3. Importance sampling and update algorithms

3.1. Canonical ensemble

e One of the most common use for Monte Carlo method is to study
thermodynamics of some statistical model defined on a lattice. For
example, we may have a (real-valued,say) field ¢,, which is defined
at each lattice coordinate x, with the Hamiltonian energy functional
H(¢). We shall discuss here regular (hyper) cubic lattices, where

r; = an;, n; =0...N,,

where q is the lattice spacing (in physical units).

e The most common statistical ensemble we meet is the canonical
ensemble, which is defined by the partition function

H(¢)
kpT

Z = [[d¢] exp

Here [d¢] = I1, d¢.. The free energy is defined as F = —kgT'In Z.

e We would like to evaluate 7, and especially thermal average of
some quantity A:

H(¢)
kpT

(A) = 7 [1d6] A(6) exp

The dimensionality of the integrals is huge:

(# points in space) x (dim. of field ¢,) ~ 10° — 10°.

Thus, some kind of (quasi?) Monte Carlo integration is required.

e The integral is also very strongly peaked:

J1dg] exp

2| = Japup)e

which is an integral over sharply localized distribution. Here n(E) is
the density of states at energy E, i.e.

n(E) = [[d¢]5(H(¢) - E)

Only states with E<(E) contribute, which is an exponentially small
fraction of the whole phase space. This kills standard “simple sam-
pling” Monte Carlo, which is homogeneous over the phase space.
This is a form of the so-called overlap problem — we are not sam-
pling the interesting configurations nearly often enough.

3.2. Importance sampling
Importance sampling takes care of the overlap problem:

e Select N configurations ¢;, chosen with the Boltzmann probability

exp[—H(¢)/kpT]
p(¢) = 7

Note that in practice we never know Z! Thus, we actually do not
know the normalization of p(¢). However, this is sufficient for ther-
mal averages.

Measure observable A; = A(¢;) from each configuration.

e The expectation value of A is now

(A) = %ZAZ — ((A)), as N — oc. (1)

If now the value of A;’s are ~ equal for all 7, all of the configurations
contribute with the same order of magnitude. This is the central
point of importance sampling in Monte Carlo simulations.

The result (1) follows directly from the general results we got in
Sect. 1. about importance sampling Monte Carlo integration, or
even more directly by realizing that the A;-values obviously come
from distribution

pa(A) = [[dg] p(¢) 5(A' — Alg))

4

= A= [dA Apa(A) = [[de] Al¢] p(0) = ((A)).

How to generate configurations with p(¢) = exp|—H (¢)/kpT]/Z?

e Directly — from scratch — we do not know how to do this! (except in
some limited simple cases.)

e The basic method (which is really behind almost all of the mod-
ern Monte Carlo simulation technology) is based on the proposal
by Metropolis, Rosenbluth? and Teller? (J. Chem. Phys 21 1087
(1953)): we can modify existing configurations in small steps, Monte
Carlo update steps. Thus, we obtain a Markov chain of configura-
tions

P Q2= Q30— . Op

With suitably chosen updates and large enough n the configuration
¢, is a “good” sample of the canonical probability p(¢).

How does this work? Let us look at it in detail:

Let f be an “update”, a modification of an existing configuration ¢:

0 g, ¢'. It can be here a “small” update, one spin variable or even
a component of it (if ¢ is a vector), or arbitrarily “large” one, for
example all of the d.o.f’s (usually just repeated application of small
updates).

Transition probability W;(¢ — ¢') is the probability distribution of
configurations ¢’, obtained by one application of f on some (fixed)
configuration ¢. It naturally has the following properties:

Wi(p—¢) >0, [ddf Wi(p—¢)=1

The latter property comes from the fact that f must take ¢ some-
where with probability 1.

e We can also apply the update f to probability distributions p(¢):

() L /() = [do p(6) W6 — ¢).

This follows directly from the fact that we can apply f to an ensem-
ble of configurations from distribution p(¢).

e What requirements must a “good” update f fulfill:

A) f must preserve the equilibrium (Boltzmann) distribution
peq.(¢) X eXp[_H(¢)/kBT]:

[dé Wi(6 > ¢') Peq.(6) = peq (&)

In other words, p.,.(¢) is a fixed point of f.

B) f must be ergodic: starting from any configuration, re-
peated application of f brings us to arbitrarily close to any
other configuration.

e These two simple and and rathe intuitive properties are sufficient to
guarantee the following 2 important results:

[) Any initial ensemble approaches the equilibrium canonical en-
semble — p., as f is applied to it (“thermalization”).

