpyqρpxy´1

qρpyq

“
ÿ

yPG

gpyq

´

ÿ

xPG

fpxy´1
qρpxy´1

q

¯

ρpyq

“
ÿ

yPG

gpyq

´

ÿ

xPG

fpxqρpxq

¯

ρpyq

“
ÿ

yPG

gpyq pfpρqρpyq

“ pfpξq
ÿ

yPG

gpyqρpyq

“ pfpξqpgpξq.

In the second last equality we applied (6.1) for hpxq “ fpxqρpxq, x P G.
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6.4 L2 theory in G and the Upper Bound Lemma

Now the plan is to do L2 theory in the group G using the Fourier transform in G, and then
prove the Upper Bound Lemma. For this purpose, write L2pGq as the space of all functions
G Ñ C, that is,

L2
pGq :“ tf : G Ñ Cu,

which is a vector space with the operation pf ` gqpxq “ fpxq ` gpxq, x P G, f, g P L2pGq.
Then L2pGq can be equipped with an inner product as we did in Zp using the definition

The inner product of f, g P L2pGq is defined by

xf, gy “
ÿ

xPG

fpxqgpxq.

Definition 6.25 (Inner product in L2pGq)

Then the L2 norm of a single f : G Ñ C by

}f}2 :“
a

xf, fy.

We now see that every f P L2pGq can be written as the finite linear combination of Dirac
masses f “

ř

xPG fpxqδx and the finite set tδx : x P Gu form an orthonormal basis for L2pGq:

xδx, δyy “

#

1, x “ y;
0, x ‰ y.

Thus L2pGq is a finite dimensional complex vector space with the inner product given by x¨, ¨y

above with orthonormal basis tδx : x P Gu.
Let LpVξq be the set of all linear maps Vξ Ñ Vξ. Denote L2p pGq as the space of all functions

from the dual group pG to the union
Ť

ξP pG LpVξq:

L2
p pGq :“

!

F : pG Ñ
ď

ξP pG

LpVξq

)

.

Thus in particular the Fourier transform pf P L2p pGq. Then we can equip L2p pGq with the
Hilbert-Schmidt inner product as follows. Recall from linear algebra that here for a
linear map A : Vξ Ñ Vξ, the map A˚ : Vξ Ñ Vξ is the adjoint of A satisfying

xA˚v, wyVξ
“ xv, AwyVξ

, v, w P Vξ

for the inner product x¨, ¨yVξ
in Vξ. Moreover, if te1, . . . , edimpVξqu if an orthonormal basis of Vξ,

then the trace of A : Vξ Ñ Vξ is given by

TrVξ
pAq :“

dimpVξq
ÿ

j“1
xAej, ejyVξ

,

which is independent of the choice of the orthonormal basis.

99



For F, G P L2p pGq, define

xF, GyHS :“
ÿ

ξP pG

dimpVξqxF pξq, Gpξq
˚
yHS,ξ,

where x¨, ¨yHS,ξ is given by the trace:

xA, ByHS,ξ :“ TrVξ
pAB˚

q

whenever A, B P LpVξq.

Definition 6.26 (Hilbert-Schmidt inner product in L2p pGq)

Then the Hilbert-Schmidt norm of a single F P L2pGq by

}F }HS :“
a

xF, F yHS

and we also write for fixed ξ P pG that

}F pξq}HS,ξ :“
b

xF pξq, F pξqyHS,ξ “

b

TrVξ
pF pξqF pξq˚q

so
}F }

2
HS “

ÿ

ξP pG

dimpVξq}F pξq}
2
HS,ξ

We define the inner product in this way as now we indeed have the Plancherel’s theorem:

Let f, g : G Ñ C. Then
xf, gy “

1
|G|

x pf, pgyHS,

In the case f “ g, this gives

}f}2 “
1

a

|G|
} pf}HS.

Theorem 6.27 (Plancherel’s theorem)

To eventually prove Plancherel’s theorem, we need an analogue of the geometric summation
formula

p´1
ÿ

k“0
eiθk

“
1 ´ eiθp

1 ´ eiθ

that we used extensively in the Zp case. The analogue of this for general groups comes from
representings a very large representation of G, called regular representation, and then we can
see any irreducible representation of G will be isomorphic to a subrepresentation of the regular
representation. Then taking traces of both side of this expression, gives us a formula involving
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so called characters of the group G, which we will call the trace lemma below, that will be the
analogue of the geometric summation formula.

To make this all precise, we will now define the regular representation and define character
theory needed to make this precise. Recall that L2pGq is a complex finite dimensional vector
space with an inner product x9,9y defined earlier. A natural representation ρG : G Ñ UpL2pGqq

is given by the regular representation:

The map ρG : G Ñ UpL2pGqq defined by

ρGpxqfpyq “ fpx´1yq, y P G, f P L2
pGq

is called the regular representation of G.

Definition 6.28 (Regular representation)

Now, our aim is to formally decompose ρG into a direct sum over the irreducible repre-
sentations, and then take traces of this, and for this purpose we will define the direct sum of
representations first.

If ρ1 : G Ñ UpVρ1q and ρ2 : G Ñ UpVρ2q are representations, then we can define their
direct sum as ρ1 ‘ ρ2 : G Ñ UpVρ1 ‘ Vρ2q formally as

ρ1 ‘ ρ2pxqpv1, v2q “ pρ1pxqv1, ρ2pxqv2q, x P G, pv1, v2q P Vρ1 ‘ Vρ2 ,

where Vρ1 ‘ Vρ2 “ Vρ1 ˆ Vρ2 is the direct sum of the vector spaces equipped with the
operation pv1, v2q ` pv1

1, v1
2q “ pv1 ` v1

1, v2 ` v1
2q for v1, v1

1 P V1 and v2, v1
2 P V2. Then

in particular the trace

TrVρ1 ‘Vρ2
pρ1 ‘ ρ2pxqq “ TrVρ1

pρ1pxqq ` TrVρ2
pρ2pxqq. (6.2)

Definition 6.29 (Direct sum of representations)

If we now have a direct sum ρ1 ‘ ¨ ¨ ¨ ‘ ρd such that each ρ1, . . . , ρk are isomorphic to each
other, that is, they all belong to the same equivalence class ξ P pG, then we write dρξ :“
ρ1 ‘ ¨ ¨ ¨ ‘ ρd. Now the reason we introduced this notation is that we will now justify why

ρG “
à

ξP pG

dimpVξqρξ, x P G. (6.3)

In other words, L2pGq splits into a direct sum of the spaces Vξ, ξ P Vξ, each counted dimpVξq

times. To justify why this is true, we need to introduce character theory.

