
1. Monte Carlo integration

The most common use for Monte Carlo methods is the evaluation of
integrals. This is also the basis of Monte Carlo simulations (which are
actually integrations). The basic principles hold true in both cases.

1.1. Basics

• Basic idea becomes clear from the
“dartboard method” of integrating the area
of an irregular domain:

Choose points randomly within the rectangular box

A

Abox
= p(hit inside area)← # hits inside area

hits inside box

as the # hits→∞.

1

• Buffon’s (1707–1788) needle experiment to determine π:

d

l– Throw needles, length l, on a grid of lines
distance d apart.

– Probability that a needle falls on a line:

P =
2l

πd

– Aside: Lazzarini 1901: Buffon’s experiment with 34080 throws:

π ≈ 355

113
= 3.14159292

Way too good result!

(See “π through the ages”,
http://www-groups.dcs.st-and.ac.uk/∼history/HistTopics/Pi through the ages.html)

2

1.2. Standard Monte Carlo integration

• Let us consider an integral in d dimensions:

I =
∫

V
ddxf(x)

Let V be a d-dim hypercube, with 0 ≤ xµ ≤ 1 (for simplicity).

• Monte Carlo integration:

- Generate N random vectors xi from flat distribution (0 ≤ (xi)µ ≤ 1).

- As N →∞,

V

N

N
∑

i=1

f(xi)→ I .

- Error: ∝ 1/
√

N independent of d! (Central limit)

• “Normal” numerical integration methods (Numerical Recipes):

- Divide each axis in n evenly spaced intervals

3

- Total # of points N ≡ nd

- Error:

∝ 1/n (Midpoint rule)

∝ 1/n2 (Trapezoidal rule)

∝ 1/n4 (Simpson)

• If d is small, Monte Carlo integration has much larger errors than
standard methods.

• When is MC as good as Simpson? Let’s follow the error

1/n4 = 1/N4/d = 1/
√

N → d = 8.

In practice, MC integration becomes better when d>∼6–8.

• In lattice simulations d = 106 − 108!

• In practice, N becomes just too large very quickly for the standard
methods: already at d = 10, if n = 10 (pretty small), N = 1010. Too
much!

4

1.3. Why error is ∝ 1/
√

N?

• This is due to the central limit theorem (see, f.ex., L.E.Reichl, Sta-
tistical Physics).

• Let yi = V f(xi) (absorbing the volume in f) be the value of the
integral using one random coordinate (vector) xi. The result of the
integral, after N samples, is

zN =
y1 + y2 + . . . + yN

N
.

• Let p(yi) be the probability distribution of yi, and PN(zN) the distri-
bution of zN . Now

PN (zN) =
∫

dy1 . . . dyN p(y1) . . . p(yN)δ(zN −
∑

i

yi/N)

• Now

1 =
∫

dy p(y)

5

〈y〉 =
∫

dy y p(y)

〈y2〉 =
∫

dy y2 p(y)

σ = 〈y2〉 − 〈y〉2 = 〈(y − 〈f〉)2〉

Here, and in the following, 〈α〉 means the expectation value of α

(mean of the distribution pα(α)).

• The error of the Monte Carlo integration (of length N) is defined as
the width of the distribution PN (zN), or more precisely,

σ2
N = 〈z2

N 〉 − 〈zN〉2 .

• Naturally 〈zN 〉 = 〈y〉.

• Let us calculate σN :

- Let us define the Fourier transformation of p(y):

φ(k) =
∫

dy eik(y−〈y〉) p(y)

6

Similarly, the Fourier transformation of PN (z) is

ΦN(k) =
∫

dzN eik(zN−〈zN 〉) PN(zN)

=
∫

dy1 . . . dyN ei(k/N)(y1−〈y〉+...+yN−〈y〉) p(y1) . . . p(yN)

= [φ(k/N)]N

- Expanding φ(k/N) in powers of k/N (N large), we get

φ(k/N) =
∫

dy ei(k/N)(y−〈y〉) p(y) = 1− 1

2

k2σ2

N2
+ . . .

Because of the oscillating exponent, φ(k/N) will decrease as |k|
increases, and φ(k/N)N will decrease even more quickly. Thus,

ΦN(k) =

1− 1

2

k2σ2

N2
+ O(

k3

N3
)

N

−→ e−k2σ2/2N

7

- Taking the inverse Fourier transform we obtain

PN (zN) =
1

2π

∫

dk e−ik(zN−〈y〉)ΦN(k)

=
1

2π

∫

dk e−ik(zN−〈y〉)e−k2σ2/2N

=

√

√

√

√

N

2π

1

σ
exp

−N(zN − 〈y〉)2

2σ2

 .

• Thus, the distribution PN (zN) approaches Gaussian as N → ∞,
and

σN = σ/
√

N.

8

1.4. In summary: error in MC integration

If we integrate

I =
∫

V
dx f(x)

with Monte Carlo integration using N samples, the error is

σN = V

√

√

√

√

〈f 2〉 − 〈f〉2
N

.

In principle, the expectation values here are exact properties of the dis-
tribution of f , i.e.

〈f〉 =
1

V

∫

dxf(x) =
∫

dy y p(y) 〈f 2〉 =
1

V

∫

dxf 2(x) =
∫

dy y2p(y).