[I) If we sum up the distribution of all of the configurations in a single
Markov chain

Po—P1 — P2 D3 .
the distribution approaches p.,, as the number of configurations
— Q.

e Proof: let p(¢) be the probability distribution of the initial ensemble of
configurations. After applying f once to all configs in the ensemble,
we obtain the distribution p'(¢’). Let us now look how the norm
|p — peq|| €VOIVES:

1P = peall = [dd V(&) = pea (&)

8

= [dd| [dé Wi(6— ¢)(p(6) = Pea.(9))]
< [dd [doWi(6— ¢)p(@) = Pea(d)] = [P — pec.]

Thus, we get closer to the equilibrium when f is applied. Neverthe-
less, this is not sufficient to show that we really get there; it might
happen that ||p — pe.|| reaches a plateau without going to zero. This
would mean that there exists another fixed point ensemble besides
the equilibrium one, i.e. an ensemble which is preserved by f.

However, the ergodicity forbids this: let us assume that p is another
fixed point, and let ||p—peq || > 0. Then we can split ¢'s into two non-
empty sets: set A has those configurations where (p(¢) — peq.(¢)) >
0 and set B the rest. Because of ergodicity, there must be some
configurations ¢’ for which W(¢ — ¢') is non-zero for some ¢ in set
A and some other in set B. Thus, onthe 3rd line < — <, andp
cannot be a fixed point.

3.3. Detailed balance

The standard update algorithms satisfy the following detailed balance
condition:

Wi(¢ = @) _ peq.(¢) _ o(H(6)~H(¢)/kpT

Wi(@' = ¢) Peq.(0)

Obviously, pe (¢) is a fixed point of this update. Thus, (I) detailed bal-
ance and (ll) ergodicity are sufficient for a correct Monte Carlo update.
Detailed balance is not a necessary condition; there may be updates
which do not satisfy detailed balance. But it is much more difficult then
to prove that these updates preserve the Bolzmann distribution. Thus,
all of the commonly used update algorithms satisfy detailed balance.

The physical interpretation of detailed balance is microscopic reversibil-
ity of the update algorithm.

10

3.4. Common transition probabilities

The detailed balance condition is a restriction for W; however, it is still
very general. Some of the most common choices for W are (all of these
satisfy detailed balance):

e Metropolis: (Metropolis et al, 1953)

N exp|—0H/kgT] if 6H >0
Wf(¢H¢)_CX{ 1 otherwise '’

where 0H = H(¢') — H(¢) is the change in energy, and C is a
normalization constant.
e Glauber:

1+ expl0H/kpT)|

Wil — ¢') = % ll — tanh <2kBT

11

e Heat bath:

Wi(¢— ¢') = Cexp[—H(¢)/kpT]
This does not depend on old ¢ at all!

e Overrelaxation:!

Wi(¢ = ¢) = (¢ — F(¢)),

i.e. the update is deterministic: ¢ — ¢ = F(¢). The function F is
chosen so that (p = exp(—H(¢)/kgT))

A) p(6)d6 = p(&)dd! = p(&) d(g a6
_H
R

1The definition of overrelaxation presented here is much more general than the standard defi-
nition in literature. However, this has the same generic properties as the standard overrelaxation.

12

B) F| F(¢)] = ¢
A) means that ¢’ must be as likely to occur as ¢ in thermal equilib-
rium, and B) implies that applying overrelaxation twice we get back
to where we started from. These properties guarantee detailed bal-
ance. This update is is not generally ergodic! It must be mixed with
other updates to achieve ergodicity.

If ¢ is @ one-component variable, A) and B) are both met by defining
¢ = F(¢) through the cumulants:

P(¢) =1 - P(9). P(g) = [* da p(a).

min

The standard overrelaxation in the literature is much more intuitive.
It assumes that H is a symmetric function wrt. some reflection in
the phase space. For example, there may exist some « so that

H(oa—¢) = H(¢)

13

for any ¢. Then the reflection (“overrelaxation”)

¢ =Fd)=a—9¢

satisfies A) and B) and is a good (and fast!) update.

