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1 Additive combinatorics

1.1 Size of sumsets and the inverse problem

The sumset of A,B ⊂ Rd, A,B 6= ∅, is defined by

A+B := {a+ b : a ∈ A, b ∈ B} ⊂ Rd.

One of the main topics in additive combinatorics is the following

Inverse Problem. If A+B is ‘small’ (in cardinality, volume, dimension) compared to A and B,
then what kind of structure sets A and B must have?

We will see that if A+B is ‘small’ compared to A and B, then A and B must have some form
of algebraic/arithmetic features.

Let us first look at some easy bounds for the cardinality of finite subsets of Rd. What we can
immediately do is to obtain the following easy bounds for the cardinality | · |:

Lemma 1.1. If A,B ⊂ Rd are finite and non-empty, then

max{|A|, |B|} ≤ |A+B| ≤ |A||B|(1.1)

Remark 1.2. These inequalities can be attained:

(1) The first inequality of (1.1) is an equality if and only if A or B is a singleton.

(2) The second inequality of (1.1) is an equality if and only if every element in A+B is uniquely
represented, i.e. if a+ b = a′ + b′ for a, a′ ∈ A and b, b ∈ B, then a = a′ and b = b′.

An example of |A+B| = |A||B| are the sets

A = {0, q, q2, . . . , qn} and B = {0, 1, 2, . . . , q − 1}

for fixed numbers q, n ∈ N

If we consider in some sense ‘random’ subsets of Rd, then one would expect that |A+B| ≈ |A||B|.
For example, if n ∈ N is fixed and A,B ⊂ {1, . . . , n} are chosen randomly such that each index
j ∈ {1, . . . , n} is chosen with some probability 0 < p < 1, then the event

|A+B| ≥ c|A||B|

for some constant c > 0 occurs with high probability.
When happens when |A+B| � |A||B|? Let us first study what is the minimal possible values

for |A+B| in terms of |A| and |B|:

1.2 Minimal growth: APs and Cauchy-Davenport inequality

A classical result in convex geometry and geometric measure theory that concerns sumsets of convex
bodies in Rd is the Brunn-Minkowski inquality:

Theorem 1.3 (Brunn-Minkowski). If A,B ⊂ Rd are convex, then

vol(A+B) ≥ (vol(A)1/d + vol(B)1/d)d.

Moreover, this is an equality if and only if A and B are homothetic (i.e. equal up to a translation
and a dilatation).
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Here we can see that the minimal possible value for vol(A + B) is attained when A and B
are similar to each other. In additive combinatorics (of discrete sets) there is an analogue of this
phenomenon. The discrete analogue of a convex set is an arithmetic progression:

Definition 1.4. Any set P ⊂ R of the form

P = {a, a+ p, a+ 2p, . . . , a+ (k − 1)p}

for some p ∈ N and k ∈ N is called a arithmetic progression (AP) of gap p and length k.
Moreover, an AP in Rd is any product of d arithmetic progressions in R.

An analogue of Brunn-Minkowski inequality (in d = 1) is the Cauchy-Davenport inequality:

Theorem 1.5 (Cauchy-Davenport). If A,B ⊂ R are finite with |A|, |B| ≥ 2, then

|A+B| ≥ |A|+ |B| − 1.

Moreover, this is an equality if and only if A and B are APs for the same gap.

See for example the book by Tao and Vu [TV, Proposition 5.8] for a proof.

1.3 Linear growth: GAPs and Freiman’s theorem

Let us now assume A+B only satisfies some linear growth with respect to A and B. To formalise
this, let us first assume that A = B.

Definition 1.6. We say that a finite A ⊂ Rd is small doubling with a constant C > 0 if

|A+A| ≤ C|A|.

Note that by definition we can choose the ‘constant’ C = |A| so every finite A is small doubling
for C = |A| by the easy bound (1.1). However, the interesting case is when C > 0 is some fixed
universal constant and |A| is large.

Example 1.7. If A is an AP, then by Theorem 1.5

|A+A| = 2|A| − 1 ≤ 2|A|,

so A is small doubling with C = 2. Moreover, in higher dimensions if A ⊂ Rd is an AP, then

(1.2) |A+A| ≤ 2d|A|.

E.g. if A = {1, . . . , n}d, then A+A = {2, 3, . . . , 2n}d so this inequality follows.

Often we do not have a set A, which is an AP, but still satisfies a bound with |A+A| ≤ 2k|A|
for some k > d. This leads to the definition of GAPs:

Definition 1.8. A finite set A ⊂ Rd is a generalised arithmetic progression (GAP) of rank
k ∈ N if

A =
{
a+

k∑
i=1

kipi : ki = 0, 1, . . . , Ni

}
for some gaps pi > 0 and Ni ∈ N, i ∈ N.
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If A is a GAP of rank k, it will satisfy the small doubling condition

|A+A| ≤ 2k|A|

with C = 2k and are obtained with the following procedure from APs as we can see in the following:

Example 1.9. Fix some numbers n1, . . . , nk ∈ N, k ∈ N, and write Pi = {1, . . . , ni} for i = 1, . . . , k.
Let T : Rk → Rd be an affine map (i.e. T (x) = Ax+b for some integer d×k matrix A and translation
b ∈ Rd) such that T is injective on

P := P1 × P2 × · · · × Pk.

Let A ⊂ Zd be the image A := T (P ). Then A is a GAP of rank k. Moreover, as since P ⊂ Rk is a
k-dimensional AP, the bound (1.2) yields

|A+A| = |T (P ) + T (P )| = |T (P + P )| ≤ |P + P | ≤ 2k|P | = 2k|T (P )| = 2k|A|.

The second last equality uses the injectivity of T on P .

Small doubling also passes to ‘large’ subsets:

Example 1.10. Suppose A is small doubling with C > 0 and A′ ⊂ A satisfies |A| ≥ %|A| for
proportion 0 < % ≤ 1. Then A′ is small doubling with the constant C/%:

|A′ +A′| ≤ |A+A| ≤ C|A| ≤ C

%
|A′|.

The first inverse theorem in the linear growth regime is Freiman’s theorem, which shows
that every finite set A ⊂ Rd with small doubling can be obtained as one of the sets obtained in
Examples 1.7, 1.9 or 1.10:

Theorem 1.11 (Freiman). If A ⊂ Rd is finite and small doubling for C > 0, then A ⊂ P for some
GAP of rank k and cardinality |P | ≤ C ′|A| for some k ∈ N and C ′ > 0 that only depend on C.

Here in fact k = O(log2[C(1 + logC)]) and C ′ = O(CO(1)) as C →∞ (or at least conjectured).
For a proof, see for example the book by Tao and Vu [TV, Theorem 5.32 and Theorem 5.33]. Using
Plünnecke-Rusza’s inequalities for iterated sumsets one can also prove now an asymmetric version
we were after:

Theorem 1.12 (Asymmetric Freiman’s theorem). If A,B ⊂ Rd are finite with comparable size:

C−1 ≤ |A|/|B| ≤ C

satisfying the small doubling condition

|A+B| ≤ C|A|,

then A,B ⊂ P for some GAP of rank k and cardinality |P | ≤ C ′|A| for some k ∈ N and C ′ > 0
that only depend on C.
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1.4 Power growth: multiscale analysis and Bourgain’s inverse theorem

Let A ⊂ Rd be finite. What if we relax even more and only assume the following power growth:

|A+A| ≤ C|A|1+δ(1.3)

for some C > 0 and δ > 0? What can be said about the structure of A?

If we just use Freiman’s theorem the best we can obtain is that A is contained in a GAP
of rank log2 |A|O(δ) as δ → 0, which does not really give any new information on A. To gain
more information we can use multiscale analysis to establish a satisfying inverse theorem for A.
This inverse theorem shows that the set A will have a special tree structure where the scales are
distributed to either ’uniform’ or ’singular’ distribution. For this purpose, let us introduce some
terminology for multiscale analysis (in R).

Definition 1.13 (Dyadic intervals). The dyadic interval partition Dn (of generation n ∈ N)
of R is

Dn := {[k2−n, (k + 1)2−n) : k ∈ Z}.

Then Dn are nested in the sense that every interval I ∈ Dn splits into two subintervals of length
2−(n+1) in Dn+1. We call these two subintervals the children or descendants of I. Subintervals
J ⊂ I from J ∈ Dn+m are called grandchildren (of generation m) of I.

Looking at those dyadic subintervals I ∈ Dn which contains points from a set A can give us
an idea what A looks like locally (‘magnifications’ of A). The length 2−n of each interval in Dn
could be considered as a scale or resolution we look at A. Using the dyadic intervals I we can
define covering numbers:

Definition 1.14 (Covering numbers). The generation n ∈ N covering number of a set A ⊂ R is

Nn(A) = ]{I ∈ Dn : A ∩ I 6= ∅}.

Example 1.15. If A ⊂ [0, 1] and Nn(A) = 2n, then every generation n subinterval of [0, 1] contains
a point from A, which means that A is in some sense ’uniformly distributed’ in the scale 2−n. If
Nn(A) = 1, then A is concentrated on a single interval I ∈ Dn so A is in some sense ’singular’ in
the scale 2−n. The condition Nn(A) ≈ 2ns then means that A has a ’fractal distribution’ in the
scale 2−n.

Let us now define some quantitative notions of ’uniformity’ and ’singularity’ of a set A in an
interval I.

Definition 1.16. Suppose we are given a finite A ⊂ R, a generation n ∈ N and another generation
m ∈ N, and a dyadic interval I ∈ Dn such that A ∩ I 6= ∅. We say that A is

(1) m-uniform (in I) if A has points in all the descendants of I for the next m generations:

for all J ∈ Dn+m we have A ∩ J 6= ∅.;

(2) m-singular (in I) if all the points of A in I are concentrated on a single m:th generation
descendant of I:

there exists J ∈ Dn+m such that A ∩ I ⊂ J.
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Remark 1.17. Using covering numbers we see that m-uniformity of A in I happens if and only if

Nn+m(A ∩ I) = 2m

and m-singularity of A in I happens if and only if

Nn+m(A ∩ I) = 1.

Let us now look at a Cantor-type example of a finite set A ⊂ R, where (1.3) occurs. We first
recommend the reader to get familiar into the construction of the middle 1/3 Cantor set and how
it is done using either trinary expansions or construction intervals.

Example 1.18 (Erdős-Volkmann 1966, Schmeling-Shmerkin 2010). First define an infinite Cantor
set C ⊂ [0, 1] with these construction steps using the dyadic filtration D1,D2, . . . , where we name
at each stage which intervals we keep and which we remove, and in the end we take an intersection.

• Level 1: Take [0, 1] and keep both subintervals of [0, 1] from D1.

• Level 2: Take the keps subintervals from Level 1, and only keep the lef-hand subinterval
from D2 of each of them.

• Level i2: Assuming we have constructed the intervals of generation 1, 2, . . . , i2 − 1, for then
next i generations keep all the subintervals in Di2+j of generations i2 + 1, i2 + 2, . . . , i2 + i.
I.e. we repeat Level 1 construction for i generations.

• Level i2 + i: Reaching generation i2 + i, for the last i+1 generations, keep only the left-hand
subinterval of each subinterval in Di2+j for all generations i2 + 1, i2 + 2, . . . , i2 + i. I.e. we
repeat Level 2 construction for i+ 1 generations.

This way we have constructed collections of nested intervals A1 ⊂ D1,A2 ⊂ D2, . . . . Then just
define

C =
⋂
n∈N

⋃
I∈An

I.

Now fix n ∈ N and use the set C (or the construction of the intervals An) to define A = An as
the set of left-hand end points of the intervals in An.

In fact, A can be written more simply using binary expansions as

A =
{ n∑
i=1

xi2
−i2 : xi ∈ Pi, i = 1, . . . , n

}
⊂ R,

where Pi := {1, 2, 3, . . . , 2i} for i = 1, . . . , n. From this formulation it is easier to see that A satisfies
the power growth (1.3) as we will see in the following.

First of all, every a ∈ A is uniquely represented as a sum
∑n

i=1 xi2
−i2 for some xi ∈ Pi,

i = 1, . . . , n (this can be checked for example using the dyadic intervals above or the geometric sum
formula). Therefore, the affine map T : Rn → R, defined by

T (x) :=

n∑
i=1

xi2
−i2 , x = (x1, . . . , xn) ∈ Rn,

is an injection on the higher dimensional arithmetic progression P := P1 × P2 × · · · × Pn. Since A
is the image A = T (P ), we have by the proof of Example 1.9 (for k := n, d := 1, ni := 2i) that A
is a GAP of rank n and satisfies the small doubling with C = 2n as follows:

|A+A| ≤ 2n|A|.
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On the other hand, the cardinality

|A| =
n∏
i=1

|Pi| = 2
∑n
i=1 i = 2

n(n+1)
2 = (2n)

n+1
2

which yields

|A+A| ≤ |A|
2

n+1 |A| = |A|1+o(1)

as n→∞. Thus A satisfies the power growth (1.3) for any fixed δ > 0 as long as n is large enough.

We will find out that every set A satisfying the power growth (1.3) will have a similar decom-
position as A in Example 1.18 into blocks of ‘uniform’ and ‘singular’ scales. This was first made
precise in Bourgain’s works [Bo1, Bo2] on sum-product theory, where multiscale analysis approach
was introduced (see in particular [Bo2, Sections 2, 3 and 4] for the construction and analysis). Let
us now state Bourgain’s inverse theorem:

Theorem 1.19 (Bourgain [Bo1, Bo2]). Let 0 < s < 1, κ > 0, ε > 0, C > 0 and m ∈ N. Then
there exists α, %, δ > 0 such that for all large enough n ∈ N and every finite subset A ⊂ R satisfying
the following conditions.