Here p(y) was the distribution of values y = f(x) when the x-values
are sampled with flat distribution. p(y) can be obtained as follows: the
probability of the x-coordinate is flat, i.e. px(x) = C =const., and thus

px(x)dx = C
dx

dy
dy ≡ p(y)dy ⇒

9

p(y) = C/(dy/dx) = C/f ′(x(y)) .

Of course, we don’t know the expectation values beforehand! In practice,
these are substituted by the corresponding Monte Carlo estimates:

〈f〉 ≈ 1

N

∑

i

f(xi) 〈f 2〉 ≈ 1

N

∑

i

f 2(xi) . (1)

Actually, in this case we must also use

σN = V

√

√

√

√

〈f 2〉 − 〈f〉2
N − 1

because using (1) here would underestimate σN .

Often in the literature the real expectation values are denoted by 〈〈x〉〉,
as opposed to the Monte Carlo estimates 〈x〉.
The error obtained in this way is called the 1-σ error; i.e. the error is the
width of the Gaussian distribution of

fN = 1/N
∑

i

f(xi).

10

It means that the true answer is within V 〈f〉±σN with ∼ 68% probability.
This is the most common error value cited in the literature.

This assumes that the distribution of fN really is Gaussian. The central
limit theorem guarantees that this is so, provided that N is large enough
(except in some pathological cases).

However, in practice N is often not large enough for the Gaussianity to
hold true! Then the distribution of fN can be seriously off-Gaussian,
usually skewed. More refined methods can be used in these cases (for
example, modified jackknife or bootstrap error estimation). However, of-
ten this is ignored, because there just are not enough samples to deduce
the true distribution (or people are lazy).

11

Example: convergence in MC integration

• Let us study the following integral:

I =
∫ 1

0
dx x2 = 1/3 .

• Denote y = f(x) = x2 and x = f−1(y) =
√

y.

• If we sample x with a flat distribution, px(x) = 1, 0 < x ≤ 1, the
probability distribution pf(y) of y = f(x) can be obtained from

px(x)dx = px(x)|dx

dy
|dy ≡ pf(y)dy ⇒

pf(y) = |dx

dy
| = |1/f ′(x)| = 1

2
x−1 =

1

2
y−1/2

where 0 < y ≤ 1.

• In more than 1 dim: pf(~y) =
∣

∣

∣

∣

∣

∣

∣

∣

∂xi

∂yj

∣

∣

∣

∣

∣

∣

∣

∣

, the Jacobian determinant.

12

• The result of a Monte Carlo integration using N samples xi, yi =

f(xi), is IN = (y1 + y2 + . . . + yN)/N .

• What is the probability distribution PN of IN? This tells us how badly
the results of the (fixed length) MC integration scatter.

P1(z) = pf(z) = 1/
√

z

P2(z) =
∫ 1

0
dy1dy2 pf(y1)pf(y2) δ(z − y1 + y2

2
)

=

π/2 0 < y ≤ 1/2

arcsin 1−y
y 1/2 < y ≤ 1

P3(z) =
∫ 1

0
dy1dy2dy3 pf(y1)pf(y2)pf(y3) δ(z − y1 + y2 + y3

3
) = . . .

. . .

13

PN , measured from the results of 106 independent MC integrations for
each N :

0 0.5 1
0

1

2

3

4

5

P
N

P
1

P
2

P
3

P
10

0.3 0.35 0.4
0

10

20

30

40

50

P
N

P
10

P
100

P
1000

The expectation value = 1/3 for all PN .

The width of the Gaussian is

σN =

√

√

√

√

〈〈f 2〉〉 − 〈〈f〉〉2
N

=

√

√

√

√

4

45N

14

where

〈〈f 2〉〉 =
∫ 1

0
dxf 2(x) =

∫ ∞

1
dyy2pf(y) = 1/5.

For example, using N = 1000, σ1000 ≈ 0.0094. Plotting

C exp

−(x− 1/3)2

2σ2
1000

in the figure above we obtain a curve which is almost undistinguishable
from the measured P1000 (blue dashed) curve.

15

In practice, the expectation value and the error is of course measured
from a single Monte Carlo integration. For example, using again N =
1000 and the Monte Carlo estimates

〈f〉 =
1

N

∑

i

fi , 〈f 2〉 =
1

N

∑

i

f 2
i , σN =

√

√

√

√

〈f 2〉 − 〈f〉2
N − 1

we obtain the following results (here 4 separate MC integrations):
1: 0.34300± 0.00950
2: 0.33308± 0.00927

3: 0.33355± 0.00931
4: 0.34085± 0.00933

Thus, both the average and the error estimate can be reliably calculated
in a single MC integration.

16

Another example:

What about integral I =
∫ 1
0 dx x−1/2 = 2? Now 〈〈f 2〉〉 =

∫ 1
0 dx x−1 = ∞,

diverges logarithmically. What happens to the MC error estimate?

The assumptions in the central limit theorem do not hold in this case.
However, in practice the Monte Carlo integration works also now, and the
distribution PN approaches something like a Gaussian shape, and the
characteristic width (and thus the error of the MC integration) behaves
as ∝ 1/

√
N . However, the standard formula with 〈〈f 2〉〉 does not work.

Now

P1(y) = pf(y) = 1/f ′ = y−3,

where 1 ≤ y <∞. Thus, y2P1(y) is not integrable, and since P2(y) ∼ y−3

when y → ∞, neither is y2P2(y). This remains true for any N (?). Thus,
formally the error σN is infinite!