¢ Note that, in principle, the update ¢ — ¢’ above can refer to any size
of update; for example, we might update spins at each location on
a lattice ¢, — ¢, + C(X, — 0.5) and do a global accept/reject step
with Metropolis W,,;. However, in this case C should be very small
to achieve good acceptance rate.

e Global heat bath update < generate a whole new configuration
from scratch! Normally impossible.

e Standard (and easiest) way is to update the spins separately at each
location.

14

e Note that W, is really a probability density. Thus, the new configu-
ration ¢’ must be chosen with care to ensure correct distribution (for
example, choose it with appropriate measure, and accept/reject it
with ;. This is not usually optimal, though!)

3.5. Updating O(2) sigma model:

e Let us illustrate these update methods with a concrete example,
O(2) o-model or the XY model:

H/kBTES - _6 Z SLSy:—ﬁ Z COS<(9:L'_(9y)
<zy> <zy>
Z = /] d6.]

Here s, is a 2-component vector with |s,| = 1, and 6, is its angle
from, say, 1 -axis. = and y are discrete coordinate vectors (in 2 or

15

3 dimensions), and < z,y > refers to nearest-neighbour coordinate
pairs.

Physics of the model: In 3 dimensions the XY model has a phase
transition at 5 = 3, = 0.454165(4). The model exhibits spontaneous
symmetry breaking; there is spontaneous magnetization if § > (.
(T < T),ie.

(M) = - {

The transition is of second order, and the most important critical
exponents have been measured/calculated; for example,

> Ss

X

>7é0 asV =N? — oo.

M= (8-3) b 035

Universality: Phase transitions in systems which have 2d (internal)
rotational symmetry (O(2)) have the same critical exponents as the
XY model:

16

— superfluidity A-transition in liquid “He (space shuttle experiment)
— ferromagnets with an “easy plane”

— some liquid crystals

— density waves

— type Il superconductors (?)

In 2 dimensions, there is no magnetization,? but there is still a phase
transition, Kosterlitz-Thouless transition.

A lot more information about XY model can be found in [Pelisetto,
Vicari, cond-mat/0012164], for example.

2This is due to the Coleman-Mermin-Wagner theorem: in 2d, continuous symmetries cannot
break spontaneously!

17

e Choose a variable at site x for updating

e Calculate the local action, the part of the action which depends on
the variable s,:
Ssv(sx) =—p Z Sy Sy = —Sz° V =—vcosa
y=n.n.of r

Here v = |V| and « is the angle between s, and V. When we modify
the variable s,, the change in total action is 65 = §.5,.

e Heat bath:
Choose new s, with probability
p(SI) X 6_5-";(‘9%) — evcosa

- Satisfies detailed balance

- Computer gives random numbers from uniform distribution, X €
[0,1). We obtain s from distribution p(s) from the inversion

X = [ddp(s) =C, /jl da/ev s

Jmin

18

where C, = [™_ da'e? % s a normalization constant.

- We’re unlucky: p(s) is not very easily integrable. See sect. 2.,
where we discussed how to do generate random numbers just from
this kind of distribution.

- Integrability is often a problem for many actions. For an easier
case, consider O(3) sigma model. However, we can always gener-
ate random numbers with distribution p(s) by using some version of
the rejection method.

- Heat bath update is quite common in Monte Carlo simulations. In
gauge theories, efficient implementation 3 for SU(2)

Metropolis:

How to generate the new angle variable with the Metropolis prob-
ability form? Integrating W, is as complicated as the heat bath
integral. However, we may do an efficient restricted Metropolis tran-
sition by using the following accept/reject method:

19

Choose new ¢/, with
0 =60,+C(X —0.5) (mod 27),

where C'is a tunable constant. ¢/, is accepted with probability
War(6y — 6) = min(1, 50 -5:(0))

if rejected, either repeat or leave 6, as is.
- Satisfies detailed balance.

- More generally: instead of using the uniform distribution ¢/, €
0, — C/2,6, + C/2], we could choose ¢ from any distribution
f(0, — 0), which satisfies f(a) = f(—a). For example, f(a) could
be a Gaussian distribution.

- Function f (or constant C) is tuned to optimize the performance;
usually so that the acceptance is ~ 50 — 70%.

- If C' = 2w, ¢’ will be evenly distributed from 0 to 27. However, the
rejection rate will be (usually) very large.

20

- Metropolis is very versatile method, and can be applied to almost
any problem. We only have to evaluate ¢°! No integrals or inver-
sions. One Metropolis update is also usually quite fast. It is also the
“original” update, first one to be used in a real simulation.