(a) Separation: Points in A are 2−n separated:

|x− y| ≥ 2−n for every distinct x, y ∈ A;

(b) Fractal dimensionality: Cardinality of A is comparable to 2ns:

C−12ns ≤ |A| ≤ C2ns;

(c) Non-concentration: for all integers %n < ` < n we have

|A ∩ I| ≤ 2−κ`|A|

for all I ∈ D`, I ⊂ [0, 1];

(d) Power growth for sumsets:
|A+A| ≤ |A|1+δ.

Then there exists A′ ⊂ A with |A′| ≥ |A|α and a partition {1, 2, . . . , n} = U ∪ S ∪ E satisfying

(1) if k ∈ U , we have
]{I ∈ Dk : A′ is m-uniform in I}

Nk(A′)
> 1− ε;

(2) if k ∈ S, we have
]{I ∈ Dk : A′ is m-singular in I}

Nk(A′)
> 1− ε;

(3) the cardinality
|E| < εn.

Remark 1.20. In this result the exponent α for which |A′| ≥ |A|α depend implicitly on the
dimension s in the sense that α → 0 as s → 0. Hence Theorem 1.19 gives nothing on sets which
are ‘0-dimensional’ (i.e. when 1/|A| is asymptotically much larger to the separation 2−n)

Remark 1.21. In higher dimensions Bourgain’s inverse theorem is not true in this form but has
an analogue where concentration to affine subsets of Rd play an important role. See for example
formulations in Bourgain’s and Gamburd’s work [BG] for analogues in SU(d).
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1.5 Power growth: Hochman’s inverse theorem

A recent and more statistical approach to multiscale analysis, which is also useful in our study of
self-similar sets, was taken by Hochman [Ho1], where an alternative inverse theorem for sets A with
|A+A| ≤ |A|1+δ was established (amongst other things, which we will come back to later).

The difference to Bourgain’s inverse theorem is that the assumptions (b) and (c) on ‘fractal-
dimensinality’ and ‘non-concentration’ were both dropped from Theorem 1.19 and it was possible to
prove results for the whole set A, not just a large subset A′. However, the price that is paid to do this
is to relax the assumption on ‘m-singularity’, which leads to the concept of (m, ε)-concentration.

Definition 1.22 ((m, ε)-concentration). Let n ∈ N, ε > 0 and m ∈ N. We say that A ⊂ R is
(m, ε)-concentrated in I ∈ Dn if

1 ≤ Nm+n(A ∩ I) ≤ 2εm.

In other words, this means that A is (m, ε)-concentrated in I ∈ Dn if we can remove a few
generation n + m dyadic subintervals of I intersecting A such that the resulting set is m-singular
in I. This essentially means that A nearly concentrates all the points into a single subinterval of I
and only a small portion of A (‘dust’) is left outside.

Theorem 1.23 (Hochman [Ho1, Ho2]). Let 0 < s < 1, ε > 0, C > 0 and m ∈ N. Then there exists
δ > 0 such that for all large enough n ∈ N and every finite subset A ⊂ R satisfying the following
conditions.

(i) Separation: Points in A are 2−n separated:

|x− y| ≥ 2−n for every distinct x, y ∈ A;

(ii) Power growth for sumsets:

|A+A| ≤ |A|1+δ.

Then there exists a partition {1, 2, . . . , n} = U ∪ S ∪ E satisfying

(1) if k ∈ U , we have
]{I ∈ Dk : A is m-uniform in I}

Nk(A)
> 1− ε;

(2) if k ∈ S, we have

]{I ∈ Dk : A is (m, ε)-concentrated in I}
Nk(A)

> 1− ε;

(3) the cardinality

|E| < εn.

The proof of Theorem 1.23 is to reformulate the problem (1.3) using measures. Here one replaces
sumsets A+B by convolutions µ∗ν of measures µ, ν (image of µ×ν under (x, y) 7→ x+y) and the
cardinality by the entropy H(µ,P) with respect to some partition P. Then a multiscale analysis
statement for measures can be formulated using Hochman’s inverse theorem for entropy,
which we will come back later and state precisely.
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2 Additive combinatorics for measures

2.1 Convolution

The natural analogue of sumsets for measures is the convolution:

Definition 2.24. Let µ, ν ∈ P(R). Then the convolution of µ and ν is the measure µ ∗ ν ∈ P(R)
defined by the push-forward of the product measure µ× ν under the mapping (x, y) 7→ x+ y.

If + : R×R→ R is the plus mapping, then µ ∗ ν = +(µ× ν) (push-forward), that is, for A ⊂ R
we have that the convolution of a set A gives the µ× ν measure of the set of pairs (x, y) with the
sum in A:

µ ∗ ν(A) = µ× ν(+−1A) = (µ× ν)({(x, y) ∈ R× R : x+ y ∈ A}).

This is a very abstract way to say a simple thing. If we fix a test function f ∈ C0(R) (i.e. compactly
supported and continuous f on R), then the definition fo the convolution is equivalent to:∫

f d(µ ∗ ν) =

∫∫
f(x+ y) dµ(x) dν(y)(2.4)

as C0(R) functions can be used to define Borel probability measures.
There is a useful way to understand convolution using translations: If µ ∈ P(R), then we define

the translation of µ by x ∈ R is the measure µ+ x defined by

(µ+ x)(A) = µ(A+ x), A ⊂ R.

Example 2.25.

(1) If µ ∈ P(R) and z ∈ R, then the convolution by the Dirac mass δz is the translation:

µ ∗ δz = µ− z.

Recall that the Dirac mass δz is defined by δz(A) = 1 if z ∈ A and 0 if z /∈ A, for A ⊂ R. Indeed,
if f ∈ C0(R) we have by the definition of convolution∫

f d(µ ∗ δz) =

∫
f(x+ z) dµ(x) =

∫
f d(µ− z).

(2) This can be generalised for any discrete (atomic) measures. If µ and ν are discrete, that is, there
are finite sets X,Y ⊂ R and functions µ : X → [0, 1] and ν : Y → [0, 1] such that

µ =
∑
x∈X

µ(x)δx and ν =
∑
y∈Y

ν(x)δy,

then as in (1) we have

µ ∗ ν =
∑

x∈X,y∈Y
µ(x)ν(y)δx+y.

Thus µ ∗ ν is a discrete measure as well on the sumset X + Y .

Remark 2.26. In the examples above we see that the support of µ ∗ ν can be obtained from the
sumset of the support:

supp(µ ∗ ν) = suppµ+ supp ν.

This is also true in general for measures µ, ν ∈ P(R) by the definition of convolution. Thus this
gives the link of sumsets and convolutions.
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Now in Example 2.25(2), we have for the discrete measure µ and ν that

µ ∗ ν =
∑

x∈X,y∈Y
µ(x)ν(y)δx+y

=
∑
y∈Y

ν(y)
∑
x∈X

µ(x)δx+y

=
∑
y∈Y

ν(y)µ ∗ δy

=
∑
y∈Y

ν(y)(µ− y).

Here in the second equality we used the fact that

µ ∗ δy = µ− y =
∑
x∈X

µ(x)δx+y.

Now from this above representation for µ ∗ ν we can see that µ ∗ ν is a weighted average (w.r.t.
ν) of the translates of µ by −y. This can be actually made precise using probability theoretic
notation. Write

µy := µ ∗ δy = µ− y.

Then
X(y) := µy, y ∈ R,

is a measure valued random variable on the probability space (R,BorR, ν). Then we have
that the convolution

µ ∗ ν = E(X).

Indeed, we for any f ∈ C0(R) we have by the definition of the translate µy (recall Example 2.25(1))
that ∫

f d(µ ∗ ν) =

∫∫
f(x+ y) dµ(x) dν(y) =

∫∫
f dµy dν(y).

As this holds for any f ∈ C0(R) we have

µ ∗ ν =

∫
µy dν(y) = E(X).

We will sometimes also use the notation y ∼ ν to denote that y is random and distributed according
to a measure ν ∈ P(R). This simply means that if we have a random variable (or random measure)
like µy and we take expectation of this, then we use ν as a probability measure and integrate over
y. Then we may also write

Ey∼ν(·) :=

∫
· dν(y).

For example, by the above arguments we have with this notation:

Lemma 2.27. The convolution of µ, ν ∈ P(R) satisfies

µ ∗ ν = Ey∼ν(µ− y) = Ex∼µ(ν − x),

that is, µ ∗ ν is the ν-weighted avarage of translations of µ or equivalently the µ-weighted average
of translations of ν.
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2.2 Entropy

The natural analogue for the ‘size’ of measures is the concept of entropy:

Definition 2.28. Let µ ∈ P(R) and n ∈ N. Then the Shannon entropy of µ with respect to Dn
is the number

H(µ,A) := −
∑
I∈Dn

µ(I) logµ(I).

Here log is base 2 and we define 0 log 0 := 0.

Now we have the following basic properties of Shannon entropy. In the proofs, we need to deal
with more general partitions and probabilistic conditioning, so we need to talk about Shannon
entropy for different partitions than just Dn.

Definition 2.29. Let µ ∈ P(R) and A a countable partition of R. Then the Shannon entropy
of µ with respect to A is the number

H(µ,A) := −
∑
A∈A

µ(A) logµ(A).

Here log is base 2 and we define 0 log 0 := 0.

The relation to the previous notation is that

Hn(µ) = H(µ,Dn).

We will now refer to several (information theoretic) properties of the entropy for which proofs
can be found in the literature, see for example the book by Cover and Thomas [CT].

Entropy is related to the covering numbers Nn(X) mentioned before. In some sense we could
say that H(µ,A) tells us the exponential growth rate of the number of elements A ∈ A are needed
to cover the support of µ in ‘in average’. If we define the following covering number for the support
suppµ:

N(µ,A) := ]{A ∈ A : µ(A) > 0}

then we obtain the following bounds:

Lemma 2.30 (Cover, Thomas [CT]). Let µ ∈ P(R) and A a countable partition of R. We have

0 ≤ H(µ,A) ≤ logN(µ,A).(2.5)

Moreover, for the extremes of this inequality we have the following characterisation:

(1) We have H(µ,A) = 0 if and only if µ is concentrated on some atom of A, that is, µ(A) = 1
for some A ∈ A.

(2) We have H(µ,A) = logN(µ,A) if and only if µ is uniformly distributed on the atoms of
A with positive mass, that is,

µ(A) =
1

N(µ,A)

for all A ∈ A with µ(A) > 0.

We also have following further properties of the entropy:
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Lemma 2.31 (Cover, Thomas [CT]). Let µ, ν, µi ∈ P(R), i ∈ N, and let A,B be countable partitions
of R. Then

(1) Entropy is increasing under refinements: If A refines B, that is, for any A ∈ A there exists
B ∈ B with A ⊂ B, then

H(µ,A) ≥ H(µ,B).

(2) The map µ 7→ H(µ,A) is concave, that is, if t ∈ [0, 1], then

H(tµ+ (1− t)ν,A) ≥ tH(µ,A) + (1− t)H(ν,A).

(3) The map µ 7→ H(µ,A) is satisfies also the following ‘convexity bound’: fix a probability
vector p = (p1, p2, . . . , pk) ∈ [0, 1]k (i.e.

∑
pi = 1), then

H
( k∑
i=1

piµi,A
)
≤

k∑
i=1

piH(µi,A) +H(p),

where

H(p) := −
k∑
i=1

pi log pi.

2.3 Conditional entropy

Let µ ∈ P(R). We would like to define what it means to condition to a subsets and partitions of
R. Let µ(B) > 0. Then define the conditional measure µB as follows:

µB(A) :=
µ(B ∩A)

µ(B)
, A ⊂ R.

Definition 2.32. If A,B are countable partitions of R, then the conditional entropy of µ with
respect to A given B is

H(µ,A|B) :=
∑
B∈B

µ(B)H(µB,A).

Thus the conditional entropy is given by the average (expectation) of the entropies of µB along the
information source B.

Now a very useful indentity for the conditional entropy is given by the join partition of A and
B, defined by

A ∨ B := {A ∩B : A ∈ A, B ∈ B}.

We have

Lemma 2.33 (Cover, Thomas [CT]). If µ ∈ P(R) and A and B are countable partitions of R, then

H(µ,A ∨ B) = H(µ,A) +H(µ,A|B).

Moreover, we have

Lemma 2.34 (Cover, Thomas [CT]). Let µ ∈ P(R) and A,B be countable partitions of R. We
have

0 ≤ H(µ,A|B) ≤ H(µ,A).(2.6)

Moreover, for the extremes of this inequality we have the following characterisation:
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(1) We have H(µ,A|B) = 0 if and only if B refines A, that is, for any B ∈ B there exists A ∈ A
with B ⊂ A.

(2) We have H(µ,A|B) = H(µ,A) if and only if A and B are independent, that is,

µA(B) = µ(B)

for every A ∈ A of positive measure (thus B gives no new information).

2.4 Entropy of convolutions and the inverse problem

From now on, we will assume our measures are supported on [0, 1] as this is also a natural space
when we do theory for self-similar measures. For much of the theory we will now present, we mostly
refer to Tao’s paper [Ta] and Hochman’s paper [Ho1].

Coming back to the inverse problem for sumsets, we have the following inverse problem

Inverse Problem. If µ ∗ ν is ‘small’ (in entropy or dimension) compared to µ and ν, then what
kind of structure measures µ and ν must have?