Nevertheless, we can perform standard MC integrations with MC esti-
mates for 〈f〉, 〈f 2〉 and plug these into the formula for σN :

17

For example, some particular results
N = 1000 : 1.897± 0.051

N = 10000 : 1.972± 0.025
N = 100000 : 2.005± 0.011
N = 1000000 : 1.998± 0.003

Results may fluctuate quite a bit, since occasionally there may occur
some very large values of f(x) = 1/

√
x.

18

1.5. Importance sampling

Often the integrand has a very small value on a dominant fraction of the
whole integration volume:

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

If the points are chosen evenly in the
integration volume, the small minority
of the points close to the “peak” give
the dominant contribution to the integral.

Importance sampling: choose the random points so that more points are
chosen around the peak, less where the integrand is small.

7→ reduces the variance σ, and thus reduces the error.

Importance sampling is essential in Monte Carlo simulations! In that
case we integrate

∫

[dφ] exp[−S], which is exponentially strongly peaked
function (peak near the corner where S is small).

19

• Let us integrate I =
∫

V
dV f(x)

• Choose a distribution p(x), which is close to the function f(x), but
which is simple enough so that it is possible to generate random
x-values from this distribution.

• Now

I =
∫

dV p(x)
f(x)

p(x)
.

• Thus, if we choose random numbers xi from distribution p(x), we
obtain

I = lim
N→∞

1

N

∑

i

f(xi)

p(xi)

• Since f/p is flatter than f , the variance of f/p will be smaller than
the variance of f → error will be smaller (for a given N).

20

• Ideal choice: p(x) ∝ |f(x)|. Now the variance vanishes! In prac-
tice not usually possible, since the proportionality constant is the
unknown integral!

• However, exactly this choice is done in Monte Carlo simulations.

21

• In Monte Carlo simulations, we want to evaluate integrals of type

I =
∫

[dφ] f(φ) e−S(φ)/
∫

[dφ] e−S(φ)

(using here notation [dφ] =
∏

x dφ.)

• Importance sampling: we generate random φ(x)i -configurations
with probability

p(φ) = const.× e−S(φ)

(with unknown normalization constant).

• Applying the previous result:

I ≈ 1

N

∑

i

f(φi)

• Note that

Z =
∫

[dφ] e−S(φ)

22

cannot be directly calculated with importance sampling, due to the
unknown normalization constant.

• In a sense, this importance sampling turns the plain Monte Carlo
integration into simulation: the configurations φ(x) are sampled with
the Bolzmann probability ∝ e−S, which is the physical probability of
a configuration. Thus, the integration process itself mimics nature!

• How to generate φ’s with probability ∝ e−S(φ)? That is the job of the
Monte Carlo update algorithms.

23

Example: importance sampling

Integrate

I =
∫ 1

0
dx (x−1/3 + x/10) = 31/20 = 1.55

Standard MC gives error

σN =

√

√

√

√

〈f 2〉 − 〈f〉2
N − 1

≈ 0.85√
N − 1

Let us now assume that we don’t know the function but we can evaluate
it. We recognize that it diverges pretty much like x−1/3 as x is small. Let
us therefore propose to do the integral with importance sampling, using
sampling probability

p(x) = 2/3x−1/3, 0 < x ≤ 1.

How to obtain random numbers with distribution p(x)? (This will be dis-
cussed in detail in the next section.) Let us make a change of variable

24

so that the distribution in the new variable is flat:

p(x)dx = p(x)
dx

dy
dy = dy ⇒ y =

∫ x

0
dx′ p(x′) = x2/3

Thus, if y is from a flat distribution y ∈ (0, 1], x = y3/2 is from distribution
p(x) = 2/3x−1/3.
In the new variable y the integral becomes

I =
∫ 1

0
dxp(x)

f(x)

p(x)
=

∫ 1

0
dy

f(x(y))

p(x(y))

Thus, if we denote g = f/p, we have 〈g〉 = 31/20 and 〈g2〉 = 2.4045.
Thus, the width of the result in MC integration of g is

σN =

√

√

√

√

〈g2〉 − 〈g〉2
N − 1

≈=
0.045√
N − 1

This is ∼ 20 times narrower than with the naive method!

The recipe for the MC integration with importance sampling is thus:

25

- generate N random numbers yi from flat distribution
- xi = y

3/2
i are from distribution p(x)

- calculate the average of gi = f(xi)/p(xi)

Indeed:

N naive importance
100 1.4878± 0.0751 1.5492± 0.0043

10000 1.5484± 0.0080 1.5503± 0.0004

26

1.6. Note: some standard MC integration routines

Powerful Monte Carlo integration routines are included in several nu-
merical packages. However, typically these tend to fail when number of
dimensions is larger than ∼ 15. Thus, these are useless for Monte Carlo
simulations.
The following routines are included in the GSL (GNU scientific library,
available for free). See also Numerical Recipes 7.8 for further details.

• VEGAS: uses approximate importance sampling (together with sev-
eral other tricks). It does several passes over the integral, and uses
the results of the previous passes to improve its estimate of the im-
portance sampling function.

Described in:

G.P. Lepage, ‘A New Algorithm for Adaptive Multidimensional Inte-
gration’, Journal of Computational Physics 27, 192-203, (1978)

• MISER: uses stratified sampling

27

1.7. Note: quasirandom sequences

• Quasirandom sequences are “random” number sequences which
are not random at all, but are (for our purposes) specially con-
structed to cover the large-dimensional volume (hypercube) as
evenly as possible.

