
5. Reweighting

The configurations generated in a Monte Carlo simulation contain a huge
amount of information, from which we usually distill a couple of numbers.

It would be a shame to waste all that information. Reweighting is a
method which allows us to “expand” the results from the original sim-
ulation, performed at coupling β0, say, to any other β sufficiently close to
the simulation point without performing any additional simulations.

For concreteness, let us consider here a Monte Carlo simulation of 2D
Ising model at the critical coupling βc = 1

2 log(1 +
√

2) ≈ 0.44. MC sim-
ulation gives us a series of configurations Φ1, Φ2 . . . ΦN , and measure-
ments of some observable Oi = O(Φi).
The standard estimate of the expectation value:

〈O〉βc
≡ 1

Z

∑

{s}
O(s) e−βcE(s) ≈ 1

N

∑

i

Oi
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Now, the basic principle of reweighting is very simple: consider mea-
surements Oi, Ei from the same configuration Φi. Now

1

N

∑

i

Oie
−(β−βc)Ei =

∑

{s}[Oe−(β−βc)E ] e−βcE

Zβc

=
Zβ

Zβc

〈O〉β

1

N

∑

i

e−(β−βc)Ei =

∑

{s}[e
−(β−βc)E ] e−βcE

Zβc

=
Zβ

Zβc

7→ 〈O〉β =
∑

i Oi e
−(β−βc)Ei

∑

i e−(β−βc)Ei
=

〈O e−(β−βc)E〉βc

〈e−(β−βc)E〉βc

Note:
∑

i goes over measurements, Ei, Oi must be measured from the
same configuration.

In practice: during a MC run, write down all measurements Ei and vari-
ous Oi in a file. After the run, use eq.

�
to calculate 〈O〉β .
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Alternative view: reweighting using histograms

Using histograms (probability distributions) for reweighting is the “origi-
nal” reweighting method:

• During a MC run (at βc), measure histogram hβc
(E).

• We know that hβ(E) ∝ n(E) exp(−βE), where n(E) is the number
of states at energy E.

• Thus, we can reweight h: hβ(E) ∝ hβc
(E) exp[−(β − βc)E].

• Finally, if O(E) is a function of energy, we can calculate

〈O〉β =

∑

E O(E)hβ(E)
∑

E hβ(E)
=

∑

E O(E)hβc
(E) exp[−(β − βc)E]

∑

E hβc
(E) exp[−(β − βc)E]

• Main weakness: this works only if O[{s}] = O[E({s})] is a function
of energy, whereas

�
works for arbitrary observable.
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Note: histogram method can be obtained directly from
�

using O =

δE,E′.)

History:
• First proposed in ’59 [Salzburg et al, J.Chem.Phys 30 (1959) 60]
• First used by McDonald and Singer 1967, no success (reweighting
range too small?)
• Shown to be very effective by Ferrenberg and Swendsen [PRL 61 (1988)
2635]; now the whole thing goes under the name F-S reweighting.
• Multihistogram method: F+S [PRL 63 (1989) 1195; Computers in
Physics, Sep/Oct 1988]
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Example: 2d Ising, V =
162 . . . 1282. Energy susceptibil-
ity (Heat capacity)

χE = − 1

V

∂〈E〉
∂β

=
1

V
〈(E − 〈E〉)2〉

Susceptibility diverges with a
critical exponent χE ∼ Lα/ν

when L → ∞ and we are at
β = βc: 0.410 0.420 0.430 0.440 0.450

β

1.0

2.0

3.0

4.0

χE
16

2

32
2

64
2 

128
2  

 

Points: simulated values, curves: reweighted data. Dashed lines show
the error band for 322 (for clarity, not shown for others).
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Histograms:
Energy histograms can be
obtained through

hβ(E) =

∑

δ(E, Ei)e
−δβEi

∑

e−δβEi
’

Histograms at 642 (prob-
ability distributions of E).
Original simulation at β =

βc ≈ 0.44.