As for the sumsets (recall (1.1)), we have the following easy bounds for the entropy of convolu-
tions:

Lemma 2.35 (Tao [Ta, Lemma 2.1]). If µ, ν ∈ P[0, 1] and n ∈ N, then

max{Hn(µ), Hn(ν)} −O(1) ≤ Hn(µ ∗ ν) ≤ Hn(µ) +Hn(ν) +O(1)(2.7)

Motivated by Lemma 2.35, we now could say that Hn(µ ∗ ν) is ‘small” if

Hn(µ ∗ ν)� Hn(µ) +Hn(ν).

Let us now assume we have a single measure µ ∈ P[0, 1] and we look at self-convolutions. Now
we would like to understand the structure of measure µ if

Hn(µ ∗ µ)� 2Hn(µ).

2.5 Tao’s inverse theorem for entropy

Tao [Ta] studied the case with the following growth condition:

Hn(µ ∗ µ) ≤ Hn(µ) +O(1)

For uniformly distributed and discrete measures with enough spacing compared to 2−n (e.g. each
cell of Dn contains at most one atom of µ), this condition is equivalent to

| suppµ+ suppµ| ≤ C| suppµ|,

for a constant that depends on the constant in O(1/n) and 0 < r < 1 (in particular, is independent
of n). This is the small doubling condition required in Freiman’s theorem (Theorem 1.11). Thus
Freiman’s theorem yields that suppµ contains a GAP as a large subset with rank controlled by C.

Therefore, one could consider the following Tao’s inverse theorem for entropy as an ana-
logue of Freiman’s theorem for measures:
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Theorem 2.36 (Tao [Ta]). Suppose µ ∈ P([0, 1]) satisfies

Hn(µ ∗ µ) ≤ Hn(µ) + C

for some C > 1 and n ∈ N. Then µ is close (uniformly depending on C) to a discrete uniform
measure on a GAP with rank at most C ′ that only depends on C.

Here the interesting case is when n is large and C is fixed, like in Freiman’s theorem we consider
large cardinality and fixed doubling constant.

Remark 2.37. Here the notion of ’close’ here means with respect to a transport distance
inf{Hn(τ) : µ ∗ τ = ν} that is defined for measures µ and ν, but we will not state the definitions
here precisely. We will not need Tao’s results in our proof, we are just presenting some historical
references without much details.

2.6 Hochman’s inverse theorem for entropy

Hochman [Ho1] studied the case when δ > 0 is fixed with the following growth condition:

Hn(µ ∗ µ) ≤ Hn(µ) + δn.(2.8)

For uniformly distributed and discrete measures with enough spacing compared to 2−n (e.g. each
cell of Dn contains at most one atom of µ), this condition is equivalent to

| suppµ+ suppµ| ≤ | suppµ|1+δ.

Thus suppµ satisfies the power growth condition required in Bourgain’s Inverse Theorem 1.19 so
suppµ (roughly) contains a large tree-like subset with a distribution of uniform and singular scales.

Analogously to Tao’s setting, Hochman studied the measure theoretical analogue of Bourgain’s
result. We note here that Bourgain’s and Hochman’s results have some differences in the set
theoretical setting, in some sense Hochman’s theorem provides more statistical information on
suppµ but one needs to change (weaken) assumptions on what it means to be ’close to a singular
measure’. We will possibly return to this later in the lectures.

To state Hochman’s result precisely, let us introduce some notation on scenery processes and
multiscale analysis for measures. Write Ix,n ∈ Dn as the unique 2n-adic interval where x ∈ R
belongs. If µ ∈ P(R) define the component measure (blow-up)

µx,n := µIx,n .

Recall that µB is the conditional measure A 7→ µ(A ∩ B)/µ(B). Moreover, if Tx,n : R → R is the
unique affine map mapping Ix,n onto [0, 1), let

µx,n := Tx,nµx,n

be the scenery of µ at x in the scale 2−n. I.e. the affine map Tx,n is given by

Tx,n(y) = 2n(y − yx,n),

where yx,n is the left-hand end point of Ix,n so in particular for A ⊂ R we have

µx,n(A) =
µ(T−1

x,n(A) ∩ Ix,n)

µ(Ix,n)
.
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Now remember that
1

n
Hn(µ) ≈ 1

precisely when µ ∈ P([0, 1]) is “nearly uniformly distributed” on the intervals Dn that meet
[0, 1]. If we fix I ∈ Dn such that ν ∈ P(I), then

1

m
Hn+m(ν) ≈ 1

precisely when ν is uniformly distributed on the Dn+m intervals meeting the 2−n-interval I.

Similarly
1

m
Hn+m(ν) ≈ 0

if ν is only supported on a few of the atoms in Dn+m (i.e. “nearly singular”).

Hochman’s inverse theorem for entropy states that the condition (2.8) yields that µ
decomposes into essentially two kinds of scales: where the sceneries µx,i are nearly uniformly
distributed (in the sense of above) and nearly singular on the other scales. There will be a remaining,
negligible, collection of scales as well.

Theorem 2.38 (Hochman [Ho1]). For any ε > 0 and m ∈ N there exists δ = δ(ε,m) > 0 such
that for all large enough n and every µ ∈ P([0, 1]) satisfying

Hn(µ ∗ µ) ≤ Hn(µ) + δn,

there exists a partition U ∪ S ∪ E = {1, 2, . . . , n} such that

(1) if i ∈ U :

µ({x ∈ [0, 1] : 1
mHm(µx,i) > 1− ε}) > 1− ε;

(2) if i ∈ S:

µ({x ∈ [0, 1] : 1
mHm(µx,i) < ε}) > 1− ε;

(3) |E| ≤ εn.

Hochman’s inverse theorem also has an asymmetric version for measures µ, ν ∈ P([0, 1]), which
splits µ into uniform scales and ν into singular scales:

Theorem 2.39 (Hochman [Ho1]). For any ε > 0 and m ∈ N there exists δ = δ(ε,m) > 0 such
that for all large enough n and every µ, ν ∈ P([0, 1]) satisfying

Hn(µ ∗ ν) ≤ Hn(µ) + δn,

there exists a partition U ∪ S ∪ E = {1, 2, . . . , n} such that

(1) if i ∈ U :

µ({x ∈ [0, 1] : 1
mHm(µx,i) > 1− ε}) > 1− ε;

(2) if i ∈ S:

ν({x ∈ [0, 1] : 1
mHm(νx,i) < ε}) > 1− ε;

(3) |E| ≤ εn.
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2.7 Probabilistic notations on multiscale analysis

Let us now prove Hochman’s theorem on self-similar measures using Hochman’s inverse theorem
for entropy. To do this we will first introduce some probabilistic notation on multiscale analysis
that will be useful later on and restate Theorem 2.39 using this notation.

We consider N as the set of generations and each n ∈ N correspond to scale rn (recall that
0 < r < 1 is fixed), which is small when n is large. Now a given measure µ ∈ P([0, 1]) induces a
natural probability distribution on the component measures µx,n, where x is chosen randomly with
respect to µ and n uniformly randomly from N.

Notation 2.40. Given a collection of measures M⊂ P([0, 1]), write the probability of µx,n being
in M by

P(µx,n ∈M) := µ(x ∈ [0, 1] : µx,n ∈M) =

∫
1(µx,n ∈M) dµ(x).

Moreover, for U ⊂ N, let us write the average probability µx,n ∈M for all n ∈ U by

Pn∈U (µx,n ∈M) :=
1

|U |
∑
n∈U

µ(x ∈ [0, 1] : µx,n ∈M) =
1

|U |
∑
n∈U

P(µx,n ∈M).

The expectation notation is defined similarly: if f : P([0.1])→ R is a Borel function, then

E(f(µx,n)) :=

∫
f(µx,n) dµ(x)

and for U ⊂ N write

En∈U (f(µx,n)) :=
1

|U |
∑
n∈U

E(f(µx,n)) =
1

|U |
∑
n∈U

∫
f(µx,n) dµ(x).

Now using the multiscale analysis notation Theorem 2.39 can be written as

Theorem 2.41 (Hochman [Ho1]). For any ε > 0 and m ∈ N there exists δ = δ(ε,m) > 0 such
that for all large enough n and every µ, ν ∈ P([0, 1]) satisfying

Hn(µ ∗ ν) ≤ Hn(µ) + δ,

there exists disjoint subsets I, J ⊂ {1, . . . , n} with |I ∪ J | ≥ (1− ε)n such that

P( 1
m log(1/r)H(µx,i, r

i+m) > 1− ε) > 1− ε, if i ∈ I;

and
P( 1

m log(1/r)H(νy,j , r
j+m) < ε) > 1− ε, if j ∈ J.

2.8 Entropy from component measures

Now using this notation we have the following identities:

Lemma 2.42. If µ ∈ P([0, 1]) and n ∈ N, then

µ = E(µx,n).

Moreover, if A is a countable partition of R, then the conditional contropy

H(µ,A|Dn) = E(H(µx,n,A)).
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Proof. The first identity is precisely the identity

µ =
∑
I∈Dn

µ(I)µI ,

(recall that µI is the conditional measure) which follows from µ =
∑

I∈Dn µ|I . For the second
identity is again just another way of writing the identity

H(µ,A|Dn) =
∑
I∈Dn

µ(I)H(µI ,A).

This allows us to compute the entropy using the “local” entropies of the component measures:

Lemma 2.43. For any µ ∈ P([0, 1]) and m ∈ N we have

Hn(µ) = E1≤i≤n

( 1

m log(1/r)
H(µx,i, r

i+m)
)

+O
( 1

m log(1/r)
+

m

n log(1/r)

)
.

as n→∞.

We can use this to control entropy using “number of scales” where the local entropy is small.
I.e. we have the following

Lemma 2.44. Let ν ∈ P([0, 1]), ε > 0 and m,n ∈ N and let J ⊂ {1, . . . , n} be those indices such
that

P
( 1

m log(1/r)
H(νx,j , r

j+m) < ε
)
> 1− ε.

Then

Hn(ν) = O(ε) +
|{1, . . . , n} \ J |

n
+O

( 1

m
+
m

n

)
Now if we apply Hochman’s inverse theorem for measures µ, ν ∈ P([0, 1]) satisfying the condi-

tions of the theorem, then for the set J constructed we have the following control bound:

Lemma 2.45. For the set J in Hochman’s inverse theorem (Theorem 2.41), we have

|J |
n

= 1−O(Hn(ν)).

Thus if dime ν is close to 1 we know that asymptotically the proportion of generations in J is
close to 0.

3 Proof of Hochman’s inverse theorem for entropy

3.1 Probabilistic intepretation

We will now dedicate the rest of the paper to prove Hochman’s inverse theorem for entropy (The-
orem 2.41). Let us assume here r = 1/2 and log is base two. Then the formulation is

Theorem 3.46 (Hochman [Ho1]). For any ε > 0 and m ∈ N there exists δ = δ(ε,m) > 0 such
that for all large enough n and every µ, ν ∈ P([0, 1]) satisfying

Hn(µ ∗ ν) ≤ Hn(µ) + δn,

there exists a partition U ∪ S ∪ E = {1, 2, . . . , n} such that
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(1) if i ∈ U :
Pµ( 1

mHm(µx,i) > 1− ε) > 1− ε;

(2) if i ∈ S:
Pν( 1

mHm(νx,i) < ε) > 1− ε;

(3) |E| ≤ εn.

Let us now introduce some helpful probabilistic terminology. If X and Y are finite valued
random variables on a probability space (Ω,F , µ), then

A = {X−1(a) : a ∈ range of X} and B = {Y −1(b) : b ∈ range of X}

form finite partitions of Ω. Then using our previously defined notation the entropy of the random
variable X is given by

H(X) := H(µ,A)

and the conditional entropy of X given Y is

H(X|Y ) := H(µ,A|B).

Moreover, the join entropy
H(X,Y ) = H(µ,A ∨ B).

If µ happens to be atomic (discrete, depends on only finitely many ω ∈ Ω), then we just write

H(µ) =
∑
ω∈Ω

−µ(ω) logµ(ω).

Given k ∈ N and ν ∈ P(R), let us write the self-convolution

ν∗k := ν ∗ ν ∗ · · · ∗ ν︸ ︷︷ ︸
k times

.

Now the main idea of the proof of Theorem 2.41 is to reduce the properties of the convolution µ∗ ν
to the properties of the measures µ ∗ (ν∗k).

Let X0 be a random variable on R whose distribution is the measure µ. Moreover, let
Y1, Y2, . . . , Yk be k independent copies of random variables on R whose distribution is ν. Then
as, by definition, µ ∗ (ν∗k) is the push-forward of µ× νk under the map

(x0, y1, y2, . . . , yk) 7→ x0 +

k∑
i=1

yi

we see that the distribution of the random variable X0 + Y1 + · · ·+ Yk is µ ∗ (ν∗k).

3.2 Entropy growth: Kaimanovich-Vershik lemma

In additive combinatorics, if we have a discrete sets A,B ⊂ Z, we have already seen that |A+B| ≥
|A| and often there is growth unless A and B form arithmetic progressions of the same gap. What
happens if we sum B more than once to A, that is, consider the sumset A+B+B+ · · ·+B? Now a
result by Plünnecke and Rusza tells us that in the sequence of sets A+B,A+B+B,A+B+B+B, . . .
“most” of the growth to the size of the set happens during the first step. Write

B+k := B +B + · · ·+B︸ ︷︷ ︸
k times

.
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Lemma 3.47 (Plünnecke-Rusza). If A,B ⊂ Z and |A+B| ≤ C|A|, then there exists A0 ⊂ A with
|A0| ≥ |A|/C ′ for some constant C ′ > 0 depending on C such that

|A0 +B+k| ≤ Ck|A|.