• Error in quasirandom integration usually ∝ 1/N or even faster,
where N is the number of points in the sequence (cf. 1/

√
N in

random Monte Carlo).

• Sequences depend on d and N .

• Does not work with importance sampling → not useful for Monte
Carlo simulation.

• Numerical Recipes sec. 7.7; implementations in GSL (GNU scien-
tific library, available for linux and other systems).

28

2. Random numbers

Good random numbers play a central part in Monte Carlo simulations.
Usually these are generated using a deterministic algorithm; the num-
bers generated this way are called pseudorandom numbers.

There are several methods for obtaining random numbers for Monte
Carlo simulations, however, there have been occasions where the ran-
dom numbers generated with a trusted old workhorse algorithm have
failed (i.e. the simulation has produced incorrect results). What is un-
derstood to be a “good” random number generator varies with time!

2.1. Physical random numbers

Physical random numbers are generated from some truly random physi-
cal process (radioactive decay, thermal noise, roulette wheel . . .). Before
the computer age, special machines were built to produce random num-
bers which were often published in books. For example, 1955 the RAND

29

corporation published a book with a million random numbers, obtained
using an electric “roulette wheel”. This classic book is now available on
the net, at
http://www.rand.org/publications/classics/randomdigits/

Recently, the need for really random (non-algorithmic) numbers in com-
puter technology has increased dramatically. This is due to the wide use
of cryptography (ssh, ipv6, encrypted files/disks, . . .).

For example, in Linux the special character files /dev/random and
/dev/urandom return random bytes (characters) when read from a pro-
gram. For example, you can try
more /dev/random
which will print gibberish on the screen (may lock the terminal, since
some characters are not printable!). This interface generates random-
ness, “entropy pool”, by snooping various physical timings etc. from de-
vice drivers (key press intervals, mouse pointer movements, disk access
times, internet packet delays etc.).

30

More info with command man 4 random.

Due to the increase in cryptography, some modern processors also in-
troduce a hardware random number generator (Intel P4). Some very old
computers had hardware random numbers too, but those were meant
mostly for Monte Carlo use (with questionable success).

Physical random numbers are not very useful for Monte Carlo, because:

• The sequence is not repeatable.

• The generators are often slow.

• The quality of the distribution is often not perfect. For example, a
sequence of random bits might have slightly more 0’s than 1’s. This
is not so crucial for cryptography (as long as the numbers are really
random), but is absolute no-no for Monte Carlo.

Silicon Graphics’ Lavarand: generate random numbers from the digital
tv-camera images of a lava lamp.

31

2.2. Pseudorandom numbers

Almost all of the Monte Carlo calculations utilize pseudorandom num-
bers, which are generated using deterministic algorithms. Typically the
generators produce a random integer (with a definite number of bits),
which is converted to a floating point number number X ∈ [0, 1) or [0, 1]
by multiplying with a suitable constant.

The generators are initialized once before use with a seed number, typi-
cally an integer value or values. This sets the initial state of the genera-
tor.

The essential properties of a good random number generator are:

Repeatability – the same initial values (seeds) produces the same ran-
dom number sequence. This can be important for debugging.

Randomness – random numbers should be
a) from uniform distribution – for example, really homogeneously dis-
tributed between [0,1)

32

b) non-correlated, i.e. independent of each other. This is tough! No
pseudorandom sequence is truly independent.

Long period – the generators have a finite amount of internal state in-
formation, so the sequences must repeat itself after finite period. The
period should be much longer than the amount of numbers needed for
the calculation (preferably).

Insensitive to seeds – the period and randomness properties should not
depend on the initial seed.

Fast

Portability – same results on different computers.

One form of pseudorandom numbers are sequences extracted from the
numerical representations of π or other transcendental numbers (stud-
ied by J. Von Neumann and N. Metropolis 1950’s). These are not very
practical, however.

33

Let us now look at some main types of pseudorandom number genera-
tors.

2.2.1. Midsquare method

This is only of historical note, it is the first pseudorandom generator (N.
Metropolis). Don’t use it for any serious purpose. This works as follows:
take a n-digit integer; square it, giving a 2n-digit integer. Take the middle
n digits for the new integer value.

2.2.2. Linear congruential generator

One of the simplest, widely used and oldest (Lehmer 1948) generators is
the linear congruential generator (LCG). Usually the language or library
“standard” generators are of this type.
The generator is defined by integer constants a, c and m, and produces

34

a sequence of random integers Xi via

Xi+1 = (aXi + c) mod m

This generates integers from 0 to (m− 1) (or from 1 to (m− 1), if c = 0).
Real numbers in [0, 1) are obtained by division fi = Xi/m.

Since the state of the generator is specified by the integer Xi, which is
smaller than m, the period of the generator is at most m. The constants
a, c and m must be carefully chosen to ensure this. Arbitrary parameters
are sure to fail!

These generators have by now well-known weaknesses. Especially, if
we construct d-dimensional vectors (“d-tuples”) from consecutive ran-
dom numbers (fi, fi+1, . . . , fi+d), the points will lie on a relatively small
number of hyperplanes (at most m1/d, but can be much less; see Nu-
merical Recipes).