101



Given an irreducible representation ρξ, the corresponding character is the mapping
χξ : G Ñ C, defined by

χξpgq :“ TrVξ
pρξpgqq, g P G.

Definition 6.30 (Characters)

Characters are examples of class functions, that is, constant along the so called conju-
gacy classes

Cpgq “ th´1gh : h P Gu

of the group G, which form a partition of G in terms of the equivalence relation x „ y if and
only if x “ h´1yh for some h P G:

Let Cpgq be a conjugacy class in G for some g P G. Then χξpzq “ χξg0 for all
z P Cpgq.

Lemma 6.31

Proof
indeed, if h P G, then as trace always satisfies TrVξ

pABq “ TrVξ
pBAq for any two linear maps

A, B, we have by the homomorphism property of ρξ that

χξph´1ghq “ TrVξ
pρξphq

´1ρξpgqρξphqq “ TrVξ
pρξpgqρξphq

´1ρξphqq “ χξpgq.

Also, an important property of characters are that there are exactly the same number of
them as the number of conjugacy classes:

The cardinality of pG is the same as the number of conjugacy classes in G.

Lemma 6.32

Proof
We leave this as an exercise, but it is done in e.g. [7, Proposition 2.30].

Lemmas 6.31 and 6.32 together give rise to the notion of character tables, two dimen-
sional tables of the (constant) values χξpgq on each conjugacy class, where on rows we list each
irreducible representation ρξ, ξ P pG, and on the columns we have chosen a single conjugacy
class representative g P G.

Characters satisfy an important orthogonality relation that follows from Schur’s lemma
(Lemma 6.18):

102



We have

xχξ, χηy “
ÿ

gPG

χξpgqχηpgq “

#

|G|, if ξ “ η;
0, if ξ ‰ η.

Lemma 6.33 (Schur orthogonality relations)

Proof
First of all, if peiq and pẽjq be orthonormal bases of Vξ and Vη respectively, then by the
definition of trace

xχξ, χηy “
ÿ

i

ÿ

j

ÿ

gPG

xρξpgqei, eiyVξ
xρηpgqẽj, ẽjyVη .

Let us prove that this equals to 0 if ξ ‰ η and if ξ “ η, it is equal to
dimpVξq

ÿ

i“1

dimpVξq
ÿ

j“1

|G|

dimpVξq
xei, ejyVξ

xei, ejyVξ
“ |G|.

First of all, if f : Vξ ˆ Vη Ñ C is sesquilinear, that is, linear on the first coordinate and
conjugate linear in the second, then there exists a linear map ϕ : Vξ Ñ Vη such that fpv, wq “

xϕpvq, wyVη . Indeed, by sesquilinearity fpv, wq “ fp
ř

i viei,
ř

j wj ẽjq “
ř

jp
ř

i fpei, ẽjqviqwj “

xϕpvq, wyVη with the matrix ϕ “ pfpei, ẽjqqi,j. Fix now v0 P Vξ and w0 P Vη and define

fpv0, w0, v, wq :“
ÿ

gPG

xρξpgqv, v0yVξ
xρηpgqw, w̃0yVη .

Now, pv, wq ÞÑ fpv0, w0, v, wq is sesquilinear, so we can find a linear ϕv0,w0 : Vξ Ñ Vη such that
fpv0, w0, v, wq “ xϕv0,w0pvq, wyVη for all v and w. Moreover, by the definition of fpv0, w0, v, wq

we see that ϕ is a morphism of representations: ϕρξpgq “ ρηpgqϕ for all g P G. Thus by Schur’s
lemma (Lemma 6.18) there exists gpv0, w0q P C such that

ϕv0,w0 “

#

gpv0, w0qIVξ
, if ξ “ η;

0, if ξ ‰ η.
.

Thus this completes the proof if η ‰ ξ since we can use this for v “ v0 “ ei and w “ w0 “ w̃j.
Now if η “ ξ and v, w P Vξ are fixed, the map pv0, w0q ÞÑ fpv0, w0, v, wq from Vξ ˆ Vξ Ñ C

also is also sesquilinear. This then implies that the map g : Vξ ˆ Vξ Ñ C is sesquilinear. Thus,
by Schur’s lemma, we can find a constant κ P C such that

gpv0, w0q “ κxv0, w0yVξ
.

Since ρξpxq is unitary, we have
dimpVξq

ÿ

i“1
|xρξpxqe1, ejyVξ

|
2

“ 1

so by the earlier formula applied with v “ e1, v0 “ ei, w “ e1, w0 “ ei we have

|G| “

dimpVξq
ÿ

i“1

ÿ

xPG

xρξpgqe1, eiyVξ
xρξpgqe1, eiyVη “

dimpVξq
ÿ

i“1
κxei, eiyVξ

xe1, e1yVξ
“ κ dimpVξq

103



by the orthonormality of peiq. Thus κ “ |G|{ dimpVξq. Now, as

xχξ, χξy “
ÿ

i

ÿ

j

ÿ

gPG

xρξpgqei, eiyVξ
xρξpgqej, ejyVξ

“
ÿ

i

ÿ

j

κxei, ejyVξ
xei, ejyVξ

the proof is complete.
Finally, we need the following decomposition lemma that allows us to split any represen-

tation (e.g. the regular one ρG) into direct sum of its subrepresentations. This will be crucial
for proving (6.3) later.

Let ρ : G Ñ GLpV q be a representation and W ă V a ρ-invariant subspace. Then
There exists ρ-invariant U ă V with W X U “ t0u such that V “ W ‘ U .

Lemma 6.34

Proof
We can always choose a vector space W 1 ă V such that V “ W ‘ W 1. Let π1 : W ‘ W 1 Ñ W
be the projection π1pw ‘ w1q “ w, for w P W and w1 P W 1. For v “ w ‘ w1 P V , define

πpvq “
1

|G|

ÿ

gPG

ρpgqπ1
pρpg´1

qvq.