This has an analogue for entropy.1 As we have seen before, convolution increases entropy, that
is for example for atopic measures µ and ν we have: H(µ ∗ ν) ≥ H(µ). Now what will happen if
we convolve µ more than once with ν? Kaimanovich and Vershik established that in the sequence
µ ∗ ν, µ ∗ ν ∗ ν, µ ∗ ν ∗ ν ∗ ν, . . . “most” of the growth to the entropy happens during the first step.

Lemma 3.48 (Kaimanovich-Vershik). Let Γ be a countable abelian group and µ, ν ∈ P(Γ) with
finite entropies. Then for any k ∈ N we have

H(µ ∗ (ν∗k)) ≤ H(µ) + k · (H(µ ∗ ν)−H(ν)).

Proof. Choose a random variable X0 in Γ with the distribution µ and let Y1, . . . , Yn be independent
random variables in Γ with distribution ν, that is, Yi are i.i.d. with distribution ν. Define

Xn := X0 + Y1 + · · ·+ Yn.

Thus Xn is a random variable with a distribution µ ∗ (ν∗n). Note that (Xn) is a Markov process.
Now given a realisation Y1 = g ∈ Γ, since Γ is Abelian, we have

Xn = X0 + g + Y2 + · · ·+ Yn = g + (X0 + Y2 + · · ·+ Yn).

Now as the vectors (Y1, . . . , Yn−1) and (Y2, . . . , Yn) are identically distributed (distribution is
ν∗(n−1)), we have that the random variables Xn and Xn−1 + g are identically distributed. Hence
the injectivity of the translation h 7→ h+ g on Γ yields that

H(Xn|Y1) = H(Xn−1).

Then by the definition of conditional expectation

H(Y1|Xn) = H(Y1, Xn)−H(Xn)

= H(Y1) +H(Xn|Y1)−H(Xn)

= H(Y1) +H(Xn−1)−H(Xn)

= H(ν) +H(µ ∗ ν∗(n−1))−H(µ ∗ ν∗n).

Given Xn, then the variable Y1 = X1 −X0 is independent of Xn+1 (recall that (Xn) is Markov).
Hence

H(Y1|Xn) = H(Y1|Xn, Xn+1) ≤ H(Y1|Xn+1).

Using the equality for H(Y1|Xn) (and similarly for H(Y1|Xn+1) we obtained above to this inequal-
lity, we obtain the following growth condition:

H(µ ∗ ν∗(n−1))−H(µ ∗ ν∗n) ≤ H(µ ∗ ν∗n)−H(µ ∗ ν∗(n+1)),

which gives the claim by telescoping.

1The analogue was discovered by Kaimanovich and Vershik, but was popularised again by Tao in his blog post
from 2009 (see https://terrytao.wordpress.com/2009/10/27/an-entropy-plunnecke-ruzsa-inequality/).

https://terrytao.wordpress.com/2009/10/27/an-entropy-plunnecke-ruzsa-inequality/
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Let us now use Kaimanovich-Vershik Lemma 3.48 to establish the following δ-entropy version
that we will use:

Lemma 3.49. If µ, ν ∈ P([0, 1]), then for any k ∈ N, as n→∞ we have

Hn(µ ∗ (ν∗k)) ≤ Hn(µ) + k ·
(
Hn(µ ∗ ν)−Hn(µ)

)
+O

(
k
)
.

We will prove Lemma 3.49 by discretising the claim and reducing to Kaimanovich-Vershik
lemma. Define the 2m-adic rational numbers as

Γm =
{ k

2m
: k ∈ Z

}
.

Let Dm = I2−m be the dyadic intervals of R. Given x ∈ R, let Dm(x) ∈ Dm be the unique dyadic
interval containing x. Then each D ∈ Dm meets precisely one point in Γm. Define the discretisation
map σm : R→ Γm by

σm(x) = y if Dm(x) = Dm(y),

where y ∈ Γm is the unique point belonging to Dm(y). That is, σm(x) chooses the dyadic rational
from Dm(x).

Definition 3.50. We say that µ ∈ P(R) is m-discrete if it is supported on Γm.

If µ ∈ P(R), then µ introduces a canonical m-discrete measure as the push-forward under σm:

σmµ =
∑
v∈Γm

µ(Dm(v))δv.

Then the normalised entropy
Hm(µ) = Hm(σmµ).

The following lemma gives us an error estimate in convolutions produced by discretisation:

Lemma 3.51. If m ∈ N and µi ∈ P(R) with Hm(µi) <∞, i = 1, . . . , k, then

|Hm(µ1 ∗ µ2 ∗ · · · ∗ µk)−Hm(σmµ1 ∗ σmµ2 ∗ · · · ∗ σmµk)| = O
( k
m

)
.

Proof. Define the projection π : Rk → R by

π(x1, . . . , xk) :=
k∑
i=1

xi.

The distance

|π(x1, . . . , xk)− π(σmx1, . . . , σmxk)| ≤
k∑
i=1

|xi − σm(xi)| ≤
k∑
i=1

2−m ≤ k.

Thus the maps π and f := π ◦ (σm × · · · × σm) are k apart in the sup norm. On the other hand,

µ1 ∗ · · · ∗ µk = π(µ1 × · · · × µk)

and
σmµ1 ∗ · · · ∗ σmµk = f(µ1 × · · · × µk)
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so these convolutions are obtained as π and f push-forwards of µ1 × · · · × µk. Then here one can
apply a standard lemma for the properties of entropy (see for example [Ho1, Lemma 3.2(3)]), which
is saying that then

|H(π(µ1 × · · · × µk),Dm)−H(f(µ1 × · · · × µk),Dm)| ≤ Ck

for some universal constant C > 0 and then divide by m to get the claim.

Let us now prove Lemma 3.49:

Proof of Lemma 3.49. Write µ̃ = σnµ and ν̃ = σnν, which are discrete measures in the countable
Abelian group Γn of dyadic rationals. Applying Kaimanovich-Vershik lemma (Lemma 3.48) to the
measures µ̃, ν̃ ∈ P(Γn), we have

H(µ̃ ∗ (ν̃∗k)) ≤ H(µ̃) + k · (H(µ̃ ∗ ν̃)−H(ν̃)).

Now after dividing by n, Lemma 3.51 gives the claim.

3.3 Convolutions approximate Gaussian: Berry-Esseen theorem

Next we will give a probabilistic terminology for Gaussian measures and introduce the Berry-Esseen
theorem that gives a rate for the central limit theorem for repeated convolutions.

Definition 3.52. The mean or the barycenter of µ ∈ P(R) is the point 〈µ〉 ∈ R defined by

〈µ〉 :=

∫
x dµ(x).

The variance Var(µ) of µ is then given by

Var(µ) :=

∫
(x− 〈µ〉)2 dµ(x).

Given measures µ1, . . . , µk ∈ P(R), the convolution µ = µ1 ∗ · · · ∗ µk satisfies:

〈µ〉 =
k∑
i=1

〈µi〉 and Var(µ) =
k∑
i=1

Var(µi).

Definition 3.53. A measure γ ∈ P(R) is Gaussian of mean m and variance σ2 if µ has continuous
density function

ϕ(x) =
1√

2πσ2
e−

(x−m)2

2σ2 .

Often one denotes γ = N(m,σ2).

Note that for a Gaussian measure γ with mean m and variance σ2, we have do have consistent
definition:

〈γ〉 = m and Var(µ) = σ2.

When m = 0 and σ = 1, then we call γ a standard Gaussian N(0, 1).
Now by the central limit theorem (using the interpretation of measures with random variables),

we see that if µ1, µ2, · · · ∈ P(R) have all positive variance, then (after rescaling) the convolutions
µ1 ∗ µ2 ∗ · · · ∗ µk converge weakly to a Gaussian measure. Berry-Esseen theorem gives the rate for
this convergence:
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Theorem 3.54 (Berry-Esseen). Let µ1, µ2, . . . , µk ∈ P(R) with finite third moments:

%i :=

∫
|x|3 dµi(x) <∞.

Write µ = µ1 ∗ · · · ∗ µk. Let γ be the Gaussian measure with the mean 〈µ〉 and variance Var(µ). If
I ⊂ R is an interval, then for some universal constant C > 0 we have

|µ(I)− γ(I)| ≤ C
∑k

i=1 %i

Var(µ)3/2
.

Now note that if µ1, . . . , µk are supported on δ-intervals (for example are components of a
measure in δ-intervals), then the moments %i = O(δ3) and Var(µi) = O(δ2). If we have that∑k

i=1 Var(µi) ≥ cδ2k for some universal c > 0, then the inequality in Berry-Esseen Theorem 3.54
has the form

|µ(I)− γ(I)| ≤ C

c3/2
· 1√

k
.

3.4 Components of convolutions and Gaussian measures

We will apply Berry-Esseen theorem for the components of a fixed measure ν. This is the way we will
eventually use the assumption in Hochman’s inverse theorem (Theorem 2.41) to gain information
about components of µ and ν. Recall the multiscale analysis notation from Section 2.7. Then by
that notation any given measure ν ∈ P(R) satisfies for any i ∈ N the identity (recall Lemma 2.42)

ν = E(νy,i)

(which is just the way to write ν =
∑

D∈Di ν(D)νD, where νD is the conditional measure on D).
Now if k ∈ N, also the product measure

ν×k = E(νy1,i × νy2,i × · · · × νyk,i),

where the components νyn,i are chosen independently of each other (here yn are random variables
distributed according to ν). Hence the convolution ν∗k can be written by the linearity of the
convolution

ν∗k = E(νy1,i ∗ νy2,i ∗ · · · ∗ νyk,i)

using the projection map π(y1, . . . , yk) = y1 + · · ·+ yk.
Fix any generation i ∈ N (corresponding to the scale 2−i) and write

σ2
i := E(Var(νy,i)).

If we choose y1, y2, · · · ∈ R as random variables whose distribution is ν, then the law of large
numbers yields that

1

k

k∑
j=1

Var(νyj ,i) −→ σ2
i

with probability 1 when k → ∞ (using ν×∞ as the probability measure). Hence for large enough
k ∈ N, there is a high probability that

Var(νy1,i ∗ νy2,i ∗ · · · ∗ νyk,i) ≈ σ
2
i k.

Then by the Berry-Esseen theorem (and the discussion after the formulation on measures supported
on δ-intervals) we obtain the following corollary:
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Corollary 3.55. If ε, σ > 0 and m ∈ N is large enough, and k ∈ N large enough (depending on
m), the following holds. If i ∈ N and ν ∈ P([0, 1]) satisfies

E(Var(νy,i)) ≥ σ2 × (2−i)2.

Then with probability at least 1− ε when the components νy1,i, . . . , νyk,i the convolution

η := νy1,i ∗ νy2,i ∗ · · · ∗ νyk,i

satisfies for all intervals I ⊂ R that

|η(I)− γ(I)| ≤ C

σ3
· 1√

k
,

where γ is a Gaussian measure with mean 〈η〉 and variance Var(η).

3.5 Entropy of convolution via components

Now to apply Berry-Esseen theorem in the component form and to link it to the assumption

Hn(µ ∗ ν) ≤ Hn(µ) + δn,

let us give a way to compute entropy of convolutions via the components µx,i (‘sceneries’). Before
doing this, let us recall Lemma 2.43, which we used in the self-similar theorem but we did not prove
from earlier. We will need it in the proof of inverse theorem so we will prove it now. Here it is
written again (with r = 1/2 and log = log2):

Lemma 3.56. For any µ ∈ P([0, 1]) and m ∈ N we have

1

n
Hn(µ) = E1≤i≤n

( 1

m
H(µx,i,Di+m)

)
+O

( 1

m
+
m

n

)
as n→∞.

Proof. By Lemma 2.42 (and its proof), we recall that the expectation

E(H(µx,j ,Dj+m)) = H(µ,Dj+m|Dj)

for any j ∈ N. Hence recalling the definition of E1≤i≤n, the statement is equivalent to

1

n
Hn(µ) =

1

n

n∑
i=1

( 1

m
H(µ,Dj+m|Dj)

)
+O

( 1

m
+
m

n

)
.

Let k be the integer part of m/n. If 0 ≤ u < m, then the entropy

H(µ,Du+mk) = H
(
µ,

k∨
i=0

Du+im

)
= H(µ,Du) +

k∑
i=1

H(µ,Du+(i+1)m|Du+im).(3.9)

Now, as µ is supported on [0, 1] and we have u < m, the entropy

H(µ,Du) = O(m).

Moreover, by the choice of k, we have |n− (u+mk)| < m so

H(µ,Du+mk) = H(µ,Dn) +O(m).
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Thus if we divide (3.9) by m, we have proved

1

m
H(µ,Dn) =

k∑
i=1

1

m
H(µ,Du+(i+1)m|Du+im) +O(1).

If we now sum over 0 ≤ u < m and then divide by n gives

1

n
H(µ,Dn) =

1

n

n∑
i=1

( 1

m
H(µ,Dj+m|Dj)

)
+O

( 1

m
+
m

n

)
,

which is what we claimed.

Now we can formulate the result for entropy of convolutions:

Lemma 3.57. For any µ, ν ∈ P([0, 1]) and m ∈ N we have

1

n
Hn(µ ∗ ν) ≥ E1≤i≤n

( 1

m
H(µx,i ∗ νy,i,Di+m)

)
+O

( 1

m
+
m

n

)
as n→∞. Here (x, y) is distributed according to µ× ν (i.e. the choice of x and y are independent
of each other).