The histograms become
“exponentially” worse
when the reweighting
distance increases. −2500 −2000 −1500 −1000

E

β=βC  (original)

β=βC−0.005 

 

β=βC+0.005 

 
 

β=βC+0.015 β=βC−0.015 
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5.1. Error analysis in reweighting

• Errors analyzed in previous plot using jackknife error analysis Use
of jackknife or bootstrap methods strongly recommended! (Return
to that soon)

• Errors increase when reweighting distance increases. Must not do
reweighting too far from original simulation point! (how far?)

• Note: using normal error analysis in upstairs and downstairs of

〈O〉β =
〈O e−(β−βc)E〉βc

〈e−(β−βc)E〉βc

is usually not reliable: the exponential factors make the ‘observ-
able’ inside 〈·〉 very skewed. Furthermore, this overestimates errors,
since the deviations up and down are correlated!
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• Calculating the errors using jackknife (for details of jackknife, see
sect. 6.)

1. Divide the data (N measurements) into M blocks, length m =
N/M � τ (this to make individual blocks statistically indepen-
dent).

2. For each m, delete block m from the full data, and calculate

〈O〉mβ =

∑

i Oi e
−(β−βc)Ei

∑

i e−(β−βc)Ei

where the sums go over the N −m measurements which do not
belong to block m.

3. Calculate the error through

δ〈O〉β =

√

√

√

√

M − 1

M

∑

m
(〈O〉mβ − 〈O〉β)2

where 〈O〉β is either the full dataset reweighted value, or, usu-
ally the average of 〈O〉mβ . The difference is very small, but the
average of 〈O〉mβ is used for bias correction.
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5.2. How far one can reweight?

When we reweight, the expectation value of the histogram shifts side-
ways. The bulk and expectation value of the shifted histogram must be
well within the original histogram! I.e. if we perform the simulation at β0,
we should only go to β where

|〈E〉β − 〈E〉β0
| = |δ〈E〉| = <∼〈(E − 〈E〉β0

)2〉1/2

This actually should be valid for any observable, not only E!
Valid reweighting range <∼ ‘fluctuation’ range:

• Simulation at non-critical point: ∆β ∝ 1/
√

V .
• At a critical point (as in our example): ∆β ∝ 1/Lx, where x is some
critical exponent. In our case above, x = (d + α/ν)/2 (I think), where
d = 2 is the dimensionality.

PRAGMATIC VIEW: check that the ‘mass’ of the reweighted histogram
does not shift too far away into tails of the original histogram, where there
is insufficient amount of data! Naturally, more statistics → slightly larger
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range.

Nevertheless, scaling laws are bad:

• Reweighting range ∝ 1/
√

V .

• If we insist on increasing range δβ → nδβ, and if we assume that
δ〈E〉nδβ = nδ〈E〉δβ, then we have to increase statistics by a factor
∼ exp[n2 − 1] to achieve comparable accuracy (tail of a Gaussian)!

The reweighting range cannot practically be increased by statistics.
Much better to perform new simulations with different β.
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Reweighting with respect to external magnetic field h: Ising model

Zβ,h =
∑

s
exp[−βE + hM ] where M =

∑

i
si

If the original simulation was performed with hs, reweighting in h is com-

pletely analogous to eq.
�

:

〈O〉h =
∑

i Oi e
(h−hs)Mi

∑

i e(h−hs)Mi

Thus, even if originally hs = 0 (no field in the original simulation), we can
reweight to finite external field.