- If you repeat Metropolis update of ¢, (fixed site) many times, the
final distribution — heat bath update!

Overrelaxation:

Reflect s, to the “other side” of the potential S, :

a — —a, Or equivalently

S.lv
2

V —s,.

Sy — 2
v

- Deterministic, very fast to implement.
- Satisfies detailed balance

- Not ergodic: S never changes: in other words, the update is mi-
crocanonical.

21

- Must be usually mixed with other updates to achieve ergodicity.

- Nevertheless, often overrelaxation is more efficient than the other
updates above.

- In this case S, (s) is always symmetric wrt. V' (V' varies from site
to site and update to update, but it is always simple to find!). If S, is
not symmetric, overrelaxation is much more difficult (often not worth
it).

- Not applicable to discrete spins.

The Glauber form (and also other transition probabilities which de-
pend on §S;) can be implemented very much along the lines of
Metropolis. However, acceptance becomes slightly worse than in
Metropolis — possibly worse performance.

22

Repeat the above single-site (¢,) updates for all of the sites on the lattice
— update sweep.

Typical program structure:

- 1 or more update sweeps

- measure what you want, accumulate or print
- repeat until enough statistics

Even after all of the sites have been up- phase space
dated, the system evolves only a finite step

in the phase space; it “remembers” the pre- S start . "important”
vious configuration. :: *, configurations

Autocorrelation time 74: number of update
sweeps required to make the configuration
statistically independent from the starting
configuration.

23

= The number of independent configurations in a Monte Carlo simula-
tion of N configurations is N/74.

= |Errors o< \/74/N.

Thus, a good update minimises 74. Rule of thumb:
Metropolis < heat bath < overrelaxation

where < shows the “goodness” relation of the algorithm, i.e. 1/74. How-
ever, the real performance depends on the details. We always should
compare to the (wall-clock) time, not to the # of updates!

Because of non-ergodicity, overrelaxation is usually mixed with heat bath
or Metropolis: for example, we can do
5 overrelaxation sweeps + 1 heat bath sweep.

Autocorrelation time diverges at phase transition points (or more gener-
ally, when the correlation length diverges): critical slowing down.

24

3.6. Ising model

The Ising model is the simplest discrete spin model. In this case the field
variable ¢, — s, = %1, and the partition function is

Z= 3 exp {—ﬁ (% > (1 —sy58y) +H28w>]
{s,=%1} <zy> x

Here < xy > goes over the nearest-neighbour sites of the rectangular

lattice, and H is an external magnetic field. We shall consider here

mostly the case where H = 0.

When H = 0 the Ising model has a second-order phase transition in
all dimensions > 1. In 2 dimensions, the Ising model has been solved
analytically (Onsager), and the transition is at 3, = In(1 ++/2) ~ 0.88137.
In 3 dimensions, (5, ~777

If 6> 3. (“T <T.), the system shows spontaneous magnetization:

(M1) = {3 S5.) £ 0

25

Phase diagram:
(T,H) phase diagram Magnetization

H 2nd order |
2 \

® X
/! N

T=108 T=108

Universality:

— Ferromagnetism, Curie point

— Liquid-vapour transition (lattice gas)

— Generic transition for systems without explicit symmetry

26

3.6.1. Updating the Ising model

e Let us assume here H = 0, and that we are in 2 dimensions.
e Choose spin s,. The local energy functional

Se(sz) =06/2 > (1—Sx$y):ﬁ/2<4—8x > sy>

y=n.n.of x y=n.n.of x

S, has only 5 possible values! (Can be calculated beforehand.)

e Heat bath: Choose new s, = +1 with probability

B*Sx(sx)
p(‘si) = e—S',,;(—‘rl) _|_ 6_5:1:(_1)

(see sect. 2.)

e Metropolis: Flip the spin s, — s, = —s,, and calculate 45, =

S.(s') — S(s:). Accept this flip with probability

X

Paccept = min(lv 675506)

27

If the update is rejected, leave s, as is (do not redo until accepted!
You can redo Metropolis a fixed number of times, though.)

e Glauber: Substitute p,ccepr = 1/(1 + ¢*%+) above.

e Kawasaki: Choose a nearest-neighbour pair s, s,. If s, # s,, con-
sider exchanging the spins s, — s, = s, and s, — s,. This is
accepted with the Metropolis probability

Paccept = min(lv 6755)

If the update is rejected, leave the pair as is.