Proof. By Lemma 3.56 (and its proof above) applied to the measure µ ∗ ν, we have

1

n
Hn(µ ∗ ν) =

1

n

n∑
i=1

( 1

m
H(µ ∗ ν,Dj+m|Dj)

)
+O

( 1

m
+
m

n

)
.

Thus we just need to check that for any 1 ≤ i ≤ n the conditonal entropy

H(µ ∗ ν,Dj+m|Dj) ≥ E(H(µx,i ∗ νy,i,Di+m)) +O(1).

Recall that Lemma 2.42 proved that

µ = E(µx,i) and ν = E(νy,i).

Hence by the linearity of the convolution and that x and y were chosen independently, we have

µ ∗ ν = E(µx,i ∗ νy,i).

Conditional entropy is concave2, so

H(µ ∗ ν,Di+1|Di) = H(E(µx,i ∗ νy,i),Di+1|Di) ≥ E(H(µx,i ∗ νy,i,Di+1|Di)).

The convolution µx,i ∗ νy,i is supported on an interval of length 2i+1 as µx,i ∈ P(Di(x)), νy,i ∈
P(Di(y)) and the intervals in Di have length 2−i. Thus µx,i ∗ νy,i gives at most O(1) measure for
any interval I ∈ Di+1. Therefore,

H(µx,i ∗ νy,i,Di+1|Di) = H(µx,i ∗ νy,i,Di+1 ∨ Di)−H(µx,i ∗ νy,i,Di) ≥ H(µx,i ∗ νy,i,Di+1)−O(1).

Thus we have proved the claim.

2See Lemma 2.31. Here it is written for standard entropy but the estimate there is true for conditional entropy,
see [CT].



Spring 2016 27

3.6 Components of absolutely continuous measures

Recall Corollary 3.55 for Berry-Esseen theorem which yields that if ν ∈ P([0, 1]) is given, then the
convolutions of the components η = νy1,i∗νy2,i∗· · ·∗νyk,i are close to a Gaussian measure γ of mean
〈η〉 and variance Var(η). Now to link this information to “uniformity” of components, which is the
conclusion of Hochman’s inverse theorem, we will need to give a probabilistic statement in this
language of the components of Gaussian measures. Gaussian measures are absolutely continuous
with continuous density, so we will give a general statement for such measures.

Lemma 3.58. Let γ ∈ P(R) be absolutely continuous with continuous density dγ(x) = f(x) dx and
assume that f > 0. Then for any m ∈ N there exists a generation i ∈ N such that

P
( 1

m
H(γx,i,Di+m) > 1−O( 1

m)
)
> 1−O( 1

m).

Proof. Fix x ∈ R. Let I = Di(x) giving γx,i = γI . Let J1, . . . , J` be the intervals in Di+m in I
(note that as the dyadic intervals are nested, we have ` = 2m). Hence for any u = 1, . . . , ` we have

γI(Ju) =

∫
Ju
f(x) dx∫

I f(x) dx
.

Denote
f
I

= inf
x∈I

f(x) and f I = sup
x∈I

f(x).

Then
f
I

f I
· 2−m ≤

f
I

f I
· |Ju|
|I|
≤ γI(Ju) ≤ f I

f
I

· |Ju|
|I|
≤ f I
f
I

· 2−m.

By the continuity and as f > 0 we have that when |I| → 0, that is, when i→∞, we have

f
I

f I
→ 1 and

f I
f
I

→ 1.

This then shows that
1

m
H(γx,i,Di+m)→ 1

as i→∞ for any x ∈ R. Now Egorov’s theorem yields that this convergence is uniform in a set of
large γ measure. Thus we have proved that for any m ∈ N there exists i ∈ N such that

P
( 1

m
H(γx,i,Di+m) > 1−O( 1

m)
)
> 1−O( 1

m).

Now as a corollary of this Lemma 3.58 (and its proof), we obtain

Corollary 3.59. Let 0 < a < b and ε > 0. Then for any large enough m ∈ N there exists i ∈ N
satisfying

C−1√a ≤ 2−i ≤ C
√
a

for some uniform constant C > 0 such that for any Gaussian γ ∈ P(R) with Var(γ) ∈ [a, b] we
have

P
( 1

m
H(γx,i,Di+m) > 1− ε

)
> 1− ε.
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Proof. In the proof of Lemma 3.58, the i is chosen such that it only depends on the modulus of
continuity of f and how fast

γ({x ∈ R : f(x) > t})→ 1

when t→ 0. If G[a, b] is the family of all Gaussian measures γ with Var(γ) ∈ [a, b] are uniform for
these quantities. Now the generation i can be chosen to be proportional to

√
a. This is because

what we are trying to claim is invariant under re-scaling and scaling a random measure (component)
by t (i.e. zooming in by 2−i) yields that the variance is scaled by

√
t.

3.7 Components of large self-convolutions

Let us now return to the structure of the components ηi := νy1,i ∗ νy2,i ∗ · · · ∗ νyk,i of a given
ν ∈ P([0, 1]) (recall Corollary 3.55). Combining Corollary 3.59 to Corollary 3.55 gives us then the
following claim:

Proposition 3.60. If ε, σ > 0 and m ∈ N is large enough, and k ∈ N large enough (depending on
m), the following holds. If i ∈ N and ν ∈ P([0, 1]) satisfies

E(Var(νy,i)) ≥ σ2 × (2−i)2.

Then with probability at least 1− ε when the components νy1,i, . . . , νyk,i the convolution

η := νy1,i ∗ νy2,i ∗ · · · ∗ νyk,i

satisfies for a given j ∈ N such that 2−j is propotional to
√
σ2k · ri so that

P
( 1

m
H(ηx,j ,Dj+m) > 1− ε

)
> 1− ε.

In particular we have

E
( 1

m
H((ν∗k)y,j ,Dj+m)

)
> 1− 2ε.

Proof. The first statement follows from Corollary 3.55 combined with the fact that Corollary 3.59
holds for any weak limit of Gaussian measures in G[a, b]. For the second, concavity of conditional
entropy (recall Lemma 2.31) gives

E
( 1

m
H(νky,j ,Dj+m)

)
=

1

m
H(ν∗k,Dj+m|Dj)

=
1

m
H(E(η),Dj+m|Dj)

≥ 1

m
E(H(η,Dj+m|Dj))

= E
( 1

m
H(ηy,j ,Dj+m)

)
≥ 1− 2ε.

The last inequality follows from the fact that if X ≥ 0 is a random variable with X > 1 − ε with
probability at least 1− ε then satisfies E(X) ≥ 1− 2ε.
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3.8 Completion of the proof

Let us now complete the proof of Hochman’s Inverse Theorem 3.46, recall once more the statement:

Theorem 3.61 (Hochman [Ho1]). For any ε > 0 and m ∈ N there exists δ = δ(ε,m) > 0 such
that for all large enough n and every µ, ν ∈ P([0, 1]) satisfying

Hn(µ ∗ ν) ≤ Hn(µ) + δn,

there exists disjoint subsets I, J ⊂ {1, . . . , n} with |I ∪ J | ≥ (1− ε)n such that

P( 1
mH(µx,k,Dk+m) > 1− ε) > 1− ε, if k ∈ I;

and
P( 1

mH(νx,k,Dk+m) < ε) > 1− ε, if k ∈ J.

To make the presentation and logic as clear as possible, we will write this explicitly the main
steps.

Step 1. Assumptions and parameters

We will end up applying later on the Kaimanovich-Vershik lemma (in particular, the discretised
Lemma 3.49) and there will be a k ∈ N constructed at some point and to make things clear, we
will now write down carefully the dependences on the quantifiers, which will lead to the right order
for Hochman’s Inverse Theorem 3.46. In the upcoming steps we will find the following relations on
the quantifiers:

(1) ε > 0 arbitrary;

(2) m ∈ N large comparted to ε;

(3) k ∈ N depends on ε and m (for Kaimanovich-Vershik);

(4) δ > 0 small enough depending on ε, m and k.

(5) n ∈ N large enough depending on ε, m, k and δ.

Using these relations, we fix two measures µ, ν ∈ P([0, 1]) with

Hn(µ ∗ ν) ≤ Hn(µ) + δn.

Then we construct ε′ = ε′(ε) > 0 which depends on the given parameters, in particular ε > 0 and
we have

lim
ε→0

ε′ = 0.

Using this ε′ > 0 we find disjoint subsets I, J ⊂ {1, . . . , n} with |I ∪ J | ≥ (1− ε′)n satisfying

P( 1
mH(µx,k,Dk+m) > 1− ε′) > 1− ε′, if k ∈ I;

and
P( 1

mH(νx,k,Dk+m) < ε′) > 1− ε′, if k ∈ J.
Thus the conclusion of Hochman’s Inverse Theorem 3.46 with ε replaced by ε′.

Remark 3.62. Note that in the relation (2) above, we have that m is large enough in relative to
ε. This is not what Hochman’s Inverse Theorem 3.46 gives as the relation, it just says m should
be arbitrary independent of ε. This can be removed with an argument, which we omit here. See
[Ho1] for details.
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Step 2. Applying Kaimanovich-Vershik lemma

Suppose we have constructed δ > 0 and n is large. Fix µ, ν ∈ P([0, 1]) satisfying

Hn(µ ∗ ν) ≤ Hn(µ) + δn.(3.10)

Then by the Kaimanovich-Vershik lemma (the discretised version Lemma 3.49)

Hn(µ ∗ (ν∗k)) ≤ Hn(µ) + kδ +O
(
k
)

(3.11)

for any k ∈ N as n → ∞. On the other hand, note that entropy does not increase convolution
(recall Tao’s bounds Lemma 2.35) so applying Lemma 2.35 here we have the following lower bound
as well:

Hn(µ ∗ (ν∗k)) ≥ Hn(µ)−O
(

1
)
.

Note that we aim to choose k ∈ N large enough relative to ε so this means that we may assume that
kδ is arbitrarily small by just choosing δ > 0 small enough depending on k. Thus the inequality
we obtained in (3.11) above is actually nearly an equality

1

n
Hn(µ ∗ (ν∗k)) ≈ 1

n
Hn(µ).

The error O(k/n) can be ignored as we assume that n will be chosen large in relative to k.
What have we gained in (3.11) compared to the original inequality (3.10)? The key difference

here is that we convolve in (3.10) the measure µ by some arbitrary measure ν of which we do
not, a priori, do not know much. However, in (3.11) we convolve the measure µ with the k-fold
self-convolution ν∗k, which is no longer “arbitrary” but (as we seen using Berry-Esseen analysis)
very close to a fixed given measure, namely a Gaussian measure γ. Therefore, this yields that ν∗k

must have large entropy at many small scales. We will now make this precise and complete the
proof in the following steps.

Step 3. Reformulation with component measures

Let us now see what (3.11) from Step 2 implies for the components µx,i and (ν∗k)y,j . So we assume
that we have

Hn(µ ∗ (ν∗k)) ≤ Hn(µ) + kδ +O
(
k
)

for a large k ∈ N but kδ small and n large enough in relation to k and δ. Let m ∈ N be large
enough and later on we will assume that k is large compared to m. By Lemma 3.56 and Lemma
3.57 we thus have

E1≤i≤n

( 1

m
H(µx,i ∗ (ν∗k)y,i,Di+m)

)
< E1≤i≤n

( 1

m
H(µx,i,Di+m)

)
+ kδ +O

( k
m

+
m

n

)
.

Now note that the O error can be ignored if we just have that m is large enough (depending on
ε) and n is large enough (depending on m). Now again by Tao’s bounds Lemma 2.35 (for any
1 ≤ i ≤ n) that:

1

m
H(µx,i ∗ (ν∗k)y,i,Di+m) ≥ 1

m
H(µx,i,Di+m)−O

( 1

m

)
.

Now we are in the following situation: there are two random variables X,Y satisfying

E(X) ≤ E(Y ) + c and X ≥ Y − c
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for some small c > 0. Therefore, |X − Y | ≤
√

2c with probability at least 1−
√

2c. Thus we have
shown that with high probability over i ∈ {1, . . . , n} and components µx,i and (ν∗k)y,i we have

1

m
H(µx,i ∗ (ν∗k)y,i,Di+m) <

1

m
H(µx,i,Di+m) + δ′(3.12)

for some δ′ > 0 small as long and we choose k large, δ > 0 small enough in relative to k, m large in
relative to k and n large enough compared to these. Moreover, the ‘high probability’ also depends
on the parameters in this manner: it is at least 1− δ′.

What did we gain now in (3.12)? The key difference to the inequality (3.11) is that in (3.11)
the k was fixed and we chose n to be large, and now we can have m to be much smaller than
k. Berry-Esseen allowed us to say that ν∗k looks like Gaussian at scales relative to 2−k, but not
to scales 2−n like we would like to have. Allowing k to be much bigger than m ensures that the
component (ν∗k)y,i looks like Gaussian up to scales 2−(i+m). This allows us to conclude the claim
of Hochman’s inverse theorem.

Step 4. Applying Berry-Esseen theorem and convolution power analysis

Let us now conclude the proof and use the Berry-Esseen theorem and convolution power analysis
to construct the sets desired disjoint subsets I, J ⊂ {1, . . . , n} for Hochman Inverse Theorem 3.46.

Proof of Theorem 3.46. We will construct soon a parameter σ > 0 depending on ε and m. Using
this parameter we will write

J := {1 ≤ j ≤ n : E(Var(νy,j)) < σ2}

and let
I := {1, . . . , n} \ J.

