
Multicanonical methods

Normal Monte Carlo algorithms sample configurations with the Boltz-
mann weight p ∝ exp(−βE). Sometimes this is not desirable.

Example: if a system has a first order phase transitions between
two states the system is preferably in either of the states (at the
transition temperature). The tunnelling between the states can be
strongly suppressed. If the goal is to study the tunnelling process,
the Monte Carlo simulation should enhance the probability of those
configurations!

Multicanonical methods tailor the MC probability in order to enhance
configurations in desired phase space domains.

Related methods:

• Multicanonical [Berg, Neuhaus, Phys.Lett.B 267 (1991)]
Umbrella sampling [Torrie, Valleau, J.Comp.Phys. 23 (1977)]
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• Simulated tempering [Marinari, Parisi, Europhys.Lett. 19 (1992)]
Method of expanded ensembles [Lyubartsev et al, J.Chem.Phys. 96
(1992)]

• Parallel tempering [Hukushima, Nemoto 96]
[Geyer 91]

• Parallel multicanonical method

[review: B. Berg, cond-mat/9909236]
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Multicanonical simulations and 1st order phase transitions

• Consider again Ising model, this time at T < Tc: now it has a 1st
order phase transition between states with positive and negative
magnetization.

Magnetization distribution p(M), volume 322, β = 1/T = 0.453, h =
0:
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• Canonical probability

pcan(M) ∝ ∑

{s}
δ(M, Ms)e

−βEs

is strongly suppressed between the peaks

→ canonical MC simulations hardly ever sample those configura-
tions.

Multicanonical method:

Instead of using the Bolzmann weight p ∝ exp[−βE] in Monte Carlo
simulations, use a modified probability

p ∝ exp[−βE + W (M)] ,

where W (M) is a weight function, inserted ‘by hand’, which is car-
fully tuned to enhance the probability between the peaks.
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• Multicanonical probability is produced by multicanonical simula-
tions:

pmuca(M) ∝ ∑

{s}
δ(M, Ms)e

−βEs+W (Ms) ∝ pcan(M)eW (M)

• If we want that pmuca(M) is flat in the region between the peaks we
should choose W (M) = − log pcan(M). However, we do not a priori
know pcan(M). Thus, one has to do with approximations (later).

• Multicanonical simulation gives us pmuca(M). We obtain the canoni-
cal distribution (which is, after all, what we’re after!) by reweighting:

pcan(M) ∝ pmuca(M)e−W (M)

•
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The picture below shows pmuca(M), which is ∼ constant. The wig-
glines is due to numerical noise (statistics) and the ‘incorrectness’
of W (M). pcan has been obtained from pmuca by reweighting.
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• How accurately should W be determined? Remember that the sim-
ulation is formally correct with arbitrary W (M). Good W can just
save a lot of cpu-time. We should only demand that pmuca(M) does
not become too small in any area of interest.
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7→ If we allow pmuca to vary ∼ 50%, W can vary by W ± log 2.

• The parametrization of W (M) is not unique. Perhaps the most com-
mon is a piecewise linear one: choose a discrete small set {mi} of
magnetizations, and parametrize wi = W (mi), and interpolate lin-
early between mi’s:

W (M) = wi+1
M − mi

mi+1 − mi
+ wi

mi+1 − M

mi+1 − mi
when mi ≤ M ≤ mi+1 .

• In the example above W was a function of M (“multimagnetic” en-
semble). In general, W can be a function of any order parameter.
Original formulation was in terms of E (useful for temperature-driven
transitions).
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Performance comparison: again 322 Ising, at β = 0.453.