Kawasaki update preserves the magnetization M. It is used if we
really want to study an ensemble with fixed magnetization (lattice
gas: fixed particle number!)

28

3.7. Boundary conditions

How do we choose the boundary conditions on a rectangular lattice?
There are several choices, usually dictated by the physics we want to
study. Let us assume 2-dimensional N x N lattice, with coordinates
x,y = 1...N.

e Periodic boundaries: This is the most popular choice when we want
to minimize the effect of boundaries. The neighbours wrap around
the edges, thus the coordinate pairs (N,y) < (1,y) and (z, N) <
(x,1) are neigbours.

Topology: 2-dim. torus (surface of a donut)

The boundaries are not special points, the system has translational
invariance!

e Fixed boundaries: The boundary layers (x = 1, N or y = 1, N) are
fixed either all to the same value or to some specially chosen values.
Strong boundary effects.

29

e Free boundaries: The boundary sites just have less neighbour sites.
Strong boundary effects.

e Twisted periodic boundaries: For example, the spins s(N,y) and
s(1,y) are neighbours, but with “inverted” sign — i.e. the action has
opposite sign for these particular links. When 5 > 3. the system
has magnetization, but because of the “twist” there must be an in-
terface (kink) somewhere in the system. Despite the appearance,
this boundary is also translationally invariant: the boundary does
not form a special point.

This is used to study the properties of the interface between states
with +1 and -1 magnetization.

30

3.8. Structure of the Monte Carlo program

Traversal order: in which order should we go through the points on the
lattice? In principle this is (largely) up to you, except in some special
cases. The common orders are:

e Typewriter ordering: go through the sites row-by-row, from left to
right. Fast & recommended, for standard uses.

However: breaks detailed balance for Ising model + Metropolis up-
date! (at least in 1 dimensions...)!!

e Random ordering: pick the site at random. Good, but in practice
computationally slower than typewriter. Used in some real-time cal-
culations.

e Checkerboard ordering: divide the sites into black and white sets
(x + y even/odd), as in the checkerboard. Since each black site has
only white neighbours and vice versa, we can update all of the black

31

sites independently from each other while keeping white sites fixed.
Repeat for white sites.

This must be used in vector computers (Crays, many other older
supercomputers) and in parallel programming.

32

Sample: heat bath for Ising

#defi ne NX 32
#defi ne NY 32

int s[NX][NY];
int sumx,y;
doubl e beta, p_pl us, p_m nus;

/* sum over the neighbour sites - typewiter fashion */
for (x=0; x<NX; x++) for (y=0; y<NY;, y++) {
sum = s[xup[x]][y] + s[xdn[x]][y]
+ s[x][yup[yl] + s[x][ydn[y]];

/* Heat bath update - calculate probability of +-1 */

p_plus = exp((beta/2.0) * sum); /* prob. of +1, unnornalized */
p_mnus = 1.0/ p_pl us; /* and -1 */
p_plus = p_plus/(p_plus + p_mnus); /* normalized prob of +1 */

/* and choose the state appropriately */
if (mersenne() < p_plus) s[x][y] =1; else s[x][y] = -1;

33

3.9. Some implementation details

|. Looping over the lattice:
2 common ways to organize the lattice arrays:
A) 1 variable/dimension:
int s[NX][NY];
In this case one should loop over y-coordinate in the inner loop:
for (x=0; x<NX; x++) for (y=0; y<NY; y++)

in C, the last index is the “fastest,” i.e. these variables are stored in
consecutive locations.

In Fortran, this is opposite:
| nt eger s(NX, NY)
Here the first index (x) is faster.

The speed difference varies a lot depending on the prob-
lem/computer.

34

B) 1 loop variable only:
#defi ne VOLUME (NX* NY)
I nt s[VOLUME] ;
Looping:
for (1=0; i<VOLUME; |++) s[i]
Used a lot in old vector supercomputers — long loops, vectorizes
effectively.

. Fetching the neighbours:

Typically (simple) MC programs use a significant amount of time
fetching the neighbours of a site (periodic boundaries!). There are
several ways to do this:

A) Use modulus to get the neighbours:
Typ = (+ 1) mod NX, Zgoyn = (z+ NX — 1) mod NX

35

—works in C [r = 0+ ...(NX — 1)], has to be modified a bit in
Fortran.

— slow, unless NX = 2" and NX constant (so that the compiler
knows what it is).