Let j ∈ J . Now, intuitively, if we have small variance for a measure τ , then most of the measure
τ is supported on a very small interval. Hence choosing σ > 0 small enough (depending on ε and
m), the following holds

E
( 1

m
H(νy,j ,Dj+m)

)
< ε2

whenever j ∈ J . This can be done preicely using this heuristics that small variance implies con-
centration. Thus we have

P
( 1

m
H(νy,j ,Dj+m) > ε

)
< ε

for j ∈ J . By the corollary to Berry-Esseen theorem (Proposition 3.60) using these ε and σ, we
have for any i ∈ I there is p ∈ N such that 2−(i−p) is propotional to

√
σ2k · 2−i and

E
( 1

m
H((ν∗k)y,i−p,Di−p+m)

)
> 1− 2ε.

Now p grows like log k and with some effort one can show that nearly all i ∈ I satisfy i − p ∈ I,
which is done in [Ho1]. This requires us to remove a few points from I but in a way that we have
at least

|I ∪ J | > (1− ε)n

and for these i ∈ I we have

P
( 1

m
H((ν∗k)y,i,Di+m) > 1− ε′

)
> 1− ε′(3.13)
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for some ε′ > 0 with ε′ → 0 as ε→ 0. See [Ho1] for details on this step. By Tao’s bounds Lemma
2.35 we have

1

m
H(µx,i ∗ (ν∗k)y,i,Di+m) ≥ 1

m
H((ν∗k)y,i,Di+m)−O

( 1

m

)
.

If we now combine (3.12) from Step 3 and (3.13) above we have that with high probability for the
components µx,i and (ν∗k)y,i we have

1−ε′−O
( 1

m

)
≤ 1

m
H((ν∗k)y,i,Di+m)−O

( 1

m

)
≤ 1

m
H(µx,i∗(ν∗k)y,i,Di+m) ≤ 1

m
H(µx,i,Di+m)+δ′.

Thus if i ∈ I we have with high probability for the components µx,i (i.e. x ∼ µ) that

1

m
H(µx,i,Di+m) ≥ 1−

(
ε′ + δ′ +O

( 1

m

))
.

Thus if we begin the proof with smaller ε > 0 and choosing the parameters as we did in Step 1,
this completes the proof.

4 Self-similarity

Let us now discuss on some of the applications of Hochman’s inverse theorem. In the following
sections we will give the key appplication to the theory of self-similar sets, which has consequences
and links also to other applications such as Bernoulli convolutions, projection theorems and iterated
function systems contracting on average.

4.1 Self-similar sets

Let Λ be a finite index set.

Definition 4.63. A finite family Φ = {fi}i∈Λ of maps fi : Rd → Rd is called an iterated function
system (IFS) if each of the maps fi, i ∈ Λ, is a contraction: there exists 0 < ri < 1 such that

|fi(x)− fi(y)| ≤ ri|x− y|, x, y ∈ Rd.

Iterated function systems can be associated with a unique compact set X, known as attractor:

Theorem 4.64 (Hutchinson [Hu]). For any IFS Φ = {fi}i∈Λ, there exists a unique compact X 6= ∅
such that

X =
⋃
i∈Λ

fi(X).(4.14)

Proof. Let X := {X ⊂ Rd : X 6= ∅ is compact}. Then X becomes a complete metric space with
the Hausdorff metric

dH(X,Y ) := inf{ε > 0 : X ⊂ Y (ε), Y ⊂ X(ε)},

where Y (ε) := {x ∈ Rd : dist(x, Y ) < ε} is the ε-neighborhood of Y . Moreover, the transformation
Φ : X → X ,

Φ(X) :=
⋃
i∈Λ

fi(X), X ∈ X ,
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satisfies
dH(Φ(X),Φ(Y )) ≤

(
max
i∈Λ

ri

)
dH(X,Y ), X, Y ∈ X ,

for the parameters 0 < ri < 1 associated to fi. Since maxi∈Λ ri < 1, the map Φ is a contraction on
the complete metric space (X , dH). Hence by the Banach fixed-point theorem there exists a unique
X ∈ X satisfying X = Φ(X), which is (4.14).

Definition 4.65. A contraction fi : Rd → Rd is called a similitude if

|fi(x)− fi(y)| = ri|x− y|, x, y ∈ Rd,

which is equivalent to say that fi(x) = riAix + ai for some Ai ∈ O(d) and ai ∈ Rd. An IFS
Φ = {fi}i∈Λ is self-similar if each fi ∈ Φ is a similitude. The attractor X for a self-similar IFS is
called a self-similar set.

Example 4.66. (1) The self-similar set X associated to the similitudes fi : R→ R defined by

f1(x) = 1
3x and f2(x) = 1

3x+ 2
3

is the middle-third Cantor set.

(2) The self-similar set X associated to the similitudes fi : R2 → R2 defined by

f1(x) = 1
2x, f2(x) = 1

2x+ (1
2 , 0) and f3(x) = 1

2x+ (1
4 ,
√

3
4 )

is the Sierpinski gasket.

(3) Let A ∈ O(2) be the counter-clockwise rotation of R2 by the angle 60◦. Then the self-similar
set X associated to the similitudes fi : R2 → R2 defined by

f1(x) = 1
3x, f2(x) = 1

3Ax+ (1
3 , 0),

f3(x) = 1
3A

2x+ (1
2 , 0), f4(x) = 1

3x+ (2
3 , 0).

is the Koch snowflake curve.
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4.2 Cylinder sets and iteration

From now on (and until the end of the lecture notes), we will study the case d = 1 and that the
mappings in the self-similar IFS Φ = {fi}i∈Λ are all contracting with the same contraction rate
0 < r < 1, that is, ri = r for every i ∈ Λ. This means that each fi has the form

fi(x) = rx+ ai

for some points ai ∈ R. Theory for those self-similar IFSs with varying contraction rates and in
higher dimension has also been developed, but we will just concentrate on this simple case as most
of the essential ideas are present there.

For a word (or n-tuple) i = i1i2 . . . in ∈ Λn denote the composition

fi = fi1 ◦ fi2 ◦ · · · ◦ fin .

In our case thus the composition

fi(x) = rnx+

n∑
k=1

aikr
k−1 = rnx+ ai

for ai :=
∑n

k=1 aikr
k−1 = fi(0). The set fi(X) is called an nth generation cylinder set associated

to the word i ∈ Λn. Using (4.14) we obtain

X =
⋃
i∈Λ

fi

( ⋃
j∈Λ

fj(X)
)

=
⋃
i,j∈Λ

fi ◦ fj(X) =
⋃
i∈Λn

fi(X).

Hence for any n ∈ N we have the following iterated version

X =
⋃
i∈Λn

fi(X).(4.15)

of (4.14).

4.3 Dimension

Different notions of dimensions are standard way to measure how ‘big’ or how much ‘space’ a set
X occupies.

Definition 4.67. The covering number of a bounded set X at the scale ε > 0 is defined by

N(X, ε) := min{k ∈ N : we can cover X by k closed balls Bi of diameter diam(Bi) = ε}

The box dimension (or Minkowski dimension) of X is the exponential growth rate of the
covering numbers N(X, ε):

dimBX = lim
ε→0

logN(X, ε)

log(1/ε)

provided that the limit exists (for self-similar X it does, to be proved later). This means that if
α = dimBX, then N(X, ε) = ε−α+o(1) as ε→ 0.
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Example 4.68.

(1) For X = [0, 1] it is a simple exercise to check dimBX = 1.

(2) For the middle-third Cantor set one can also quite directly verify that

dimBX =
log 2

log 3

by using the cylinder sets for the optimal covering.

The value of box dimension is evaluated from coverings that have fixed upper bound for the
size. The optimal coverings for a set may not be given by such covers. The notion of Hausdorff
dimension (see [Fa, Ma]) dimX takes this into account:

dimX = inf
{
s ≥ 0 : ∀ε > 0 we can cover X by balls Bi satisfying

∑
i

diam(Bi)
s < ε

}
.

However, for self-similar sets this makes no difference:

Theorem 4.69 (Falconer [Fa]). If X is self-similar, then dimX = dimBX.

4.4 Bounding dimension

Let X be the self-similar set associated to Φ = {fi}i∈Λ (recall that d = 1 and fi(x) = rx+ ai). If
i ∈ Λn, then as fi(x) = rnx+ ai for some ai ∈ R, we know that

diam fi(X) ≤ rn diamX.

Hence if we set ε = rn diamX, we can use (4.15) to establish

N(X, ε) ≤ |Λ|n.

(take an interval I containing X and use the interval cover fi(I) of X). Hence

dimX = dimBX ≤ lim
n→∞

log |Λ|n

log( 1
rn diamX )

=
log |Λ|

log(1/r)
.

Definition 4.70. The similarity dimension of the IFS Φ = {fi}i∈Λ is the number

dims Φ :=
log |Λ|

log(1/r)
.

Since we trivially have dimX ≤ 1, we obtain an upper bound:

dimX ≤ min{1,dims Φ}.(4.16)

4.5 When is dimX = min{1, dims Φ}?

The equality for (4.16) occurs if there is separation present in the choices of the maps fi in the IFS
Φ.

Definition 4.71. We say that Φ satisfies the

(1) strong separation condition (SSC), if the union
⋃
i∈Λ fi(X) is disjoint;
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(2) open set condition (OSC), if there exists a non-empty open set U ⊂ R such that fi(U) ⊂ U
and the union

⋃
i∈Λ fi(U) is disjoint.

Example 4.72. The middle-third Cantor set satisfies SSC and the Sierpinski gasket satisfies OSC
but not the SSC.

If we have one of these separation conditions, we can obtain equality in (4.16):

Theorem 4.73 (Hutchinson [Hu]). If Φ satisfies the SSC or OSC, then the self-similar set X
satisfies

dimX = dims Φ.

Note that in particular SSC and OSC always fail if we have dims Φ > 1, which can be achieved
if the maps in Φ ‘overlap’ as we will see in the next section.

4.6 When is dimX < min{1, dims Φ}?

Let us define the notion of ‘exact’ overlaps:

Definition 4.74. If there exists n ∈ N and i, j ∈ Λn, i 6= j, such that

fi = fj,

then Φ is said to have exact overlaps.

Note that as fi(x) = rnx+ ai, having exact overlaps means that ai = aj. Suppose now that Φ
has exact overlaps with some i, j ∈ Λn. Then in (4.15) we may omit one of the fi(X) or fj(X). In
particular, if we put Λ′ = Λn \ {j}, then

X =
⋃
k∈Λ′

fk(X).

Hence X is self-similar for the IFS Φ′ = {fk}k∈Λ′ . Each fk(x) = rnx + ak and |Λ′| = |Λ|n − 1, so
(4.16) yields

dimX ≤ dims Φ′ =
log(|Λ|n − 1)

log(1/rn)
<

log |Λ|n

log(1/rn)
= dims Φ.

Thus if we have dims Φ < 1, we obtain dimX < min{1,dims Φ}.

4.7 The dimension drop conjecture

Now it is expected that the drop in dimension in (4.16) should only occur when there are exact
overlaps in the IFS:

Conjecture 4.75. If dimX < min{1, dims Φ}, then Φ has exact overlaps.

This conjecture is still open but recently substantial progress was made towards this conjecture
by M. Hochman [Ho1].

Define

∆n := min{|fi(0)− fj(0)| : i, j ∈ Λn, i 6= j}

The choice of initial point 0 is irrelevant and we could put there any x ∈ R since fi(x) = rnx+ ai.
In fact ∆n = min{|ai − aj| : i, j ∈ Λn, i 6= j}.
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Remark 4.76. (i) Φ has exact overlaps if and only if ∆n = 0. Thus Conjecture 4.75 is equivalent
to asking that dimX < min{1,dims Φ} yields ∆n = 0.

(ii) If x ∈ X, then each fi(x) ∈ X, i ∈ Λn, so there has to exist i, j ∈ Λn, i 6= j, with

|fi(x)− fj(x)| ≤ diamX

|Λ|n − 1
.

Hence we always have that ∆n → 0 (at least) exponentially.

(iii) If Φ satisfies the SSC or OSC, then ∆n → 0 at most at exponential speed, that is, there
exists c > 0 and 0 < % < 1 with

∆n ≥ c%n

for all n ∈ N. (exercise)

Hochman found that a strict inequality in (4.16) yields faster than exponential decay for ∆n:

Theorem 4.77 (Hochman [Ho1]). If dimX < min{1, dims Φ}, then ∆n → 0 super-exponentially,
that is,

− 1

n
log ∆n →∞, n→∞.

Theorem 4.77 has a wide-range of applications, which we will discuss later on, but let us mention
concretely one on rational IFSs.

Definition 4.78. The IFS Φ is rational if the defining parameters r ∈ Q and ai ∈ Q, i ∈ Λ.

For rational IFSs we can use Theorem 4.77 to establish Conjecture 4.75:

Corollary 4.79. If dimX < min{1, dims Φ} and Φ is rational, then Φ has exact overlaps.

Proof. Recall that

fi(x) = rnx+

n∑
k=1

aikr
k−1 = rnx+ fi(0).

Since Φ is rational, we can find p, q, pi, qi ∈ N such that r = p/q and ai = pi/qi. Denote Q =
∏
i∈Λ qi.

Then we can write

fi(0) =

n∑
k=1

aikr
k−1 =

Pi

Qqn

for some Pi ∈ N. Using this we see that ∆n = min{|fi(0) − fj(0)| : i, j ∈ Λn, i 6= j} is a rational
number and with the denominator Qqn. Suppose Φ has no exact overlaps, that is, ∆n > 0 for all
n ∈ N. Thus ∆n ≥ 1

Qqn for all n ∈ N and so ∆n → 0 at most exponentially. Hence by Theorem
4.77 we must have dimX = min{1,dimsX}.