Reweighting can be done simultaneously in β and h. (How? And why
the original histogram reweighting is not practical in this case?)
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Magnetization
histogram p(M),
size 642, in simu-
lation h = 0, and
β = βc

−4000 −2000 0 2000 4000
M

0.0000

0.0004

0.0008

0.0012

p

original h = 0
h = 0.0001
h = 0.0005
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5.3. Reweighting with respect to arbitrary parameters

Reweighting wrt. arbitrary parameters ga, which couple to ac-
tion/Hamiltonian S(~g; {φ}). The partition function is

Z~g =
∫

[dφ] exp[−S(~g; {φ})]

Simulation is performed with ga = ga
0 , and we measure Si(~g0) =

S(~g0; {φ}i) and Si(~g) = S(~g; {φ}i) (note that configs are generated with
S(~g0; {φ})). Reweighting observable O:

〈O〉~g =

∑

i Oi exp[−(Si(~g) − Si(~g0))]
∑

i exp[−(Si(~g) − Si(~g0))]

Usually the action factorizes to form S =
∑

a gaSa. In this case it is suffi-
cient to measure the “pieces” of action Sa, and we can reweight wrt. any
component ga.
g1 = −β, S1 = E recovers standard Ising reweighting.
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Finding Lee-Yang zeroes of the partition function: reweight to complex β,
and find those where Zβ = 0.
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5.1. Multiple histogram reweighting

Multiple histogram method
joins together several sets
of data, run at different
β-values, in an optimized
way.

Example:
Susceptibility χE , volume
322. The data from 3 runs
is joined together with mul-
tiple histogram reweighting
(blue curve). Errors are
much smaller than with sin-
gle histogram reweighting.

0.410 0.420 0.430 0.440 0.450
β

1.5

2.0

2.5

χE

single histogram (β=0.44)
multiple histogram
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Powerful method – should be part of standard toolbox for everybody who
can join points from different simulations. However, somewhat cumber-
some to use.

• Perform R Monte Carlo simulations, at couplings βi, with length Ni.

• Measure the energy distributions pi(E) = Hi(E)/Ni, and the auto-
correlation time τi.

• True distribution is given by

pi(E) = n(E) e−βiE+fi,

where n(E) is the density of states (does not depend on β), and fi

is (dimensionless) free energy: fi = − log Zβi
.

7→ Each of the simulations gives us an estimate of n(E) = pi(E)eβiE−fi

(we don’t know fi, so that the normalization is unknown). Since the
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MC runs were performed at different βi, each of the run yields a
reliable estimate of n(E) only at limited range of E.

• Optimization: we obtain an improved estimate for n(E) by combin-
ing all runs together:

n(E) =
R

∑

i=1

ri(E)pi(E)eβiE−fi , where
R

∑

i=1

ri(E) = 1 for all E.

Note that the relative weights ri(E) are independent at each E: →
optimization.

• ri(E) are determined by minimizing the (error)2 in n(E) (now follows
somewhat technical derivation):

– What is the uncertainty in histogram values? Assuming that
Hi(E) is Poisson distributed around the ‘true’ value H̄i(E), we
obtain

δ2Hi(E) = giH̄i(E) = giNin(E)e−βiE−f .
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Here gi = 1 + 2τi takes into account the autocorrelations in run
i.

– Thus, (error)2 in n(E)

δ2n(E) =
∑

i

r2
i (E)

δ2Hi(E)

N2
i

e2(βiE−fi) =
∑

i

r2
i (E)

gin(E)

Ni
eβiE−fi

– Minimize δ2n(E) wrt. ri(E) with condition C ≡ ∑

i ri(E) = 1.
Use Lagrange multipliers (try it):

∂

∂ri(E)
[δ2n(E) + λC] = 0 7→ ri(E) =

Nig
−1
i e−βiE+fi

∑R
j=1 Njg

−1
j e−βjE+fj
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• Thus, the optimized expression for n(E) is

n(E) =

∑R
i=1 g−1

i Hi(E)
∑R

j=1 Njg
−1
j e−βjE+fj

• The coefficients fi are then determined by solving
e−fi =

∑

E

n(E)e−βiE

To solve this equation use some iterative method (Newton-
Raphson). fi’s are determined up to an additional constant.