B) Tabulate the neighbours beforehand:
for (x=0; x<NX; x++) {
xup[X] = (x+1) % NX;
xdn[x] = (x-1+NX) % NX;
}

(same for y-coordinate) and use the tables xup[] etc. in the loop.
This was used in the example.

— Usually pretty good. If the size is always the same to x- and y-
directions, then single up,down -arrays can be used.

— Has to be modified a bit in Fortran:
xup(x) = nod(x, NX) +1

36

etc.

C) If single volume index (1.B) is used, then it is usually easiest to
use global neighbour pointer arrays, which are again initialized at
the beginning:

#define i xy(x,y) ((x+NX) %\NX + NX*((y+NY) %N\Y))

for (i=0; i<VOLUME; i++) {

X =1 % NX;
y =i [NX
xup[i] = ixy(x+1,y);
xdn[i] = ixy(x-1,y);
yup[i] = ixy(x,y+1);
ydn[i] = ixy(x,y-1);

}

Here xup[] etc. is an integer array of size VOLUME.

— Easy to use in the loops over volume. However, neighbour arrays
are large, and memory access can become expensive.

37

— Again, this style vectorizes easily. It is also used in parallel pro-
gramming.

Variable type:

For discrete models (like Ising), it is usually worthwhile to use the
smallest easy variable (in this case, (unsigned) char).

However, gains depend very much on details.

38

I\V. Structure of the program: The program flow of a Monte Carlo simu-
lation program is usually as follows:

1.

Initialize what is needed:

— seed the random numbers

— initialize the configuration, or
— load a stored configuration

— initialize neighbour arrays etc.

. Update, i.e. do one or more update sweeps through the system.

Different algorithms can be used.

. Measure, and either

— accumulate the results or
— write results to a file for post-processing (preferred).

Return to 2, until we have the desired amount of measurements.

Do whatever maintenance is needed (for example, save the
configuration)

39

3.10. Measurements

The configurations of the model are generated with some algorithm,
such as Metropolis. We want to measure numerically thermodynamic
guantities of interest, for example (for Ising model)

e Energy density £ = —1- S ;> s;5;
e Magnetization M = . %; s;
e Correlation function I'(z) = ¢ % s;8i4.-
e Correlation length &: T'(z) ~ e=#/¢
e Specific heat: Cy = £2% = (E?) — (E)?
var = (M%) — (M)?

e Magnetic susceptibility: yv = 79

Note that the last 2 measurements do not require “new” measurements;
these can be calculated directly from measurements E;, M; (if these
have been stored in a file, for example).

40

The correlation function requires usually special methodology.

3.11. Phase transitions and critical exponents

Most phase transitions are described by an order parameter which is
zero in one phase (disordered phase), non-zero in the other phase (or-
dered phase). Thus, it cannot be an analytic function at the critical point.

e First order — the order parameter (and in general almost any ther-
modynamical quantity) has a discontinuous jump; i.e. the 1st deriva-
tive of the partition function.

— latent heat, discontinuity in energy

e Second order — the susceptibility or specific heat are divergent (in
general, second derivatives of partition function).

41

Second order transitions are classified by their critical exponents, which
measure the divergence at the critical point:

M ~ |T—-T,°
Xu o~ [T =T
Cv ~ |[T-T/|™
£~ [T-T|™"
For the 2d Ising model, these exponents are o = 0, § = 0.125, v = 1.75,
v=1.

However, on a finite lattice we have finite number of degrees of freedom
and everything is analytic! Thus, on a finite lattice the order parameter
Is either always non-zero or always zero. Indeed:

M:<%;S¢>EO \M\:<|%%:si>>0

always on a finite lattice! Careful finite size analysis (FSS) is needed.
(Return to that later)

42

3.12. Autocorrelations

In sect. 3.5. we already mentioned that the Monte Carlo simulations
suffer from autocorrelations: since the update step is a smaller or larger
modification of some configuration (Markov chain!), successive configu-
rations and measurements are correlated.

e Let X; be the measurements of some quantity X from configuration
number i =1... N. Atfinite N, the error is

e mei - (X))

N(N —1)
if and only if the measurements X, are statistically independent.

e We can define an autocorrelation function of quantity X:

1 Nt)
> XXy — (X)
c) = N =tisi et
- (X%) — (X)? ‘

43

where the last point holds if N — oo and t — oo, t < N.
The denominator is there to normalize C'(0) = 1.