We leave applications and further topics to the end of the lectures, let us now see how to prove
Theorem 4.77.
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5 Additive combinatorics and self-similar sets

5.1 Sumset approximations of self-similar sets

Let us now return to self-similar sets and see how additive combinatorics comes into play here.
Recall that in Section 4.2 we agreed to fix a self-similar IFS Φ = {fi}i∈Λ consisting of similitudes
fi(x) = rx+ ai, x ∈ R, with the same contraction ratio 0 < r < 1. The attractor of Φ was denoted
by X. We now further assume that 0 ∈ X and X ⊂ [0, 1), which will not change any of the results
as we can translate and rescale X (and thus all the maps) to obtain this.

Definition 5.80. For n ∈ N the n:th generation approximation of X is the set

Xn := {fi(0) : i ∈ Λn}.

Since 0 ∈ X, we have fi(0) ∈ X for all i ∈ Λn. Hence Xn ⊂ X. Moreover, |Xn| ≤ |Λ|n and we
have that |Xn| < |Λ|n if and only if Φ has exact overlaps.

Recall that if i ∈ Λn and x ∈ R, we have by the iteration formula

fi(x) = rnx+
n∑
k=1

aikr
k−1 = rnx+ fi(0) = rnx+ ai.(5.17)

Using this expression, we can show that the approximations Xn enjoy the following sumset prop-
erties:

Lemma 5.81. For all m,n ∈ N we have

X = Xm + rmX(5.18)

and

Xm+n = Xm + rmXn.(5.19)

Proof. By (4.15) and (5.17) we can write

X =
⋃

i∈Λm

fi(X) =
⋃

i∈Λm

{rmx+ fi(0) : x ∈ X} = rmX +Xm,

which is (5.18). For the second equality (5.19) let us first fix i ∈ Λm and j ∈ Λn. Denote by
ij ∈ Λm+n the concatenation of i and j, that is, if i = i1i2 . . . im and j = j1j2 . . . jn, then ij is the
word ij := i1i2 . . . imj1j2 . . . jn. Using the first equality in (5.17), we can write

fij(0) =

m∑
k=1

aikr
k−1 +

n∑
k=1

ajkr
m+k−1 = fi(0) + rmfj(0).

Then the m+ n generation approximation has a form

Xm+n = {fi(0) + rmfj(0) : i ∈ Λm, j ∈ Λn} = Xm + rmXn.
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5.2 Box dimension of self-similar sets via sumsets

We mentioned earlier that for self-similar sets X the box dimension dimBX always exists:

Theorem 5.82. If X ⊂ R is self-similar set, then dimBX exists.

We will now use the above sum-set structure of self-similar sets to show this. We will later see
that this will also help us to approach Hochman’s theorem.

Recall the definition of the covering numbers of a set A ⊂ R in the scale ε > 0:

N(A, ε) = min{k ∈ N : we can cover A by k intervals Ii of diameter ε}.

We need the following quantitative lemma on covering numbers of sumsets:

Lemma 5.83. Let ε > 0 and A,B ⊂ R with B ⊂ [0, ε). Then

(1) we have
N(A+B, ε) ≤ 2N(A, ε)

(2) for any 0 < δ ≤ ε we have

N(A+B, δ) ≥ 1

3
N(A, ε)N(B, δ)

Proof. (1) Let n := N(A, ε) and choose an optimal cover of A by intervals Ii, i = 1, . . . , n, of
diameter ε. Assume these intervals are half-open and wite Ii = [ai, ai + ε) for some ai ∈ R. Denote

I ′i := Ii + [0, ε) = [ai + ε, ai + 2ε).

Then as B ⊂ [0, ε) we can cover

A+B ⊂
n⋃
i=1

(Ii +B) ⊂
n⋃
i=1

(Ii + [0, ε)) =

n⋃
i=1

(Ii ∪ I ′i).

Thus A+B is covered by 2n intervals Ii, I
′
i of length ε, which yields

N(A+B, ε) ≤ 2n = 2N(A, ε).

(2) Let n := N(A, ε) and choose an optimal cover of A by disjoint3 intervals Ii, i = 1, . . . , n,
of diameter ε. Fix 0 < δ ≤ ε, let

m := N(A+B, δ).

Now choose an optimal cover of A + B by intervals Jj , j = 1, . . . ,m, of diameter δ. Fix any
i = 1, . . . , n and a point ai ∈ A ∩ Ii (which is possible as {Ii} cover A) and define the set of pairs
of intervals

P = {(Ii, Jj) : (ai +B) ∩ Jj 6= ∅, j = 1, . . . ,m, i = 1, . . . , n}.

The collection P satisfies the following properties:

(i) For each interval Ii at least N(B, δ) of the intervals J1, . . . , Jm satisfy (Ii, Jj) ∈ P.

3Now we note that in the definition of box dimension we can choose the optimal interval cover of A (i.e. the one
realising N(A, ε)) to be disjoint for example by using dyadic interval partitions Dj , see for example Falconer’s book
[Fa, Equivalent definitions 3.1].
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Indeed, if we fix i, then as ai ∈ A we have

ai +B ⊂ A+B

so the intervals Jj cover ai + B. Therefore, ai + B intersects at least N(B, δ) intervals Jj for
j = 1, . . . ,m since N(B, δ) is the minimal number of δ intervals needed to cover B.

(ii) For each interval Jj at most 3 intervals I1, . . . , In satisfy (Ii, Jj) ∈ P.

Indeed, if we fix j such that Jj = [xj , xj + δ) intersects a+B for some a ∈ A, then

a ∈ [xj − ε, xj + ε)

since we assumed B ⊂ [0, ε) and δ ≤ ε. Now recall that the diameter of each Ii is diam(Ii) = ε.
Since we chose the A cover {Ii} to be disjoint, this means that a belongs to at most 3 intervals in
Ii.

Now (i) and (ii) together show that the number of intervals Jj occuring for some (Ik, Jj) ∈ P
is at least 1

3N(B, δ) times the number of intervals Ii occuring for some (Ii, Jl) ∈ P. On the other
hand, the number of interval Jj occuring as a second coordinate in P is m = N(A+B, δ) and the
number of intervals Ii occuring as the first coordinate in P is n = N(A, ε). Therefore,

N(A+B, δ) ≥ 1

3
N(A, ε)N(B, δ).

Let us now prove the existence of box dimension of self-similar X. Recall that we assumed
0 ∈ X ⊂ [0, 1).

Proof of Theorem 5.82. Let us first check the following:

Claim 1: Box dimension dimBX exists if and only if

lim
m→∞

1

m
logN(Xm, r

m) exists.(5.20)

The approximation Xm ⊂ X so

N(Xm, r
m) ≤ N(X, rm).

Moreover, by Lemma 5.81 (equation (5.18)) we have

X = Xm + rmX

and the diameter diam(rmX) ≤ rm (as X ⊂ [0, 1)) so by Lemma 5.83(1) with ε = rm, B = rmX
and A = Xm we have

N(Xm, r
m) ≥ 1

2
N(X, rm).

This yields the claim.4

Now let us check the existence (5.20) for the approximations Xm:

Claim 2: (5.20) is true

4The existence of limε→0
logN(X,ε)
log(1/ε)

is equivalent to the existence of limm→∞
logN(X,rm)
log(1/rm)

which is an easy exercise.
Note that it is irrelevant that here we happen to have r.
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If n,m ∈ N, then as Xn ⊂ X ⊂ [0, 1) we have rmXn ⊂ [0, rm). Therefore by Lemma 5.81
(equation (5.19)) and Lemma 5.83(2) with ε = rm, δ = rm+n, A = Xm and B = rmXn we have (as
we have the invariance N(tA, tε) = N(A, ε) for all t > 0)

N(Xm+n, r
m+n) = N(Xm + rmXn, r

m+n)

≥ 1

3
N(Xm, r

m)N(rmXn, r
m+n)

=
1

3
N(Xm, r

m)N(Xn, r
n).

Write
sm := logN(Xm, r

m), m ∈ N.

Now we just need to check that the limit lim sm
m exists. The inequality above shows that for any

m,n ∈ N we have:
sm+n ≥ sm + sn − log 3.

Let us modify sm slightly to make a super-additive sequence. Write

s̃m := sm − log 3, m ∈ N.

Now
s̃m+n ≥ sm + sn − log 3− log 3 = s̃m + s̃n.

This means that (s̃1, s̃2, s̃3, . . . ) is super-additive so the limit lim s̃m
m exists. On the other hand

sm − s̃m
m

=
log 3

m
→ 0, m→∞,

so the limit lim sm
m exists.

5.3 Set theoretical “proof” of Hochman’s theorem for self-similar sets

Let us recall our goal on self-similar sets, Hochman’s Theorem 4.77:

Theorem 5.84. If dimX < min{1, dims Φ}, then

∆n = min{|fi(0)− fj(0)| : i, j ∈ Λn, i 6= j} → 0

super-exponentially, that is,

− 1

n
log ∆n →∞, n→∞.

We are not yet ready to prove this, but we will give a set theoretical “proof” which shows
the key ideas and how (power growth) inverse theorems in additive combinatorics arise into the
analysis. Don’t worry, we will give a precise proof later using measure theoretical machinery, but
as the set theoretical “proof” already contains most of the key ideas, this presentation may help
the reader later to understand the technicalities in the upcoming measure theoretical precise proof.

The strategy will be based on to checking how the failure of Theorem 5.84 (i.e. only expo-
nential decay of ∆n) leads to size information on X + Y for some relevant sets Y coming from
approximations Xm, which yields to absurd combinatorial features for X that (roughly) should
make no sense due to Bourgain’s Inverse Theorem 1.19.

Write
α := dimX and β := min{1, dims Φ}.
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Suppose α < β but ∆n → 0 at most exponentially, that is, there exists k ∈ N with

∆n ≥ rkn, n ∈ N.(5.21)

(recall here that r here is the contraction of the IFS Φ, but it does not matter which r we use here!)

Note that this trivially yields that Φ has no exact overlaps. Let us use (5.21) to construct two
intervals Im and Jm of diameter rm with certain cardinality properties for the approximations Xm.

Lemma 5.85 (Interval Im). Write σ := 1
2(β − α) > 0. Then for every large enough m ∈ N there

exists an interval Im with diameter diam(Im) = rm such that

|Xm ∩ Im| > r−σm.

Proof. By the proof of Theorem 5.82 we have

α = dimX = lim
m→∞

logN(Xm, r
m)

log(1/rm)
.

Thus for large enough m ∈ N we have

N(Xm, r
m) < r−(α+σ)m = r−(β−σ)m.

The condition (5.21) in particular yields that Φ has no exact overlaps so

|Xm| = |Λ|m = r−mdims Φ ≥ r−mβ.

Thus if {Ji}N(Xm,rm)
i=1 is an optimal cover of Xm by intervals with diam(Ji) = rm, then at least one

of the interval Ji must contain
|Xm|

N(Xm, rm)
> r−σm

points from Xm. Let Im to be this interval Ji and thus |Xm ∩ Im| > r−σm.

Lemma 5.86 (Interval Jm). For any δ > 0 and large enough m ∈ N there exists an interval Jm
with diameter diam(Jm) = rm with Xm ∩ Jm 6= ∅ and for n := km we have

N((Xm ∩ Jm) + rmXn, r
m+n) < r−(1+δ/2)αn.

Proof. Fix m and define the r-adic interval partition

Irm := {[krm, (k + 1)rm) : k ∈ Z}.

(recall that in Section 1.4 on multiscale analysis we used r = 1/2 and I1/2
m = Im.) Now Irm

partitions R so as Xm+n = Xm + rmXn by Lemma 5.81 (see (5.19)) so

Xm+n =
⋃
J∈Irm

(
(Xm ∩ J) + rmXn

)
Setting J = [krm, (k+1)rm) for some k ∈ Z we have Xm∩J ⊂ [krm, (k+1)rm) and rmXn ⊂ [0, rm)
as Xn ⊂ X ⊂ [0, 1). Therefore,

(Xm ∩ J) + rmXn ⊂ [krm, (k + 2)rm).
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The intervals [krm, (k+ 2)rm), k ∈ Z, cover R and every x ∈ R is contained in at most two of such
intervals. Therefore, an argument like in the proof of Lemma 5.83(2) gives us

N(Xm+n, r
m+n) ≥ 1

2
·N(Xm, r

m) · min
J∈Imr :Xm∩J 6=∅

N((Xm+n ∩ J) + rmXn, r
m+n).

Now recall that the dimension

α = dimX = lim
m→∞

logN(Xm, r
m)

log(1/rm)

by the proof of Theorem 5.82, so using the above inequality

min
J∈Imr :Xm∩J 6=∅

N((Xm+n ∩ J) + rmXn, r
m+n) ≤ 2 · N(Xm+n, r

m+n)

N(Xm, rm)

≤ 2 · r
−(α+o(1))(m+n)

r−(α+o(1))m

= r−(α+o(1))n

as m→∞ (recall that n = km). This is what we claimed if we fix δ > 0 and choose m large enough
that the above quantity is below r−(1+δ/2)αn and having minimum bounded by this can allow us to
choose on Jm ∈ Imr with this property. In particular, diam(Jm) = rm.

Theorem 5.87. Suppose that dimX < min{1,dims Φ} and ∆n ≥ rkn for all large enough n ∈ N,
that is, Hochman’s Theorem 4.77 fails. Moreover, suppose the following assumption

(A) for all δ > 0 and all large enough m ∈ N the intervals Im and Jm from Lemmas 5.85 and
5.86 coincide.