• Observable expectation values:

〈O〉β =
∑

E O(E)n(E)e−βE

∑

E n(E)e−βE

As with the single histogram method, this can be formulated without
resorting to Hi(E). Let Ea

i be the energy measurement number a

(a = 1 . . .Ni) from run number i. The expression for the free energy

19



fβ becomes

e−fβ =
R

∑

i=1

Ni
∑

a=1

g−1
i e−βEa

i

∑R
j=1 Njg

−1
j e−βjEa

i +fj
.

fi’s are then solved from e−fi = e−fβi , in analogy to the second eq. in the
box above. The expectation value of O at reweighted β:

〈O〉β =
R

∑

i=1

Ni
∑

a=1

Oa
i g

−1
i e−βEa

i −fβ

∑R
j=1 Njg

−1
j e−βjEa

i +fj
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6. Error analysis: jackknife & bootstrap

As discussed before, it is no problem to calculate the expectation values
and statistical error estimates of “normal” observables from Monte Carlo.
However, often we have to calculate functions which depend (possibly
non-linearly) on the expectation values of some quantities.
As a common example, we may have 2 observables, a and b, and we
want the correlation coefficient

ρ =

∑

i(ai − 〈a〉)(bi − 〈b〉)
√

∑

i(ai − 〈a〉)2 ∑

j(bj − 〈b〉)2
=

〈(a − 〈a〉)(b − 〈b〉)〉
√

〈(a − 〈a〉)2〉〈(b − 〈b〉)2〉

where, as usual, 〈a〉 = 1/N
∑

i ai.

Now, if we write the measurements ai, bi in a file, it is of course no prob-
lem to calculate ρ. However, what is the error of our result for ρ? We
cannot construct a sigle-configuration quantity ρi, which we could plug
in the autocorrelation analysis.

One methdod to do the analysis would be to divide the measurements
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(a, b)i in M blocks (bins), with block length � τ , the autocorrelation time.
Then we can calculate ρm for each block, and use the naive error formula
for the error. However, this is not optimal: the value of ρm may vary a lot
from block to block.

Jackknife and bootstrap methods are nowadays standard ways to calcu-
late the error in this case.
– R.G. Miller, the jackknife – a review, Biometrika 61 (1974) pg. 1–17.
– B. Efron, Computers and the theory of statistics: thinking the unthink-
able, SIAM Review, vol 21, No. 4 460 (1979)
– B. Efron, The Jackknife, the Bootstrap and Other Resampling Plans,
Society for Industrial and Applied Mathematics (1982)
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6.1. Jackknife

Jackknife method is a systematic way of obtaining the “standard devia-
tion” error of a set of stochastic measurements:

1. Calculate average ρ (or some function f ) from the full dataset

2. Divide data (a, b)i into M blocks, with block length � τ . This is done
in order to get rid of autocorrelations; if there are no correlations,
block length can be 1.

3. For each m = 1 . . .M , take away block m and calculate the average
ρ(m) using the data from all other blocks.

4. Estimate the error of ρ by calculating the deviation of ρ(m)’s from ρ:

δρ =

√

√

√

√

√

M − 1

M

M
∑

m=1

(ρ(m) − ρ)2
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The factor (M − 1)/M is there to give the correct result if we look at
the errors of simple observables. For example, assume that we have a
random observable ai. Dividing these into M blocks, we can calculate
an average from each block as am. Now we obtain the jackknife-blocked
average as a(m) = 1/(M − 1)

∑

m′ 6=m am′. Thus,
√

√

√

√

M − 1

M

∑

m
(a(m) − 〈a〉)2 =

√

√

√

√

√

∑

m(am − 〈a〉)2

(M − 1)M

i.e. we obtain the standard (blocked) error estimate.

Why does jackknife work? ρ(m) contains almost the full set of data, thus,
they are quite close to the final (right) value. Indeed, each jackknifed
block ∼ a new MC average of length N−m (However, these are naturally
not independent!). This is why jackknife and bootstrap are often called
resampling methods: they construct pseudo-independent ‘new’ simula-
tion results.
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Note: parametrically,

ρ(m) − ρ ∼ δρ/
√

M ,

i.e. the distribution of the results of these new “simulations” is narrower
than δρ, the error. Thus, we cannot really consider jackknife sets to be
“new” simultations (these would have distribution with width δρ).