Since W is ρ invariant and Impπ1q Ă W , we see that Impwq Ă W and the restriction to W
satisfies: π|W “ IW “ π1|W . Thus π : V Ñ W is a projection. Writing U “ Kerpπq “ tv P V :
πpvq “ 0u we see that V “ W ‘ U but also that U is ρ invariant. Indeed, if πpvq “ 0, then at
any h P G, as the map g ÞÑ hg is a bijection and ρ a homomorphism, we see that

0 “ ρphqπpvq “
1

|G|

ÿ

gPG

ρphqρpgqπ1
pρpgh´1hvq “

1
|G|

ÿ

gPG

ρphgqπ1
pρpphgq

´1hvq “ πpρphqvq.

We can then use Schur’s lemma to establish the following, which is the analogue of the
geometric summation formula in Zp which was the cornerstone for many of the proofs.

Let x P G. Then

ÿ

ξP pG

dimpVξqχξpxq “

#

ř

ξP pG dimpVξq2 “ |G|, if x “ 1;
0, if x ‰ 1.

Lemma 6.35 (Trace lemma)

Proof
By definition of the trace and as the ρGp1q action on the orthonormal basis of L2pGq is identity:
ρGp1qδy “ δy for all y P G, we have

TrL2pGqρGp1q “
ÿ

yPG

xρGp1qδy, δyy “
ÿ

yPG

xδy, δyy “ |G|.
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Moreover, when x ‰ 1, we have ρGpxqδy “ δxy, so as xy ‰ y, we have by the orthonormality
xρGpxqδy, δyy “ 0 proving the trace

TrL2pGqρGpxq “ 0.

Now, we can conclude the claim if we can verify for all x P G that

TrL2pGqρGpxq “
ÿ

ξP pG

dimpVξqTrVξ
ρξpxq. (6.4)

Now this follows if we can argue that ρG is isomorphic to
à

ξP pG

dimpVξqρξ

Notice that we can identify L2pGq as the vector space CG and for any irreducible representation
ρξ of G, the space Vξ as a dimpVξq dimensional subspace of C|G|. Thus by iterating Lemma
6.34 until we reach irreducible representations Vξ, we see that ρG is isomorphic to

à

ξP pG

mξρξ

for some mξ ě 0. We now just need to verify mξ “ dimpVξq. Indeed, by the definition of trace

dimpVξq “ dimpVξq “ χξp1q “
1

|G|

ÿ

xPG

TrL2pGqρGpxqχξp1q

since

TrL2pGqρGpxq “

#

|G|, x “ 1
0, x ‰ 1.

Now, as ρG is isomorphic to
À

ξP pG mξρξ, we have

1
|G|

ÿ

xPG

TrL2pGqρGpxqχξp1q “
1

|G|

ÿ

xPG

ÿ

ηP pG

mηχηpxqχξp1q “
ÿ

η

mη
1

|G|
xχη, χξy “ mξ

by Lemma 6.33, so we are done.
We can now first establish the inverse Fourier transform that we will also use in the

proof of Plancherel’s theorem:

Given F P L2p pGq, the inverse Fourier transform qF pxq of F at x P G is given by

qF pxq :“ 1
|G|

ÿ

ξP pG

dimpVξqTrVξ
pρξpx´1

qF pξqq.

Then q

pf “ f for all f : G Ñ C.

Theorem 6.36 (Inverse Fourier transform)
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Proof
Fix x P G. We need to verify

fpxq “
1

|G|

ÿ

ξP pG

dimpVξqTrVξ
pρξpx´1

q pfpξqq.

Any function f : G Ñ C can be written as f “
ř

yPG fpyqδy, so by linearity it is enough to
verify the above for just f “ δy for some y P G. We have pδypξq “ ρξpyq so the right-hand side
with f “ δy equals as ρξpx´1qρξpyq “ ρξpx´1yq that

1
|G|

ÿ

ξP pG

dimpVξqTrVξ
pρξpx´1

qρξpyqq “
1

|G|

ÿ

ξP pG

dimpVξqTrVξ
pρξpx´1yqq

which, by Lemma 6.35 equals to δypxq as claimed.
We can now prove Plancherel’s theorem in G:

Proof
(Proof of Plancherel’s Theorem) We want to prove

ÿ

xPG

fpxqgpxq “
1

|G|

ÿ

ξP pG

dimpVξqTrVξ
p pfpξqpgpξq

˚
q.

Define the involution map g˚ : G Ñ C by

g˚
pxq :“ gpx´1q, x P G,

where z denotes the modulus of a complex number. Then by the definition of convolution of
f and g˚, we have

f ˚ g˚
p1q “

ÿ

xPG

fp1x´1
qg˚

pxq “
ÿ

xPG

fpx´1
qgpx´1q “

ÿ

xPG

fpxqgpxq

as the map x ÞÑ x´1 is a bijection (every element in G has a unique inverse).
On the other hand, using the inverse Fourier transform to the map f ˚ g˚ at 1, we have

f ˚ g˚
p1q “

1
|G|

ÿ

ξP pG

dimpVξqTrVξ
pρξp1´1

q{f ˚ g˚pξqq “
1

|G|

ÿ

ξP pG

dimpVξqTrVξ
p{f ˚ g˚pξqq.

Then note that for all ξ P pG we have the following relation:

pg˚pξq “ pgpξq
˚.

Thus by the convolution theorem we have

TrVξ
p{f ˚ g˚pξqq “ TrVξ

p pfpξq pg˚pξqq “ TrVξ
p pfpξqpgpξq

˚
q

which gives the claim.
Now we are ready to prove the Upper Bound Lemma by Diaconis and Shashahani for

general finite groups G:
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For any probability distribution µ : G Ñ r0, 1s and n P N:

dpµ˚n, λq ď
1
2

g

f

f

e

ÿ

ξP pG
ξ‰1

dimpVξq
›

›

pµpξqn
›

›

2
HS,ξ

.

Theorem 6.37 (Upper Bound Lemma for G)

Proof
We follow the same general steps as the proof of the Upper Bound Lemma (Theorem 5.1)

(1) Use the L1 identity for the total variation distance and Cauchy-Schwartz inequality to
obtain the inequality:

4dpµ˚n, λq
2

ď |G|}µ˚n
´ λ}

2
2.

(2) Now using the Fourier transform formula, we obtain

}µ˚n
´ λ}

2
2 “

1
|G|

ÿ

ξP pG

dimpVξq}yµ˚npξq ´ pλpξq}
2
HS,ξ.