In many generators in use m = 2n. In this case, it is easy to see that the
low-order bits have very short periods. This is due to the fact that the
information in X is only moved “up”, towards more significant bits, never

35

down. Thus, for k least significant bits there are only 2k different states,
which is then the cycle time of these bits. The lowest order bit has a
period of 2, i.e. it flips in sequence 101010. . . . Some amount of cycling
occurs in fact always when m is not a prime.

Thus, if you need random integers or random bits, never use the low-order
bits from LGC’s!

• The ANSI C standard1 random number routine rand() has param-
eter values

a = 1103515245, c = 12345, m = 231

This is essentially a 32-bit algorithm. The cycle time of this gen-
erator is only m = 231 ≈ 2 × 109, which is exhausted very quickly
in a modern computer. Moreover, m is a power of 2, so that the

1Sorry: not standard, but mentioned in the standard. The standard does not specify a specific
generator.

36

low-order bits are periodic. In Linux, function rand() has been
substituted by a more powerful function.

This routine exists in many, maybe most, system libraries (and may
be the random number in Fortran implementations). Nevertheless
this generator is not good enough for serious computations.

• GGL, IBM system generator (Park and Miller “minimal standard”)

a = 16807, c = 0, m = 231 − 1

As before, short cycle time. Better generator than the first one,
but I would not recommend this for Monte Carlo simulations. This
generator is the RAND generator in MATLAB.

• UNIX drand48():

a = 5DEECE66D16, c = B16, m = 248

This uses effectively 64 bits in arithmetics, and the internal state is
modded to a 48-bit integer. The cycle time is thus 248 ≈ 2.8× 1014.

37

The cycle time is sufficient for most purposes, and this generator is
much used. However, it has the common low-order cycling problem
and must be considered pretty much obsolete.

• NAG (Numerical Algorithms Group):

a = 1313, c = 0, m = 259

Very long cycle time, with low-order cycling.

38

2.2.3. Lagged Fibonacci & friends

Lagged Fibonacci and related generators improve the properties of the
random numbers by using much more than one integer as the internal
state. Generally, lagged Fibonacci generators form a new integer Xi

using

Xi = (Xi−p �Xi−q) mod m

where p and q are lags, integer constants, p < q, and � is some arith-
metic operation, such as +, -, * or ⊕, where the last is XOR, exclusive
bitwise or.

The generator must keep at least q previous Xi’s in memory. The quality
of these generators is not very good with small lags, but can become
excellent with large lags. If the operator � is addition or subtraction, the
maximal period is ∼ 2p+q−1.

If the operator � is XOR, the generator is often called (generalized) feed-
back shift register (GFSR) generator. Standard UNIX random() gener-

39

ator is of this type, using up to 256 bytes of internal storage. I believe
this is the rand() in Linux distributions. I don’t recommend either for
Monte Carlo simulations.
Another fairly common generator of this type is R250:

Xi = X103 ⊕X250

This requires 250 integer words of storage (For more information, see
Vattulainen’s web-page). However, GFSR generators are known to have
rather strong 3-point correlations in tuples (Xi, Xi−q, Xi−p) (no surprise
there). It has been observed to fail spectacularly in Ising model simula-
tions using a Wolff cluster algorithm (Ferrenberg et al., Phys. Rev. Lett.
69 (1992)). One should probably not use these kind of generators in
serious Monte Carlo.

That said, these generators typically do not distinguish between low- and
high-order bits; thus, the low-order bits tend to be as good as the high
order ones.

40

Because of the large internal memory, seeding of these generators is
somewhat cumbersome. Usually one uses some simpler generator, e.g.
some LGC, to seed the initial state variables.

41

2.2.4. Mersenne twister

Mersenne twister or MT19937 is modern very powerful generator (Mat-
sumoto & Nishimura 1997). It is a modification of a genralized feedback
shift register, and it uses 624 32-bit integers as the internal storage. It
uses special bit shuffling and merging in addition to the XOR operation
of the standard shift register generator.

The period is huge, exactly 219937 − 1, and the spectral properties are
also proven to be very good up to 623 dimensions. The generator is
also fairly fast (especially if one inlines some parts of it).

Home page: http://www.math.keio.ac.jp/∼matumoto/emt.html

This generator has been incorporated into many packages/languages. It
should be a good generator for Monte Carlo simulations.

42

2.2.5. Combined generators

Many of the bad properties of single random number generators can be
avoided by combining two (or more) generators. For example,

xi = (40014xi−1) mod 2147483563

yi = (40692yi−1) mod 2147483399

Xi = (xi + yi) mod 2147483563

forms the core of the combined generator by l’Ecuyer and Bays-Durham,
presented in Numerical Recipes as ran2; the generator also imple-
ments some modifications to the above simple procedure; shuffling of
the registers etc. The period of this is the product of the mod-factors,
∼ 1018.

RANMAR, by Marsaglia, Zaman and Tsang, is a famous combined gen-
erator of a lagged Fibonacci and a LGC generator with a prime modulus
m = 224 − 3. Period is good, 2144, but it uses only 24 bits as the working
precision (single precision reals). This generator has passed all the tests

43

thrown at it.

RANLUX, by Lüscher, is a lagged Fibonacci generator with adjustable
skipping, i.e. it rejects a variable number of random number candidates
as it goes. It produces “luxurious” random numbers with mathematically
proven properties. In higher luxury levels it becomes somewhat slow,
however, even at the smallest luxury level the period is about 10171. Lux-
ury level 3 is the default, luxury level 4 makes all bits fully chaotic. The
code is pretty long, though. (Computer physics communications 79 (1994) 100).