We want an estimate of f(〈a〉), where a is some quantity which we mea-
sure from simulation. The jackknife error estimate is naturally

δf =

√

√

√

√

M − 1

M

∑

m
(f(m) − 〈f〉)2 ≈ |f ′(〈a〉)|δa

where f(m) = f(a(m)). This is typically a good approximation, because
f(m) is close to 〈f〉. (Here 〈f〉 =

∑

m f(m)/M usually; it could also be
〈f〉 = f(〈a〉)).
Jackknife blocked data makes it easy to ‘chain’ the blocks through con-
secutive functions: for example, if we want g(f(〈a〉)), where a is some
statistical measurable, we can form a(m), average of the observable a
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over jackknifed block m. Now we can calculate f(m) = f(a(m)) and
g(m) = g(f(m)), from which the error is

δg(f(〈a〉)) =

√

√

√

√

M − 1

M

∑

m
(g(m) − 〈g〉)2
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-400 -200 0 200 400

E - <E>

0

1000

2000

3000

4000

|M|

64
2
 Ising model

-30 -20 -10 0 10 20 30

E - <E>

2300

2350

2400

2450

2500

2550

2600

|M|

Blocked data, 200 blocks

-0.2 -0.1 0 0.1 0.2

E - <E>

2458

2458.5

2459

2459.5

2460

|M|

Jackknife blocked data, 200 blocks

Above: 642 Ising at βc;
a) sample of (E − 〈E〉, |M |)-data,
b) block averages with 200 blocks of length 2000,
c) jackknife block averages with same blocks.

Each jackknife block is very close to the final value, and the distribution
of the jackknifed data is an approximation of the error ellipse (or domain,
in general) of the (〈E〉, 〈|M |〉)-data.
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Feeding these blocks through some (non-linear) function, the distribution
of the results gives us directly the error of the function value.

Let us calculate the correlation coefficient of a = (E − 〈E〉) and b =

(|M | − 〈|M |〉). Doing this with 200 jackknife blocks as above, we have
to calculate 〈a〉, 〈b〉 and 〈ab〉 for each of the 200 jackknife block, each
containing 199 × 2000 = 398000 points. Lot of operations!

In this case, I obtain ρ = −0.7139(15).

One could also (incorrectly) assume that each of the 〈·〉’s in ρ are sta-
tistically independent. Then I would obtain, using standard independent
error propagation,1 ρ = −0.7139(67). The error is 4 times too large!

1Independent errors: δ2f(a, b) = [∂f/∂a]2δ2a + [∂f/∂b]2δ2b
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6.2. Bootstrap

Bootstrap method is closely related to jackknife, but it mimics the resam-
pling more closely. It works as follows:

1. Divide data (a, b)i into M blocks, with block length � τ (independent
blocks).

2. From the set of the M blocks, pick randomly M blocks, not trying to
avoid double sampling. Thus, some blocks may not get selected at
all, some once, some twice etc.

3. Calculate the quantity of interest over the selected data – for exam-
ple, the correlation coefficient ρ∗.

4. Repeat steps 2 and 3 a large number of times, say NB times,
each time using an independent set of random numbers to gen-
erate the bootstrap sample. The new correlation coefficients are
ρ∗1, ρ

∗
2, . . . , ρ

∗
NB

.
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5. Find values a and b so that these bracket the central 68% of the ρ∗

values:

#{ρ∗i < a}
NB

= 0.16
#{ρ∗i > b}

NB
= 0.16

In effect, by generating a large number (NB) of bootstrap samples
one is generating the distribution function of the final result. The
values a and b define the “1-σ” cumulants of this distribution.

6. The bootstrap estimate of the standard deviation can be now given
as

δρ =
b − a

2
.