(3) At the trivial representation ρ1, as µ˚n is a probability distribution, we have

yµ˚np1q “ I1,

where I1 is the identity matrix of V1. Recall that for the uniform distribution λpxq “

1{|G| we have for all ξ P pG that

pλpξq “

#

I1, ξ “ 1;
0, ξ ‰ 1,

where 0 is the zero-representation: 0pxq “ 0 the zero matrix for all x P G. Hence we
have by the convolution theorem

ÿ

ξP pG

dimpVξq}yµ˚npξq ´ pλpξq}
2
HS,ξ “

ÿ

ξP pG
ξ‰1

dimpVξq}pµpξq
n
}

2
HS,ξ,

which gives the claim.

Finally to understand the ergodicity and mixing of a random walk pXnq driven by µ in
G, we need again need to talk about the notion of spectral gap for µ. In our context this
means that we need to analyse what are the dimensions of the irreducible representations and
how close the Hilbert-Schmidt norm }pµpξq}HS,ξ, ξ ‰ 1, is to 1 “ }pµp1q}HS,1 that corresponds to
the the trivial representation. This is where understanding the character table of the group in
question becomes crucial, which will open the door on bounding the Fourier transform of µ,
and thus dpµ˚n, λq. Let us demonstrate in the following sections we will see how this is done
more precisely in the cases of dice rolling and random transposition shuffles mentioned in the
beginning of the course.
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6.5 Representation theory of symmetric groups.

As the next applications to dice rolling and card shuffling need us to find the character tables
for symmetric groups (in dice rolling it is S4 and for card shuffling S52). Let us now give an
introduction to the representation theory of symmetric groups Sn that allow us to then bound
the characters in the upper bound lemma.

First, we consider two important irreducible one-dimensional representations of Sn:

(1) trivial representation
ρξ1pσq “ idVξ1

pσq, σ P Sn,

where dim Vx1 “ 1.

(2) sign representation:
ρξ2pσq “ sgnpσqidVξ1

pσq, σ P Sn,

where sgnpσq is the sign of the permutation σ, that is, `1 if σ even and ´1 if σ is odd.
Recall that a permutation is even, if there are even number of inversions for σ, i.e. pairs
i ă j such that σpjq ą σpiq.

Up to isomorphisms, these turn out to be the only irreducible representations of Sn:

Let n ě 2. Then all one dimensional irreducible representations of Sn are isomorphic
to either the trivial representation or the sign representation.

Lemma 6.38 (Classification of dimension 1 irreducible representations of Sn)

Proof
If ρ is a one-dimensional representation of Sn, then the transposition τ “ p1, 2q (i.e. τp1q “ 2
and τp2q “ 1) must satisfy ρpτq “ 1 or ρpτq “ ´1 since τ 2 “ e. On the other hand, any other
transposition τ 1 “ pi, jq satisfies p1, iqp2, jqp1, 2qp2, jqp1, iq “ pi, jq so τ 1 can be conjugated to
τ . Thus ρpτ 1q “ ρpτq, which means ρ maps every transposition to a fixed number, either
1 or ´1. Now the trivial representation ρξ1 maps all transpositions to 1 and sgn to ´1 as
a transposition always contains one inversion. The trivial and sign representations are not
isomorphic as they are distinct and the only way to conjugate them is by 1 ˆ 1 matrix that is
trivial.

Case S3. Let us now write down the character table for S3. First of all, we know that S3 has
three conjugacy classes given explicitly by the collection tteu, tp12q, p13q, p23qu, tp123q, p132quu

so there are exactly three non-isomorphic irreducible representations and the dual group is
pS3 “ tξ1, ξ2, ξ3u. By Lemma 6.38, we have two different one dimensional irreducible represen-
tations given by the trivial one and

(1) trivial irreducible representation:

ρξ1pσq “ idVξ1
pσq, σ P S4,

where we have dimpVξ1q “ 1 due to irreducibility. Thus

χξ1peq “ 1, χξ1pp12qq “ 1, χξ1pp123qq “ 1
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(2) sign irreducible representation:

ρξ2pσq “ sgnpσqidVξ1
pσq, σ P S4.

Thus, Vξ2 “ Vξ1 , dimpVξ2q “ 1, and

χξ2peq “ 1, χξ2pp12qq “ ´1, χξ2pp123qq “ 1

Finally, the third one is given by the following two dimensional representation:
(3) standard representation: ρξ3pσqpx1, x2, x3q “ pzσ´1p1q, zσ´1p2q, zσ´1p3qq mapping S3 Ñ

Vξ3 :“ tpz1, z2, z3q P C3 : z1 ` z2 ` z3 “ 0u. Then dimpVξ3q “ 2 and ρξ3 is irreducible and using
the definition of ρξ3 we can work out

χξ3peq “ 2, χξ3pp12qq “ ´1, χξ3pp123qq “ 0

Thus we have worked out the character table and dimensions of irreducible representations
for S3.

Case S4. Let us now write down the character table for S4 and the dimensions of the
irreducible representations. This goes slightly beyond the scope of the course and is thus not
examinable.

First of all, it turns out that there are exactly 5 disjoint conjugacy classes: determined
whether the permutation is an identity, transposition, product of two disjoint transpositions,
cycle of length 3 or a cycle of length 4 of S4, and we can list the classes Cpσjq by the elements:

σ1 “ e, σ2 “ p12q, σ3 “ p12qp34q, σ4 “ p123q, σ5 “ p1234q,

and the cardinalities of each of these classes are 1, 6, 3, 8, 6 respectively which add to 24, the
cardinality of S4. Recall that the number of irreducible representations will be the same as
the number of conjugacy classes, so we can list the dual group pS4 “ tξ1, . . . , ξ5u.

What are these 5 irreducible representations ρξj
corresponding to each ξj P pS4, and their

character table? From Lemma 6.38 we know the first two already:
(1) trivial irreducible representation:

ρξ1pσq “ idVξ1
pσq, σ P S4,

where we have dimpVξ1q “ 1 due to irreducibility. Thus

χξ1peq “ 1, χξ1pp12qq “ 1, χξ1pp12qp34qq “ 1, χξ1pp123qq “ 1, χξ1pp1234qq “ 1

(2) sign irreducible representation:

ρξ2pσq “ sgnpσqidVξ1
pσq, σ P S4.