CMRG, combined multiple recursive generator by l’Ecuyer (Operations Re-

search 44,5 (1996)) (one of the several generators by L’Ecuyer). It uses 6
words of storage for the internal state, and has a period of ≈ 2205.

44

2.2.6. Which generator to use?

The generators must be tested in order to separate the wheat from the
chaff. A well-known test suite is the DIEHARD test by Marsaglia, avail-
able from the net (but it contains bugs, apparently. . .). However, the
generators that bombed in the 90’s had passed (almost?) all of the “syn-
thetic” tests, but were found lacking in real Monte Carlo simulations. For
further info, see, for example, Vattulainen’s web page.

• Mersenne twister: probably good overall, fast. My current favourite.
Code available.

• RANLUX: very good, somewhat slower at high (= good enough)
luxury levels.

• RANMAR: already very well established, and no problems so far.

• drand48: part of the standard UNIX library, thus immediately avail-
able if you don’t have anything else. Good enough for most uses,
but don’t generate random bit patterns with it!

45

Practical aspects

• Never use a black box

• Never try to “improve” any generator by fiddling the parameters

• Take care with initialization (seeding)

• Use a well-known and tested generator

• Test your results with 2 different generators!

Information about random number generators:
– Numerical Recipes
– Ilpo Vattulainen’s random number tests, see
http://www.physics.helsinki.fi/∼vattulai/rngs.html,
– pLab: http://random.mat.sbg.ac.at/
– D. Knuth: The Art of Computer Programming, vol 2: Seminumerical Methods
– P. L’Ecuyer, Random numbers for simulation, Comm. ACM 33:10, 85 (1990)

– L’Ecuyer’s home page: http://www.iro.umontreal.ca/∼lecuyer

46

2.2.7. Using rng’s

Example: drand48 generator in UNIX, from program written in C:

#include <stdio.h> /* contains standard I/O definitions */
#include <stdlib.h> /* std library, including drand */
#include <math.h> /* contains normal functions */

int main()
{

long seed;
int i;
double d;

printf("Give seed: ");
scanf("%ld",&seed);
srand48(seed); /* seed the generator */

for (i=0; i<5; i++) {
d = drand48(); /* get the random number */
printf("%d %g %.10g\n", i, d, exp(d));

}
return(1);

}

47

To compile: cc -O3 -o prog prog.c -lm

And the output is:

gluon(˜/tmp)% ./prog
Give seed: 21313
0 0.580433 1.786811284
1 0.686466 1.986682984
2 0.586646 1.797948229
3 0.515342 1.674211124
4 0.783321 2.188729827

48

Using (my inline version of) the Mersenne twister: you need the files
mersenne inline.c and mersenne.h, given in course www-page. “The official”
Mersenne twister code, also available in fortran, is available at the twister home page.

...
#include "mersenne.h"
...
int main()
{

long seed;
...
seed_mersenne(seed);
d = mersenne();
...

Compile: cc -O3 -o prog prog.c mersenne inline.c -lm

The inline version actually substitutes the function call mersenne() with a small piece
of code. No function call→ faster execution.

49

2.2.8. Note about implementing LGC’s

Let us consider linear congruential generator

Xi+1 = (aXi) mod m

On a typical generator, m is of order 231 or larger; thus, Xi can also be of the same
magnitude. This means that the multiplication aXI will overflow typical 32-bit integer
(for example, int and long on standard intel PC’s).

If m is a power of 2, this is not a problem (at least in C): if a and X are of type unsigned
int or unsigned long, the multiplication gives the low-order bits correctly (and just
drops the high-order bits). Modding this with a power of 2 gives then a correct answer.

However, if m is not a power of 2, this does not work.
• The easiest solution is to use 64-bit double precision floating points for the numbers.
The mantissa on double (IEEE) has ∼ 52 bits, so integers smaller than 251 can be
represented exactly.
• Or, sticking with ints, one can use the Shrage’s algorithm (Numerical Recipes): we
can always write m as m = aq + p, where q = [m/a], the integer part of m/a. Now it is
easy to show that

(aX) mod m = a(X mod q)− [X/q] {+m}
where {+m} is added, if needed, to make the result positive.

50

2.3. Random numbers from non-uniform distributions

The pseudorandom generators in the previous section all return a random number from
uniform distribution [0, 1) (or (0, 1) or some other combination of the limits). However,
usually we need random numbers from non-uniform distribution. We shall now discuss
how the raw material from the generators can be transformed into desired distributions.

2.3.1. Exact inversion

In general, probability distributions are functions which satisfy
∫

dxp(x) = 1, p(x) ≥ 0 for all x.

Here the integral goes over the whole domain where p(x) is defined.

The fundamental transformation law of probabilities is as follows: if we have a random
variable x from a (known) distribution p1(x), and a function y = y(x), the probability
distribution of y, p2(y), is determined through

p1(x)|dx| = p2(y)|dy| ⇒ p2(y) = p1(x)

∣

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

∣

In more than 1 dimensions: |dx
dy
| → || dxi

dyj
||, the Jacobian determinant of the transforma-

tion.

51

Now we know the distribution p1(x) and we also know the desired distribution p2(y),
but we don’t know the transformation law y = y(x)! It can be solved by integrating the
above differential equation:2

∫ x

a1

dx′p1(x
′) =

∫ y

a2

dy′p2(y
′) ⇔ P1(x) = P2(y) ⇔ y = P−1

2 [P1(x)] ,

where P1(x) is the cumulant of the distribution p1(x). a1 and a2 are the smallest values
where p1(x) and p2(y) are defined (often −∞).