Texp 1S the exponential autocorrelation time. This is in principle (al-
most) unique; i.e. almost all observables show the unique longest
autocorrelation time, which really measures when the configura-
tions become thoroughly uncorrelated.

However, for error analysis, the relevant quantity is the integrated
autocorrelation time:

1 e’}
Tint = = + Z C(t>
2 3

Note that 7, ~ 7., If the autocorrelation function is purely expo-
nential, C(t) ~ e~*/7». However, usually 7i,; < Texp-

44

e In Monte Carlo analysis with correlated measurements, the error
estimate is

(X — (X))?
errorof X =0y = 2 int 5.1 naive — 2 int
X =V &Tint O, J“ N(N —1)

Here dx naive IS the naive error shown on previous page.

e How to calculate 7;,;? One has to write all measurements in a file
during the simulation. However, the double summation can become
expensive, and because C(t) is noisy when t > 7, the sum in
Tint CaN behave badly when t is large. Thus, the sum can be cut
self-consistently to values, for example, t < 67, as the summation
proceeds.

45

3.13. Error estimates in Monte Carlo measurements

There are 2 commonly used methods for estimating the errors in Monte
Carlo measurements:

1. Use

5X Y, 27—111‘5 5w,naive

as above.

2. Block the measurements in M bins of length m. Calculate averages
of observables in each bin, X};, k=1...M. If the bin length m >
Tint, the bins are statistically independent, and we can use the naive
formula

_ 2 (X7 - (X))
X = J M(M — 1)

46

In practice, one divides the set in variable number of blocks. The
error estimate should be ~ constant if the bin length is large enough
(sometimes one has to extrapolate to block length — oc.).

Note that neither the autocorrelation nor the blocking method change the
expectation value (X) in any way! Just the error bars.

Clearly, in order to minimize the errors, we want to use an update which
has as small 7 as possible — but measured in CPU-time used, not in
iterations!

If we manage to improve 7 +— 7/10, then either
— we need a factor of 10 less configurations for given accuracy
— for a fixed number of configurations, the errors are reduced by a factor

of /10 ~ 3.

47

3.14. Example: Ising model

Time histories of the measure-
ments of the total energy, mea-
sured from 642 Ising model at
G.. Sample of 1000 (from a total
of 400000 each).

From top to bottom: Metropolis
and heat bath with “typewriter”
ordering, then Metropolis and
heat bath with random order-

ing.
It is next to impossible to see by
eye which of these algorithms

has the shortest autocorrela-
tions.

1500

1000

1500

1000

1500

1000

1500

1000 |~

48

The autocorrelation function of
the total energy from the previ-
ous case. Clearly, the Metropo-
lis update with typewriter order-
ing is the fastest of these algo-
rithms.

However, this is characteristic
for the Ising model - in gen-
eral heat bath tends to be faster
than Metropolis!

04

0.3

() 0.2

0.1

wwwww

\\\\\
111111

—— typewriter, Metropolis
—-—- typewriter heat bath
—— random Metropolis
random heat bath

0 500

49

1000

1500

The integrated autocorrelation time 7, measurement average, and
error calculated in various ways are as follows (with 400000 up-
date+measurement cycles for each case):

Tint <E> 5naive 57- 5100 51000 510000
Metro, typew. 54 118244 0.17 1.7/8 103 1.76 2.18
HB, typew. 157 1176.45 0.17 3.01 118 250 3.04

Metro, random | 271 1181.29 0.17 3.99 124 280 3.52
HB, random 316 1180.66 0.17 4.26 126 297 4.34

The Metropolis with typewriter ordering is the best of the bunch - for
fixed # of updates. The quantity §,,) means the error using binned naive
estimate, the number is the bin size. Clearly, the bin length has to be
> 7 in order for the method to work!

The real figure of merit is obtained when we compare the time used to
the number of configurations:

50

time(ms)/iteration time(ms)/iter. x 27,
Metro, typew. 1.0 108
HB, typew. 1.2 364
Metro, random 1.4 748
HB, random 1.6 1004

Here the times are in milliseconds. The last column is the real measure
of the efficiency of the algorithm (and implementation): how much time
Is needed to obtain one independent configuration (¢t ~ 27).

However, the random ordering is still useful: using random ordering the
evolution of the system can be in some cases interpreted as a real-time
evolution (~ Glauber dynamics).