Thus, Vξ2 “ Vξ1 , dimpVξ2q “ 1, and

χξ2peq “ 1, χξ2pp12qq “ ´1, χξ2pp12qp34qq “ 1, χξ2pp123qq “ 1, χξ2pp1234qq “ ´1

Next we will work out a third one, similarly as in S3, but a bit more elaborately now:
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(3) standard representation ρξ3 is defined as follows. Consider the representation ρ̃, which
maps any σ P S4 to the corresponding permutation matrix Pσ4 , which permutes the columns
of the 4 ˆ 4 identity matrix I4 according to σ. Then the subspace W “ spanpe1 ` e2 ` e3 ` e4q,
where ej are the basis vectors of R4, is ρ̃-invariant. Then the standard representation ρξ3 is
the subrepresentation of ρ̃ to the ρ̃ invariant orthogonal complement W K “ spanpe2 ´ e1, e3 ´

e1, e4 ´ e1q, so dimpVξ3q “ 3. Using this basis one could compute the character χξ3 :

χξ3peq “ 3, χξ3pp12qq “ 1, χξ3pp12qp34qq “ ´1, χξ3pp123qq “ 0, χξ3pp1234qq “ ´1

Moreover, using the definition of our inner product:

1
|S4|

xχξ3 , χξ3y “ 1,

we see that ρξ3 is irreducible. This follows from the fact that ρ is a representation of S4, then
g ÞÑ TrVρpρpgqq is a linear combination of characters of S5 with integer coefficients (Exercise).

This allows us to find a fourth one:
(4) sign tensored with standard representation: this is an irreducible representation formally

defined as the tensor product ρξ4 “ ρξ2 b ρξ3 , that is,

ρξ4pσqpv1 b v2q :“ pρξ2pσqv1q b pρξ3pσqv2q, v1 b v2 P Vξ2 b Vξ3 ,

where Vξ2 b Vξ3 is the tensor product of the vector spaces. The tensor product of vector spaces
can be defined using their basis vectors and then extended to all vectors. In particular, if B
is the basis of V and B1 is the basis of V 1, then v b v1 for v P B, v1 P B1 is defined as the
mapping that maps pv, wq onto 1 and all other elements of B ˆ B1 to 0. In particular, this
gives Vξ4 “ Vξ2 b Vξ3 giving dimpVξ4q “ 3. This goes slightly beyond the scope of this course,
but with the method of inner tensor products in the literature, using the already computed
characters of ξ2 and ξ3, we can work out that

χξ4peq “ 3, χξ4pp12qq “ ´1, χξ4pp12qp34qq “ ´1, χξ4pp123qq “ 0, χξ4pp1234qq “ 1

(5) Finally, the last representation ρξ5 can be formally defined as follows:

ρξ5 “ ρξ3 b ρξ3 ´ ρξ1 ´ ρξ3 ´ ρξ4

where for W “ Vξ3 b Vξ3 we have

TrW ρξ3 b ρξ3peq “ 9, TrW ρξ3 b ρξ3pp12qq “ 1

TrW ρξ3 b ρξ3pp12qp34qq “ 1, TrW ρξ3 b ρξ3pp123qq “ 0, TrW ρξ3 b ρξ3pp1234qq “ 1,

from which we work out:

χξ5peq “ 2, χξ5pp12qq “ 0, χξ5pp12qp34qq “ 2, χξ5pp123qq “ ´1, χξ5pp1234qq “ 0

Moreover, using the definition of our inner product:

1
|S4|

xχξ5 , χξ5y “ 1,
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we see that ρξ5 is irreducible. Finally dimpVξ5q “ 2 since
ř

ξPxS4
dimpVξq2 “ |S4| by Lemma

6.35.
Thus we have worked out the precise character table for S4.
Case Sn for general n. Now to go to cases n ą 4 like n “ 52, the character tables can

be come very complicated to work out. However, there is a very powerful method to study
these using a method of identifying each irreducible representation of ρ of Sn with a partition
λ “ pλ1, . . . , λrq of n, where λ1 ě λ2 ě . . . λr ą 0 and n “ λ1 ` ¨ ¨ ¨ ` λr, we refer to [4]
for more details on this. Using this identification, one has a very effective way to compute
characters, given by the following Frobenius’ theorem, that we will use later also in the card
shuffling application instead of working out the whole character table:

Let λ “ pλ1, . . . , λrq be a partition associated to an irreducible representation ρξ :
Sn Ñ UpVξq. Then for any σ P Sn we have

χξpσq

dimpVρq
“

1
npn ´ 1q

r
ÿ

j“1
λ2

j ´ p2j ´ 1qλj.

Theorem 6.39 (Frobenius’ theorem)

See e.g. [4] for more details on this and references.
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6.6 How many dice rolls are enough?

Recall the dice rolling group D, which we can identify as S4. In Questions 1.7, recall that we
described the random dice rolling using the three rotations α, β and γ with probability 1{3
each: Thus to model this random dice rolling in our language, we can model this as a random

Figure 6.2: Three rotations α “ p1234q, β “ p1423q and γ “ p123q (cycles diagonal 1 to 2 and
2 to 3, and 3 to 1) that we use to describe the random dice rolling, image from [8, Figure 7.3].

walk on S4 driven by the measure:

µ “
1
3δα `

1
3δβ `

1
3δγ.

Thus, in order to calculate the probabilities in Questions 1.7, we need to control the total
variation distance dpµ˚n, λq for n P N, where λ is the uniform distribution on S4.

By the upper bound lemma (Theorem 6.37 earlier), we have

dpµ˚n, λq ď
1
2

g

f

f

e

ÿ

ξPyS4
ξ‰1

dimpVξq
›

›

pµpξqn
›

›

2
HS,ξ

.

Thus to continue, we need to use the character table of S4 in order to bound the Fourier
transform of µ corresponding to ξ P pS4, ξ ‰ 1. Using now the character table for S4 we did
earlier in Section 6.5, let us now proceed with bounding the right-hand side of the inequality

dpµ˚n, λq ď
1
2

g

f

f

e

ÿ

ξPyS4
ξ‰1

dimpVξq
›

›

pµpξqn
›

›

2
HS,ξ

.