Now p1(x) = 1 and x ∈ [0, 1]. Thus, P1(x) = x, and y is to be “inverted” from the
equation

x =
∫ y

a2

dy′p(y′).

This is the fundamental equation for transforming random numbers from the uniform
distribution to a new distribution p(y). (Now I drop the subscript 2 as unnecessary.) Un-
fortunately, often the integral above is not very feasible to calculate, not to say anything
about the final inversion (analytically or numerically).

2Dropping the absolute values here means that y(x) will be monotonously increasing func-
tion. We get monotonously decreasing y(x) by using

∫ b2
y dy′ on the RHS.

52

Exponential distribution

Normalized exponential distribution for y ∈ [0,∞) is p(y) = exp(−y). Thus, now the
transformation is

x =
∫ y

0
dy′e−y′

= 1− e−y ⇒ y = − ln(1− x) = − ln x

We can use x or 1 − x above because of the uniform distribution; one should choose
the one which does not ever try to evaluate ln 0.

However, already the log-distribution p(y) = − ln y, 0 < y ≤ 1 is not invertible analyti-
cally:

x = −
∫ y

0
dy′ ln y′ = y(1− ln y)

This actually can be very efficiently inverted to machine precision using Newton’s method
(Numerical Recipes, for example).

Gaussian distribution

One of the most common distributions in physics is the Gaussian distribution

p(y) =
1√
2π

e−y2/2.

53

The integral of this gives the error function. While erf() exists in many C libraries, it
is not part of a standard. Using erf() and the Newton’s method the transformation
can be easily inverted. However, this is not very efficient, and it is customary to use the
following method.

The Box-Muller method generates Gaussian random numbers using 2-dimensional
Gaussian distributions:

p(x, y) =
1

2π
e−(x2+y2).

This is, of course, only a product of 2 1-dimensional distributions. We can transform to
polar coordinates (x, y)→ (r, θ)

dxdy p(x, y) = dxdy
1

2π
e−(x2+y2)/2 = drdθ r

1

2π
e−r2/2 = drdθ p(r, θ).

Here r at the second stage is just the Jacobian of the transformation, as in the transfor-
mation law of probabilities. Since p(r, θ) factorizes to p(r)p(θ) (trivially, since it does not
depend on θ), it is easy to transform two uniform random numbers (X1, X2) to (r, θ):

X1 =
1

2π

∫ θ

0
dθ′ = θ/2π, X2 =

∫ r

0
dr′re−r2/2 = 1− e−r2/2.

Inverting this, we get

θ = 2πX1, r =
√

−2 ln X2.

54

These are finally converted to (x, y)-coordinates

x = r cos θ, y = r sin θ.

Both x and y are good Gaussian random numbers, so we can use both of them, one
after another: on the first call to generator we generate both x and y and return x, and
on the second call just return y.

This process implements two changes of random variables: (X1, X2)→ (r, θ)→ (x, y).
On the second stage we did not have to do the integral inversion, because we knew
the transformation from (x, y) to (r, θ).

It is customary to accelerate the algorithm above by eliminating the trigonometric func-
tions. Let us first observe that we can interpret the pair (

√
X2, θ) as the polar coordi-

nates of a random point from a uniform distribution inside a unit circle. Why
√

X? This
is because of the Jacobian; the uniform differential probability inside a circle is∝ dθdrr,
which, when plugged in the conversion formula and integrated wrt. r yields X2 = r2.

Thus, instead of polar coordinates, we can directly generate cartesian coordinates from
a uniform distribution inside a circle using the rejection method:

1. generate 2 uniform random numbers vi ∈ (−1, 1)

2. accept if R2 = v2
1 + v2

2 < 1, otherwise back to 1.
Now R2 corresponds to X2 above, and, what is the whole point of this transformation,
v1/R↔ cos θ and v2/R↔ sin θ. We don’t have to evaluate the trigonometric functions.

55

/***************** gaussian_ran.c ****************
* double gaussian_ran()
* Gaussian distributed random number
* Probability distribution exp(-x*x/2), so < xˆ2 > = 1
* Uses mersenne random number generator
*/
#include <stdlib.h>
#include <math.h>
#include "mersenne.h"

double gaussian_ran()
{
static int iset=0;
static double gset;
register double fac,r,v1,v2;

if (iset) {
iset = 0;
return(gset);

}

do {
v1 = 2.0*mersenne() - 1.0;
v2 = 2.0*mersenne() - 1.0;
r = v1*v1 + v2*v2;

} while (r >= 1.0 || r == 0.0);
fac = sqrt(-2.0*log(r)/r);
gset = v1*fac;
iset = 1;
return(v2*fac);

}

56

2.3.2. Rejection method

The inversion method above is often very tricky. More often than not the function is not
analytically integrable, and doing the integration + inversion numerically is expensive.