51

3.15. Thermalization

Because of autocorrelations, and because we typically start the simula-
tion from a “bad” configuration (often fully ordered, “cold”, or disordered,
“hot” configuration), the initial measurements are just wrong. We should
get rid of these.

One should discard at least n > 7 measurements from the beginning,
often values

n=>5...1071
are used. This depends on the problem, though.

Autocorrelation time 7 can be very large — if the thermalization time <t
and measurement time ~ 7, the results are very much suspect! This
can happen in practice in Monte Carlo calculations, because of critical
slowing down.

In the binning method of error analysis (previous subsection), the data
from the initial bin(s) should be discareded.

52

Hot and cold starts are also often used to estimate the needed thermal-
ization:
3000 T

64 Is ng model i
2500 —

2000
random start

E 1500

\
Vi

i
bt LT
1000 ’I\‘)\I‘(W‘,Mmﬂj ‘(\ﬁ AN w‘\/" p ‘,L;'vl/nu’/!“/“
A
) \) .
i ordered start
500~ —
L 4
O Il Il Il Il ‘ Il Il Il Il ‘ Il Il Il Il ‘ Il Il Il Il ‘ Il Il Il Il
0 100 200 300 400 500

t

This is often actually used to investigate metastable states — for example,
in 1st order phase transitions.

53

3.16. Critical slowing down

e How does the statistical error (and hence, the cost in cpu-time) be-
have in Monte Carlo simulations?

e We have already established (N = number of sweeps)

1
~ Tint/N-

O~ (# indep. configs)!/2

e More precisely, when we consider also the system size, the error
behaves as

8 ~ (Tt /N)V2(E/ L)

where d is the dimensionality of the system, ¢ is the correlation
length and L the linear system size (volume = L9).

e Why (£/L)%?? Now (L/€)¢ = # of independent ¢-sized domains in
the volume. These are, in practice, statistically independent, so that
the total # of independent correlation volumes = N /27 x (L/§)%.

54

e The autocorrelation time 7 ~ £*, where z is a dynamical exponent
which depends on the update algorithm.

e How about the cpu-time cost? Naturally, the time for one sweep is
x L% Thus, if we require errors of some definite level §, the time
behaves as

time ~ 7,,£%/6°

Surprisingly, if £ is constant (in lattice units), this is independent of
L! Because large volumes help to get rid of finite-size effects, it
pays to use as large volumes as practically possible.

e However, the situation is very different when we are at or near a
critical point (or continuum limit). In this case ¢ diverges, and, in
principle, the autocorrelation time

T~E~|T =T

55

diverges also at the critical point! This is known as the critical slow-
ing down.

e However, on a finite volume, the correlation length is cut-off by the
system size £ ~ L — or, in other words, when the action has no
built-in mass/length scale, the scale is set by the infrared cutoff —
the system size.

e Thus, at the critical point,

‘ T~ L~ ‘

The exponent z is called the dynamical critical exponent. The cost of
the simulation now behaves as

cost ~ [tz

instead of being ~ constant!® Here L? just reflects the fact that

3In reality, the cost depends quite a lot on the observable: some observables have non-trivial
volume dependence at a critical point.

56

the correlation volume ~ total volume, due to the physics. This
we cannot get rid of. However, different update algorithms have
different values of z.

e Because interesting physics happens at the phase transition points,
and because obtaining meaningful results at a critical point requires
finite-size scaling (FSS) scaling analysis, it is important to use algo-
rithms with as small z as possible.

e Common stochastic algorithms — heat bath, Metropolis — have
z ~ 2. the nearest-neighbour update is a stochastic process, so
that the signal propagates over a distance ¢ in time o £ (diffusion,
random walk).

More precisely, it has been argued that for stochastic algorithms
z > v/v.

e Some non-stochastic update algorithms may have z = 1, or the sig-

S7

nal propagates over a distance £ in time « &. Physically, this means
that the update algorithms support some kind of wave motion in-
stead of diffusion.

Examples: Overrelaxation in many cases has z ~ 1; also evolving
the lattice fields using equations of motion. However, if the process
involves randomness, z ~ 2 at the limit L. — oo.

Thus, for many practical purposes, a good update is a mixture of
overrelaxation and Metropolis/heat bath.

e 2 < 1, and even z = 0 can be achieved in some cases using non-
local update algorithms (cluster, multigrid .. .).

Cluster algorithms are the most succesful non-local update methods.

58