Fix ξ P pS4 and an irreducible unitary representation ρξ : S4 Ñ UpVξq for some vector space Vξ

of dimension dimpVξq. Then we have

pµpξq “
ÿ

σPS4

µpσqρξpσq.
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.
Now, if we fix a permutation γ P S4, then for any σ P S4 we have

µpσq “ µpγ´1σγq

Taking Fourier transform from both sides in the representation ρξ gives us

pµpξq “
ÿ

σPS4

µpγ´1σγqρξpσq

“
ÿ

σPS4

µpγ´1σγqρξpγqρξpγ´1σγqρξpγ´1
q

“ ρξpγq

´

ÿ

σPS4

µpγ´1σγqρξpγ´1σγq

¯

ρξpγ´1
q

“ ρξpγqpµpξqρξpγ´1
q,

where we used ρξpγq “ ρξpγqρξpγ´1σγqρξpγ´1q as ρξ is a homomorphism and that µ has scalar
valued (in r0, 1s in fact). Hence the map pµpξq is a morphism so as ρξ is irreducible, Schur’s
lemma (Lemma 6.18) implies

pµpξq “ κξIξ

for some constant κξ P C and Iξ : Vξ Ñ Vξ is the identity matrix. Now, if we take a trace from
both sides, we we have TrVξ

pµpξq “ dimpVξqκξ, so we have arrived to the formula:

pµpξq “
TrVξ

pµpξq

dimpVξq
Iξ.

On the other, hand, by the definition of µ, if we directly plug-in to the definition of pµ and
take a trace, using linearity and the definition of characters, we obtain:

TrVξ
pµpξq “

1
3pχξpαq ` χξpβq ` χξpγqq “: rpξq.

This in particular gives us
pµpξq

n
“

´ rpξq

dimpVξq

¯n

Iξ.

Notice that as a diagonal matrix pµpξqn is in particular now self-adjoint: ppµpξqnq˚ “ pµpξqn so
pµpξqnppµpξqnq˚ “ κ2n

ξ Iξ. Thus the Hilbert-Schmidt norm

}pµpξq
n
}

2
HS,ξ “ TrVξ

ppµpξq
n
ppµpξq

n
q

˚
q “ dimpVξqκ2n

ξ “ dimpVξq

´ rpξq

dimpVξq

¯2n

Thus
ÿ

ξPyS4
ξ‰0

dimpVξq
›

›

pµpξq
n
›

›

2
HS,ξ

“
ÿ

ξPyS4
ξ‰0

dimpVξq
2
´ rpξq

dimpVξq

¯2n

.

Now, provided that we can prove that |rpξq| ă dimpVξq whenever ξ ‰ 1, that is,

|rpξjq| ă dimpVξj
q

for j “ 2, 3, 4, 5, we can ensure decay for the total variation distance and exponential mixing
for the dice rolling. Here we can finally use the character table and dimensions, which which
we need to have a look at the chosen permutations α “ p1234q, β “ p1423q and γ “ p123q.
Note that β “ p1423q P Cpp1234qq, so the characters have same value here as on α. We can
thus compute:
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j “ 2: We have dimpVξ2q “ 1, χξ2pαq “ ´1, χξ2pβq “ ´1, χξ2pγq “ ´1, so

|rpξ2q| “
| ´ 1 ´ 1 ` 1|

3 “
1
3 ă 1 “ dimpVξ2q

j “ 3: In this case dimpVξ3q “ 3, χξ3pαq “ ´1, χξ3pβq “ ´1, χξ3pγq “ 1, so

|rpξ3q| “
| ´ 1 ´ 1 ` 0|

3 “
2
3 ă 3 “ dimpVξ3q

j “ 4: As before dimpVξ4q “ 3, χξ4pαq “ 1, χξ4pβq “ 1, χξ4pγq “ ´1, so

|rpξ4q| “
|1 ` 1 ` 0|

3 “
2
3 ă 3 “ dimpVξ4q

j “ 5: We have dimpVξ5q “ 2, χξ5pαq “ 0, χξ5pβq “ 0, χξ5pγq “ 0, so

|rpξ5q| “
|0 ` 1 ´ 1|

3 “ 0 ă 2 “ dimpVξ5q

We have proved exponential mixing of µ:

dpµ˚n, λq Ñ 0

exponentially as n Ñ 8 by the previous estimate on dpµ˚n, λq, which now allows us to compute
the answers to Questions 1.7 by estimating the mixing time, which follows by taking e.g. the
worst estimate above of the characters, which we can use as the spectral gap and rate.
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6.7 How many shuffles is enough?

Let us now concentrate on the symmetric group Sn, with n ě 2. In particular, we are interested
of the case n “ 52, which corresponds to the case of card shuffling. We will concentrate on
the random transposition shuffle measure µ Example 6.6, defined as µ : S52 Ñ r0, 1s with the
formula

µpσq “

$

’

&

’

%

1
52 , if σ “ e;
2

522 , if σ is a transposition
0, otherwise .

The Fourier transform of pµ is easiest to understand in our context. The case of µ defining
riffle shuffle is similar, but the Fourier transform attains a bit more complicated form. The
main result of Diaconis and Shahshahani for the random transposition shuffle is the following,
which says 270 random transposition shuffles is enough to make the deck sufficiently random:

For the random transposition probability distribution µ defined in Example 6.6, we
have for any c ą 0 that

dpµ˚n, λq ď 6e´c

for n ě 103 ` 26c. Hence if n ě 270, we have

dpµ˚n, λq ď
1

100

so 270 shuffles is enough to make the deck random enough under random transposi-
tions.

Theorem 6.40 (Diaconis-Shahshahani)

Let us now outline how to approach Theorem 6.40. Fix ξ P xS52 and an irreducible unitary
representation ρξ : S52 Ñ UpVρq for some vector space Vξ of dimension dimpVξq. Then we have

pµpξq “
ÿ

σPS52

µpσqρξpσq.

. Now, similarly as with the dice rolling, Schur’s lemma (Lemma 6.18) implies

pµpξq “ κξIξ

for some constant κξ P C and Iξ : Vξ Ñ Vξ is the identity matrix. Now, if we take a trace from
both sides, we get that

TrVξ
pµpξq “ dimpVξqκξ

Since the support of the random transposition measure µ is by definition

spt µ “ teu Y tτ P S52 : τ is a transpositionu

we have, as we defined characters χξpσq “ TrVξ
ρξpσq that

TrVξ
pµpξq “

ÿ

σPS52

µpσqχξpξq “ µpeqχξpeq `
ÿ

τ is a transposition
µpτqχξpτq.
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On the other hand
µpeq “

1
52

and
ρξpeq “ I ùñ χξpeq “ dimpVξq

Thus
µpeqχξpeq “

1
52 ¨ dimpVξq.

If τ and τ 1 are transpositions, then the measures

µpτq “ µpτ 1
q “

2
522

and the characters
χξpτq “ χξpτ 1

q

as transpositions are in the same conjugacy class of S52. Let N be the number of transpositions.
Then

N “

ˆ

52
2

˙

“
52!