The rejection method is very simple and powerful method for generating numbers from
any distribution. Let now p(x) be the desired distribution, and let f(x) be a distribution
according to which we know how to generate random numbers, with the following
property:

p(x) ≤ C f(x)

with some known constant C. It is now essential to note that if we have a uniform
density of points on a (x, y)-plane, the number of points in the interval 0 < y < C f(x)
is proportional to f(x). Same is true with p(y). Now the method works as follows:

1. Generate X from distribution f(x).
2. Generate Y from uniform distribution 0 < Y < C f(X). Now the point (X, Y) will

be from an uniform distribution in the area below curve C f(x).
3. If Y ≤ p(x) return X . This is because now the point (X, Y) is also a point in the

uniform distribution below the curve p(x), and we can interpret point X as being
from distribution p(x).

4. If Y > p(x) reject and return to 1.

57

X 1 X 2

C f(x) p(x)
In the figure (X1, Y1) is rejected,
but (X2, Y2) accepted. X2 is
thus a good random number from
distribution p(x).

• The rejection rate = (area under p(x)) / (area under C f(x)). Thus, C f(x) should
be as close to p(x) as possible to keep the rejection rate small. However, it should
also be easy to generate random variables with distribution f(x).

• Often it is feasible to use f(x) = const. (fast), but beware that the rejection rate
stays tolerable.

• Works in any dimension.

• There’s actually no need to normalize p(x).

58

Example:

-π 0 π0

0.5

1

1.5

2

2.5

3
exp(1)

exp cos θ

exp(1-2θ2
/π2

)

Consider (unnormalized) distribution

p(θ) = exp cos θ, −π < θ < π .

This is not easily integrable, so let’s use
rejection method.

A) Generate random numbers from
uniform distribution
f(θ) = e1 ≥ p(θ).
Acceptance rate ≈ 0.46.

B) Generate random numbers from
Gaussian distribution
f(θ) = exp[1− 2θ2/π2] ≥ p(θ).
Acceptance rate ≈ 0.78

Thus, using B) we generate only 0.46/0.78 ≈ 60% of the random numbers used in A).
Which one is faster depends on the speed of the random number generators.

59

2.3.3. Random numbers on and in a sphere

The trick used in the Box-Muller method to generate random numbers inside unit circle
was a version of the rejection method. It can actually be used to generate random
numbers inside or on the surface of a sphere in arbitrary dimensions:

1. Generate d uniform random numbers Xi ∈ (−1, 1).

2. If R2 =
∑

i X
2
i > 1 the point is outside the sphere and go back to 1.

3. Otherwise, we now have a point ~X from an uniform distribution inside a d-
dimensional spherical volume.

4. If we want to have a point on the surface of the sphere, just rescale Xi ← Xi/R.
Now ~X will be evenly distributed on the surface.

The rejection rate is fairly small, unless the dimensionality is really large (homework).
This method is almost always faster and easier than trying to use the polar coordinates
(careful with the Jacobian!).

60

2.3.4. Discrete distributions

Very often in Monte Carlo simulations we need random numbers from discrete distribu-
tions (Ising model, Potts model, any other discrete variable model). These distributions
are easy to generate:

Let i be our discrete random variable with N states (N can be ∞), and let pi be the
desired probability distribution. These are normalized

∑

i

pi = 1 .

Imagine now a line which has been split into segments of length pi:

p p p p
1 2 3 4

0 1

Now, if we generate a uniform random number X, 0 < X < 1, we get the discrete
random number i by checking on which segment X lands. If N is small, this is easy to
do by just summing p1 + p2 . . . + pi until the sum is larger than X. For large N more
advanced search strategies should be used (binary search, for example).

61

2.3.5. Redux: inversion when p(x) is integrable

Sometimes the probability distribution p(x) we want is relatively easily integrable, but
not so easily invertible. Previously, we had the example p(x) = − ln x, where 0 < x ≤ 1.
The inversion formula is

X = −
∫ x

0
dyp(y) = P (x) = x(1− ln x)

where X ∈ [0, 1] is a uniform random number.

Note that the cumulant P (x) is always a monotonously increasing function and 0 ≤
P (x) ≤ 1, so the equation always has an unique solution, no matter what p(x).

A fast way to solve for x is the Newton’s method:

1. Take initial guess for x, say x0 = X.

2. Expand: X ≈ P (x0) + (x− x0)P
′(x0) and solve x:

x = x0 +
X − P (x0)

P ′(x0)
= x0 +

X − x0(1− ln x0)

− ln x0

3. If |x − x0| > ε and/or |X − P (x)| > ε′, where ε and ε′ are required accuracy, set
x0 = x and go back to 2.

62

4. Otherwise, accept x.

Convergence is usually very fast. However, beware the edges! x can easily wind up
outside the allowed interval ((0, 1) in this case).

In this example y ≡ X, the number from 0 to 1, and epsilon is the desired accuracy:

x = y; /* initial value */
df = y - x*(1.0 - log(x)); /* y - P(x) */
while (fabs(df) > epsilon) {
x1 = x - df/log(x); /* x - (y-P(x))/P’(x) */

/* Check that x1 is within the allowed region! */
if (x1 <= 0) x1 = 0.5*x;
else if (x1 > 1) x1 = 0.5*(1.0 + x1);

x = x1;
df = y - x*(1.0 - log(x));

}

63

Another option is the binary search:

1. Set x1 and x2 to minimum and maximum allowed x (0,1)

2. Set x = (x1 + x2)/2

3. If P (x) < X, set x1 = x, otherwise x2 = x

4. If x2 − x1 > ε go to 2.

5. Otherwise, accept x

This converges exponentially, factor of 2 for each iteration. The condition in 3. works
because P (x) increases monotonically.

64