Or, more accurately, we can give asymmetric errors

ρ = ρ0
+(b−ρ0)
−(ρ0−a)

where ρ0 = 〈ρ〉.
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7. The points 5-6 above can be usually substituted with the bootstrap
estimate of the standard deviation:

δρ =

√

√

√

√

1

NB − 1

∑

i

(ρ∗i − 〈ρ∗〉)2

where 〈ρ∗〉 =
∑

i ρ
∗
i /NB.

In jackknife/bootstrap literature there is no initial blocking – successive
datapoints are considered to be statistically independent (no autocorre-
lations)! However, this is a minor modification: by blocking initially we
obtain statistically independent measurements.

What is a sufficient number of blocks? One should have at least several
tens of samples, preferably hundreds. NB in the bootstrap can go to ∼
1000.
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Note: let us have measurements ai, with expectation value 〈a〉 and “er-
ror” δa. Let us block this into M “normal” blocks am, jackknife block
averages a(m) and NB bootstrap averages a∗i . Now
1. am − 〈a〉 ∼ δa

√
M

2. a(m) − 〈a〉 ∼ δa/
√

M

3. a∗i − 〈a〉 ∼ δa

Thus, jackknife “resamples” the distribution
on a very narrow range, whereas bootstrap
gives the “right” range.
For example, we may have a function
f(〈a〉) which happens to be significantly
non-linear in range δa.
For jackknife, δf ∼ |f ′(〈a〉)|δa.

δ a
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Example: reweighting

〈O〉β =

∑

i Oi e
−(β−βc)Ei

∑

i e−(β−βc)Ei

If the number of bootstrap samples is very large, it can become expen-
sive to evaluate the sums over the measurements (for each bootstrap
block, we have a sum over the full number N measurements!). This can
be optimized by precalculating sums over the original blocks.

Bootstrap and jackknife are also used in fits to the data.
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6.3. Bias estimation

• For concreteness, let us again have a function f(〈a〉). The true
value f(〈a〉) is obtained when we calculate the average of a using
infinitely many samples ai.

• Let us now denote the average over N samples a1 . . . aN as 〈a〉N ,
from which we obtain an estimate f(〈a〉N) Now, if we take the aver-
age over many samples of size N , we can calculate the expectation
value 〈f(〈a〉N)〉.

• Bias is now defined as

Bias = 〈f(〈a〉N )〉 − f(〈a〉)

i.e. the deviation of the expectation value using N measurements
from the one using ∞ measurements.

• Note that the bias is a well-defined quantity, the expectation values
do not have “errors” (like a single f(〈a〉N ) has).
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• Many quantities do not have a bias – for example, simple observ-
ables like magnetization M . However, a function of 〈M〉 like 〈M〉2
has a bias!

• The original purpose for the jackknife method was bias reduction
(Quenouille, J.Roy.Statist.Soc.Ser.B, 1949).

• Calculate jackknife block averages a(n) from data ai, and let f(n) =
f(a(n)) (let me assume here that the original data ai are already
“blocked”, if needed).

• Let 〈f(·)〉 =
1

N

∑

n
f(n).

• Now the Queinouille estimate for bias is

Bias = (N − 1)(〈f(·)〉 − f(〈a〉)).
• This leads to the bias-corrected jackknifed estimate of f :

f̃(〈a〉) = f(〈a〉) − Bias = Nf(〈a〉) − (N − 1)〈f(·)〉
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• The usual rationale for bias correction goes as follows: if we assume
that

〈f(〈a〉N )〉 = f(〈a〉) +
c1

N
+

c2

N2
+ . . .

Now, because each jackknife blocked set contains only N − 1 mea-
surements,

〈f(·)〉 = 〈f(〈a〉N−1)〉.

Now we can eliminate the “error” term ∝ 1/N , giving us the bias
correction result.

• While in principle the bias correction can be performed, in practice it
is often of very limited use. Usually the bias correction is completely
overwhelmed by the statistical error of the sample.
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