2!p52 ´ 2q! “
52!

2 ¨ 50! “
51 ¨ 52

2 .

Thus by fixing some (in fact any one is fine) transposition τξ P S52, then
ÿ

τ is a transposition
µpτqχξpτq “ Nµpτξqχξpτξq “

51 ¨ 52
2 ¨

2
522 ¨ χξpτξq “

51
52 ¨ χξpτξq

Therefore we have proved

TrVξ
pµpξq “

1
52 ¨ dimpVξq `

51
52 ¨ χξpτξq.

On the other hand, we earlier saw that Schur’s lemma implied TrVξ
pµpξq “ dimpVξqκξ so after

dividing by dimpVξq gives

κξ “
1
52 `

51
52 ¨

χξpτξq

dimpVξq

and so the Fourier transform takes the form

pµpξq “

´ 1
52 `

51
52 ¨

chiξpτξq

dimpVξq

¯

Iξ,

where Iξ is the identity matrix of Vξ so

pµpξq
n

“

´ 1
52 `

51
52 ¨

χξpτξq

dimpVξq

¯n

Iξ.

Notice that as a diagonal matrix pµpξqn is in particular now self-adjoint: ppµpξqnq˚ “ pµpξqn so
pµpξqnppµpξqnq˚ “ κ2n

ξ Iξ. Thus the Hilbert-Schmidt norm

}pµpξq
n
}

2
HS,ξ “ TrVξ

ppµpξq
n
ppµpξq

n
q

˚
q “ dimpVξqκ2n

ξ “ dimpVξq

´ 1
52 `

51
52 ¨

χξpτξq

dimpVξq

¯2n
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Thus by the Upper Bound Lemma (Theorem 6.37), we obtain

4dpµ˚n, λq
2

ď
ÿ

ξPzS52
ξ‰0

dimpVξq
›

›

pµpξq
n
›

›

2
HS,ξ

“
ÿ

ξPzS52
ξ‰0

dimpVξq
2
´ 1

52 `
51
52 ¨

χξpτξq

dimpVξq

¯2n

.

Since pG is finite, there exists the maximum

r :“ max
! χξpτξq

dimpVξq
: ξ ‰ 1

)

. (6.5)

By establishing r ă 1 (i.e. spectral gap for µ), as
1
52 `

51
52 ¨

χξpτξq

dimpVξq
ď

1
52 `

51
52r,

we have proved exponential mixing of µ:
dpµ˚n, λq Ñ 0

exponentially as n Ñ 8 by the previous estimate on 4dpµ˚n, λq2.
In order to prove r ă 1 and give quantitative estimates to it and thus the mixing time of

the random walk driven by µ, we just need to again use the bounds for the character table as
we did with the case of S4. Now, instead of working out the whole large character table for
S52, we can rely on the Frobenius theorem (Theorem 6.39) mentioned earlier in Section 6.5.
Write 2 P xS52 corresponding to the class, which realises the maximum r in (6.5). It turns out
the representation ρ2 : S52 Ñ UpV2q corresponds to the partition λ “ p51, 1q of 52 for which
the dimension dimpV2q “ 51, see [4] for more details on this. Frobenius theorem (Theorem
6.39) applied to the partition λ “ p51, 1q then gives

r “
χ2pτ2q

dimpV2q
“

1
52 ¨ 51pp12

´ 1q ` p512
´ 3 ¨ 51qq “

48
52

so we have r ă 1. But we can use this exact form for r to get the desired quantitative estimate
as follows.

In particular as dimpV2q “ 51, we have

dimpV2q
2
´ 1

52 `
51
52 ¨ r

¯2n

ď 512
´

1 ´
2
52

¯2n

.

Since 1´x ď e´x this is bounded from above by e´2c when n ě 103`26c and c ą 0. Moreover,
again using Frobenius theorem for the other irreducible representations, we can then bound

ÿ

ξPzS52
ξ‰0

dimpVξq
2
´ 1

52 `
51
52 ¨

χξpτξq

dimpVξq

¯2n

ď 144e´2c.

Dividing by 4 and taking square root gives the claim. In particular, we see with n :“ 270 and
c :“ ´1

2 logp1{14400q « 4.78749... ą 0 so that n ě 103 ` 26c and thus

dpµ˚n, λq ď 144e´2c
“

1
100 .

How about riffle shuffles? In this case we need to again understand the irreducible rep-
resentation ρ2 “closest” to the trivial one ρ1 and what values the Fourier transform of the
Gilbert-Shannon-Reeds probability distribution µ corresponding to the riffle shuffle gives at
pµp2q. This is done in the works of Bayer and Diaconis “Trailing the dovetail shuffle to its lair”
from 1992, see [1], which we refer to the interested reader.
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6.8 Random walks on the circle

Let α P p0, 1q. Consider the following i.i.d. random walk X1, X2, . . . on the circle S1 “ R{Z
where with probability 1{2 we add α and with probability 1{2 we substract α modulo 1. Now,
if α is a rational number α “ p{q, then we can see that X1 ` X2 ` . . . gets trapped into a
periodic orbit and an arithmetic progression depending on the integers p and q.

However, if α is irrational, then things get more interesting. It can be proven, but we do
not do it in this course, that if α is irrational, then the random walk X1 ` X2 ` . . . spreads
around evenly in the whole circle S1 (equidistribution), which is an analogue of the ergodicity
of the random walk in Zp. Formally this can be written as follows: for any interval I Ă r0, 1q

lim
nÑ8

PpX1 ` ¨ ¨ ¨ ` Xn P Iq “ |I|,

where |I| is the length of I.
Then if we want a rate for the equidistribution of the random walk, that is, rate of mixing,

it highly depends on how ’well approximated’ by rationals α is, or more quantitatively, how
close nα gets to a rational number when n grows. Thus we find a connection to Diophantine
approximation.

We say that a real number α P p0, 1q is badly approximable (with rational num-
bers) if there exists a constant c ą 0 such that for any integer n P N we have

}nα} ě
c

n
,

where }x} “ mint|x ´ p| : p P Zu. In order words, for some c ą 0 we have for all
rationals p{q P Q

ˇ

ˇ

ˇ
α ´

p

q

ˇ

ˇ

ˇ
ě

c

q2 .