Then for all δ > 0 and all large enough n ∈ kN there exists a subset Yn ⊂ [0, 1] satisfying

N(Yn, r
n) ≥ N(Xn, r

n)γ

and
N(Xn + Yn, r

n) ≤ N(Xn, r
n)1+δ

for some γ > 0. Moreover, the set Yn is obtained as a magnification (recall Section 1.4) of Xn/k

Proof. Recall that σ = 1
2(β − α) from Lemma 5.85, which is > 0 by dimX < min{1,dims Φ}. Set

τ :=
σ

k
.

Let n ∈ kN be large enough such that that Lemmas 5.85 and 5.86 hold for m ∈ N satisfying n = km.
Construct the intervals Im and Jm from Lemmas 5.85 and 5.86. Thus by Assumption (A) above
we have Im = Jm. For our set Yn let us choose

Yn := r−m(Xm ∩ Im)− c,

(the set Yn is a blow up or magnification of Xm, note that m = n/k depends on n), where we
choose the translation c ∈ R so that Yn ⊂ [0, 1].

Since ∆m ≥ rkm = rn, every point in Xm ∩ Im is separated by at least rn. Hence by Lemma
5.85 we have

N(rmYn, r
n+m) = N(Xm ∩ Im, rn+m) ≥ |Xm ∩ Im| ≥ r−σm = r−τn
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Recall that N(tA, tε) = N(A, ε) for all t > 0 so the above yields

N(Yn, r
n) ≥ r−τn ≥ N(Xn, r

n)γ .

as N(Xn, r
n) = r−n(α+o(1)) if we set γ = τ/(2α) > 0. Moreover, since Im = Jm we have Xn + Yn =

r−m((Xm ∩ Jm) + rmXn) + c for some c ∈ R. Therefore by Lemma 5.86 we obtain.

N(Xn + Yn, r
n) = N((Xm ∩ Jm) + rmXn, r

m+n) ≤ r−(1+δ/2)αn ≤ N(Xn, r
n)1+δ

as N(Xn, r
n) = r−n(α+o(1)).

Theorem 5.87 would prove Hochman’s Theorem 4.77 if we can show that the assumption (A)
holds and the conclusion on sumsets would be impossible. Recalling Bourgain’s inverse theorem
it would make sense that the conclusion cannot hold since X is self-similar: one would not expect
to have such a distribution of scales inside X (or the approximations Xm). However, as we said
the inverse theorem is not yet precise and it is missing key properties on what do we mean by
’looks like’ a tree. Moreover, for the assumption (A) it seems difficult to guarantee such an strong
assumption, but if one allows some perturbation to the argument, the assumption (A) can be made
to hold in a weak sense that is enough for us. We will now overcome these problems using measure
theory.

6 Self-similar measures

6.1 Definitions

Let P(X) be the family of Borel probability measures on a metric space X. Given a self-similar
IFS Φ on R, let us define self-similar measures:

Definition 6.88. A measure µ ∈ P(R) is a (uniform) self-similar measure if

µ =
1

|Λ|
∑
i∈Λ

fiµ.(6.22)

If X = suppµ, the support of µ, then as fi(suppµ) = supp fiµ and Λ is finite, we have by (6.22)

X =
⋃
i∈Λ

fi(X).

Hence X is the self-similar set associated to X. Moreover, self-similar measures are unique: it can
be checked that the map

µ 7→ 1

|Λ|
∑
i∈Λ

fiµ

is a contraction in P(X) endowed with, for example, the 1st Wasserstein metric

d(µ, ν) := sup
{∣∣∣ ∫ f dµ−

∫
f dν

∣∣∣ : f is 1-Lipschitz X → R
}

and we can use the Banach fixed point theorem again to make (6.22) unique.

Remark 6.89. The reason we call these “uniform” self-similar measures is because we weight each
measure fiµ by the equal weight 1/|Λ|. General self-similar measures (see for example [Fa]) are
often defined with any general weights 0 ≤ pi ≤ 1 (by putting them inside the sum in (6.22)) in
place of 1/|Λ| which are required to satisfy

∑
i∈Λ pi = 1. All the theory presented here will also

follow for them, but for simplicity we stick to “uniform” self-similar measures.
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6.2 Dimension of self-similar measures

Dimensions have analogue for measures as well.

Definition 6.90. The (Hausdorff) dimension of a measure µ ∈ P(X) is

dimµ := inf{dimA : A ⊂ R, µ(A) > 0}.

If µ is the self-similar measure for Φ and X is the attractor, then µ(X) = 1. Thus we can
conclude:

Lemma 6.91. If µ is the self-similar measure for Φ and X is the attractor, then

dimµ ≤ dimX ≤ min{1, dims Φ}.

6.3 Hochman’s theorem for self-similar measures

Let us now give a measure theoretical version of Hochman’s Theorem 4.77:

Theorem 6.92 (Hochman [Ho1]). If µ is the self-similar measure associated to Φ and we have

dimµ < min{1,dims Φ},

then ∆n → 0 super-exponentially, that is,

− 1

n
log ∆n →∞, n→∞.

This is what we will prove in the following sections. However, let us first remind why this
implies Theorem 4.77

6.4 Self-similar measures ⇒ self-similar sets

Using the measure theoretical Theorem 6.92 we can prove the set-theoretical Theorem 4.77:

Proof of Theorem 4.77 assuming Theorem 6.92. By the assumption in Theorem 4.77 we have
dimX < min{1, dims ϕ}. Hence by Lemma 6.91 we have that dimµ < min{1, dims Φ}. Thus
Theorem 6.92 applies so we have our claim.

7 Proof of Hochman’s theorem for self-similar measures

7.1 Convolution structure of self-similar measures

Let us now now turn to prove Hochman’s theorem (Theorem 6.92) for self-similar measures, recall
the statement:

Theorem 7.93. If µ is the self-similar measure associated to Φ and we have

dimµ < min{1,dims Φ},

then ∆n → 0 super-exponentially, that is,

− 1

n
log ∆n →∞, n→∞.
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Recall that in Section 5.3, we reformulated the problem using sumsets. but do it measure
theoretically using convolutions and entropy. Define the following uniform probability measure
µ(n) on the approximations Xn = {fi(0) : i ∈ Λn} as follows:

µ(n) :=
1

|Λ|n
∑
i∈Λn

δfi(0).

Note that if Φ has exact overlaps, we weight µ(n) using the multiplicities of a given word i ∈ Λn

instead of the uniform weight 1/|Λ|n. Then we have that µ(n) → µ weakly.
Define a re-scaling map

St(x) := tx

and let Stν be the push-forward of a meeasure ν ∈ P([0, 1]) under this map. In particular, Stν is
a rescaling of ν under t. An analogue of Lemma 5.81 for sets is

Lemma 7.94.
µ(m+n) = µ(m) ∗ Srmµ(n)

and
µ = µ(m) ∗ Srmµ.

Moreover, the analogue of Lemma 5.83 for the covering numbers

Lemma 7.95. Let ε > 0 and µ, ν ⊂ P([0, 1]) with supp ν ⊂ [0, ε]. Then

(1) we have
H(µ ∗ ν, ε) ≤ H(µ, ε) +O(1)

(2) for any 0 < δ ≤ ε we have

H(µ ∗ ν, γ) ≥ H(µ, ε) +H(ν, γ)−O(1).

As for the box dimension of self-similar sets (Theorem 5.82, we can use this to obtain the
following:

Theorem 7.96. For the self-similar measure µ, the entropy dimension dime µ exists.

Proof. Recalling the proof of Theorem 5.82 we use the above lemmas to conclude that

|H(µ(m), rm)−H(µ, rm)| = O(1),

which is the entropy analogue to (5.20)), and moreover, we can conclude with the lemmas the
following superadditivity bound:

H(µ(m+n), rm+n) ≥ H(µ(m), rm) +H(µ(n), rn)−O(1),

which is an entropy analogue to N(Xm+n, r
m+n) ≥ 1

3N(Xm, r
m)N(Xn, r

n) proved in Theorem 5.82.
These yield Theorem 7.96.

As for the box dimension and Hausdorff dimension of self-similar sets, the Hausdorff dimension
and the entropy dimension of µ agrees, which was proved by Feng and Hu:

Theorem 7.97 (Feng-Hu). For the self-similar measure µ, we have dimµ = dime µ.

We will use this result throughout the proof and refer to Feng and Hu’s paper on obtaining this
result.
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7.2 Components of self-similar measures

Assume now on the contrary that

dimµ < min{1,dims Φ},

but ∆n → 0 only exponentially, that is,
∆n ≥ rkn

for some k ∈ N and for all n ∈ N. Then in particular Φ does not have exact overlaps, so for the
approximations Xn = {fi(0) : i ∈ Λn} we have

|Xn| = |Λ|n.

Now as we argued for sets by constructing intervals Im and Jm in Section 5.3, we can prove the
following lemma, which is an analogue of Lemma 5.85:

Lemma 7.98. There exists τ > 0 such that if n = km we have for all m ∈ N that

P
( 1

n log(1/r)
H((µ(m))x,m, r

m+n) > τ
)
> τ.

and the following lemma, which is an analogue of Lemma 5.86:

Lemma 7.99. For all δ > 0 we have

lim
m→∞

P
( 1

n log(1/r)
H((µ(m))x,m ∗ Srmµ, rm+n) < (1 + δ) dimµ

)
= 1

where n = km.

Now if δ > 0 is fixed, and m is large enough, the events in Lemmas 7.98 and 7.99 intersect.
Hence using an argument as for sets, we have the following

Lemma 7.100. Assume dimµ < min{1,dims Φ} and ∆n ≥ rkn for some k ∈ N and all n ∈ N.
Then there exists τ > 0 such that for any δ > 0 and for all large enough n ∈ N we can find a
measure ν ∈ P([0, 1]) such that

Hkn(ν) > τ

and
Hkn(µ ∗ ν) < Hkn(µ) + δ.

However, according to Hochman’s inverse theorem for entropy this will be absurd as for self-
similar measures (as we will soon), the component measures are in the sense of entropy uniform
on “all” scales, recall in particular Lemma 2.45, which controls the number of singular scales by
Hkn(ν).

7.3 Uniformity of the components

We have the following lemma that states that the components of the self-similar µ are close to
being uniform in the sense of entropy on most scales:

Lemma 7.101. Let µ be the self-similar measure for Φ. For any ε > 0 and m large enough and
for any n ∈ N we have

P
( 1

m log(1/r)
H(µx,n, r

n+m) > α− ε
)
> 1− ε
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As a quantitative consequence we have the following lemma on scales:

Lemma 7.102. Let µ be the self-similar measure for Φ. For any ε > 0 and m large enough and
for any n ∈ N we have

P1≤i≤n

( 1

m log(1/r)
H(µx,i, r

n+m) < α+ ε
)
> 1− ε.

In particular

U :=
{
i ∈ {1, . . . , n} : P

( 1

m log(1/r)
H(µx,i, r

n+m) > α+ ε
)
>
√
ε.
}

has the cardinality bound |U | < n
√
ε.

7.4 Applying Hochman’s inverse theorem

We will use Lemma 7.102 and Hochman’s inverse theorem 2.41 to obtain the following statement
on what happens to the convolution of µ ∗ ν for the self-similar µ when ν has positive entropy:

Lemma 7.103. Let µ be the self-similar measure for Φ with dimµ < 1. Then for any small enough
τ > 0 and for all large enough m ∈ N we can find δ > 0 such that for all large enough n ∈ N and
for every ν ∈ P([0, 1]) with

Hn(ν) > τ

we have

Hn(µ ∗ ν) > Hn(µ) + δ.

Proof. Fix τ > 0 small enough that dimµ+τ < 1−τ . Suppose m is large enough such that Lemma
7.102 is true with ε = τ . Let δ = δ(τ,m) > 0 be the number for which the inverse Theorem 2.41.
Fix Now choose n large enough such the inverse theorem and Lemma 7.102 hold for n and assume
on the contrary that we have

Hn(µ ∗ ν) < Hn(µ) + δ.

Then by the inverse theorem we have disjoint sets I, J ⊂ {1, . . . , n} such that |I ∪ J | > (1 − τ)n
such that the conclusion of the inverse theorem holds. Now by the definition of the set U in Lemma
7.102 we have I ⊂ U , which yields |I| ≤ |U | < n

√
τ . Hence |J |/n ≥ 1− |I|/n− τ ≥ 1− 2

√
τ . Thus

by Lemma 2.44 we have

Hn(ν) = O(τ) +
|{1, . . . , n} \ J |

n
+O

( 1

n

)
≤ O(

√
(τ)) +O(1/n).

This yields the claim by letting n be large enough and τ small enough.

7.5 Synthesis

Now we can prove Hochman’s theorem (Theorem 6.92) on self-similar measures:

Proof of Theorem 6.92. Suppose dimµ < min{1, dim Φ} and ∆n ≥ rkn for some k ∈ N and for all
n ∈ N. Now by Lemma 7.100 there exists τ > 0 such that for any δ > 0 and for all large enough
n ∈ N we can find a measure ν ∈ P([0, 1]) such that

Hkn(ν) > τ
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and
Hkn(µ ∗ ν) < Hkn(µ) + δ.

Hence by Lemma 7.103 for this τ there exists δ0 > 0 such that for all large enough n ∈ N we have

Hkn(µ ∗ ν) > Hkn(µ) + δ0

since Hkn(ν) > τ . This is a contradiction so the claim is correct.

8 Further applications
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