Definition 6.41 (Badly approximable numbers)

If α is badly approximable by rational numbers, the random walk X1 ` ¨ ¨ ¨ ` Xn on the
group S1 behaves quite chaotically:

Prove that if α P p0, 1q is badly approximable, then there exists a constant C ą 0
such that for any interval I Ă r0, 1q and n P N we have

|PpX1 ` ¨ ¨ ¨ ` Xn P Iq ´ |I|| ď
C

?
n

.

Theorem 6.42

In order to prove Theorem 6.42, we can use a similar idea what we have done with Zp. How-
ever, we need to introduce analogues of harmonic analysis to this context. Here, thankfully,

118



the random walk associated to ˘α mod 1 can be described similarly as a discrete probability
distribution as the pass the broccoli random walk in Zp as follows. Each Xn is identically
distributed according to the probability distribution

1
2δα `

1
2δ´α,

where ´α “ 1 ´ α mod 1 in S1, where δy, at y P S1, is called a Dirac delta mass, which we
here define formally just as a function with the property δypxq “ 1 if x “ y and δypxq “ 0
otherwise.

For distributions of the form above, we can form some basic Fourier theory as we did for Zp.
Let X be a discrete random variable on the group S1 “ R{Z with the probability distribution

µ “

N
ÿ

j“1
pjδxj

where xj P S1 and p1 ` ¨ ¨ ¨ ` pN “ 1 with 0 ď pj ď 1. We can then define the Fourier
transform of µ by

pµpξq :“
N
ÿ

j“1
λpxjqe´2πiξxj

at ξ P R. This notion of Fourier transform satisfies the convolution theorem in the same form
yµ˚n “ pµn. Moreover, we have the following analogue of the Upper Bound Lemma:

For any interval I Ă r0, 1q and integer M P N we have

|PpX P Iq ´ |I|| ď
4

M ` 1 `
4
π

M
ÿ

m“1

1
m

|pµpmq|.

Theorem 6.43 (Erdös-Turán inequality)

Towards Theorem 6.42, using Erdös-Turán inequality, we obtain:

For any 0 ă α ă 1, and for the measure

µ “
1
2δα `

1
2δ´α

we have for the random walk X1, X2, . . . , Xn driven by µ that for any interval I Ă

r0, 1q, k P N and M P N we have

|PpX1 ` ¨ ¨ ¨ ` Xn P Iq ´ |I|| ď
4

M ` 1 `
4
π

M
ÿ

m“1

1
m

e´4n}2mα}2
.

Lemma 6.44
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Proof
First of all, we have

cosp2πxq ď 1 ´ 4}2x}
2

for all x P R.
Moreover, the Fourier transform is by the cosine identity

pµpmq “
1
2e2πimα

`
1
2e´2πimα

“ cosp2πmαq.

Hence we have
|pµpmq| ď 1 ´ 4}2mα}

2

Moreover, we can bound using the exponential as follows:

1 ´ 4}2mα}
2

ď e´4}2mα}2

using the Taylor series of exponential function for example.
Hence by the convolution theorem

yµ˚npmq “ pµpmq
n

and the Erdös-Turán inequality we have that

|PpX1 ` ¨ ¨ ¨ ` Xn P Iq ´ |I|| ď
4

M ` 1 `
4
π

M
ÿ

m“1

1
m

| xµ˚kpmq|

ď
4

M ` 1 `
4
π

M
ÿ

m“1

1
m

e´4k}2mα}2

as claimed.
We are now ready to prove Theorem 6.42:

Proof
(Proof of Theorem 6.42) Write

S “

M
ÿ

m“1

1
m

e´4n}2mα}2
.

By Lemma 6.44, it is enough for us to find a constant c0 ą 0 such that

S ď
c0

M ` 1 .

Choose M such that
M ď

1
2c

?
n ă M ` 1,

where c is the constant from the definition of badly approximability of α. Choose an integer
J such that

2J´1
ď M ď 2J

´ 1.
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Group the sum S into J cohorts of integers m P r2j´1, 2j ´ 1s for j “ 1, . . . , J and apply
the badly approximability of α in each cohort in the way

}2mα} ě
c

2m
ě

c

2j`1 “: sj

for each m P r2j´1, 2j ´ 1s. Moreover, we have that m1, m2 P r2j´1, 2j ´ 1s distinct that

}2pm1 ´ m2qα} ě sj.

Thus any subinterval of r0, 1s of length sj can contain at most one of the points }2mα},
m P r2j´1, 2j ´ 1s.

With this in mind, divide now r0, 1s into disjoint intervals of side length sj starting from
0 until 1, with the last interval being of length at most sj. As any interval of length sj can
contain at most one }2mα}, the distance }2mα} ě ℓsj for some integer ℓ. In the worst case
they are in all of the intervals nearest to 0 or 1, except the ones containing 0 or 1, and in these
case the integer ℓ is the smallest possible.

Hence we have the following crude upper bound

2j´1
ÿ

m“2j´1

e´4k}2mα}2
ď

M
ÿ

ℓ“1
e´4kpsjℓq2

Thus

S ď

J
ÿ

j“1

2j´1
ÿ

m“2j´1

1
m

e´4k}2kα}2

ď

J
ÿ

j“1

2j´1
ÿ

m“2j´1

1
2j´1 e´4k}2kα}2

ď

J
ÿ

j“1

1
2j´1

M
ÿ

ℓ“1
e´4kpsjℓq2

Now as M ě 2J´1 and M ď 1
2c

?
n we have k ě 22J{c2 and sj “ c

2j`1 so we have from above

S ď

J
ÿ

j“1

1
2j´1

8
ÿ

ℓ“1
e´ℓ2¨4J´j

.

The sum over ℓ is decreasing and a geometric series so the the inner sum is bounded by
the first term ℓ “ 1 times the constant 1{p1 ´ e´1q. Thus there exists a constant c1 ą 0 such
that

S ď c1

J
ÿ

j“1
2´j`1e´4J´j

.

Again, the terms in the sum over j are decreasing in j and the sum decreases geometrically
with ratio at least 1{2, so the sum is therefore bounded by twice the final term at j “ J ,
which gives

S ď 2c12´J`1e´1.
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We have M ď 2J ´ 1 so there does indeed exist a constant c0 ą 0 such that

S ď
c0

M ` 1 .

Going beyond S1 and other random walks, we would need to introduce the notion of
Lebesgue measure and Lebesgue integration and Haar measures. This would allow us to talk
about random walks on matrix groups and other more general Lie groups, which is currently
a very active field of research. We refer to the book by Benoist and Quint [2] for an overview
of the field and future topics.
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