• Monte Carlo time history of M , from canonical and multicanonical sim-
ulations:
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• Canonical distributions pcan(M), obtained from multicanonical and
canonical simulations (200000 measurements):
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• In 1st order phase transitions, the probability suppression between the
pure phase peaks increases exponentially. The configurations in the
middle are ‘mixed’: they contain a fraction of both pure phases, with
an interface in between. The interface has extra free energy, fA = σA,
where σ = surface tension, and A is the area of the interface. Minimally
A = 2L on 2-dim. lattice with periodic boundaries.

pmin/pmax ∼ e−σ2L

Example:
20-state 2-d Potts model:

E =
∑

ij
(1 − δsi,sj

)

si = 1 . . . 20

Temperature-driven 1st
order phase transition at
βc = log(1 +

√
20) ≈ 2.900

[A. Billoire, T. Neuhaus and B. Berg, 1994]
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Multicanonical simulations are not sensitive to this suppression. How-
ever, they have to ‘random walk’ through the transition region. The region
widens ∝ V , but the ‘step size’ (change in one update cycle) increases
only as ∝ V 1/2:

• τ ∼ e−σ2L in canonical simulations (supercritical slowing down)

• τ ∼ V 2 = L2d in multicanonical simulations
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SU(2)-Higgs model (Standard Model phase transition at T ∼ 100 GeV.
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[Kajantie, Laine, K.R, Shaposhnikov, 1995]

Strong 1st order transition if Higgs particle mass <∼60 GeV.
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How to calculate W?

If we know pcan, we know W – but pcan is the quantity we are trying to
determine! To determine W :
1. Use canonical simulations to obtain rough pcan

2. Finite-size scaling
3. Iterate: W 1 → W 2 → . . .

4. Recursive computation of W : automatic iterative process.

• Let us divide our order parameter M into bins, so that the system
is in bin m when Mm ≤ M < Mm+1. The iteration is based on the
relative probabilities p(m + 1) and p(m) that the system is in bins m
and m + 1 during a Monte Carlo run.

• For presentational simplicity, I parametrize W (M) = w(m), when
Mm ≤ M < Mm+1. Generalization to the piecewise linear W is
straightforward.

The iteration proceeds as follows:
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a During a (short) Monte Carlo run (number i), measure

ni(m) = # hits in bin m hi(m) = ni(m)e−w(m) .

Thus, ni(m) is multicanonical histogram, hi(m) canonical.

b After k runs, we obtain the estimate k + 1 for W :

wk+1(m + 1) − wk+1(m) =
∑

i≤k

gi(m) log
hi(m + 1)

hi(m)
/

∑

i≤k

gi(m) .

Here gi(m) = ni(m + 1) + ni(m) is the statistical importance of the
run i at bins m and m + 1.

c The convergence can be accelerated by overcorrection of W : let us
add to wk+1(m), as obtained above, a term

−C log
∑

i≤k

ni(m) ,
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C a suitable constant. This disfavors bins where the system has
visited often before, and pushes it towards unexplored phase space.
The final W is still given by the original expression.

• The steps a,b,c are iterated until W has converged.

• Initially w1(m) is set to the initial guess of W , and n1(m) proportional
to its ‘quality’. Note that we must have n1(m) > 0 everywhere. The
larger n1(m) is, the more damped is the evolution of W .

• Note that the recursion uses all of the available information to the
final W , not only the last simulation.
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Evolution of the weight function (322 Ising)
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Simulated tempering

• Idea: upgrade β to dynamical variable; that is, allow it to change
during a simulation.

• Canonical probability: pβ(E) = n(E)e−βE+fβ

• Let now βi be a set of β-values chosen so that pβi
(E) ≡ pi(E) and

pi+1(E) overlap.

1. Perform a (small) number of standard MC simulation steps at fixed
β = βi.

2. Propose a change βi → βj. This is accepted with probability

p(βi → βj) = min ( 1 , exp[−(βi − βj)E + fi − fj] )

• Iterate steps 1 and 2.
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• The update in 2. satisfies detailed balance. However, we do not a
priori know the free energies fi! These have to be estimated, as
with the multicanonical algorithm.

• Note: fi’s are same parameters which appear in multiple histogram
reweighting! So, we can perform simulations at fixed βi’s and use
multiple histogram method to get fi’s.

• Advantage of simulated tempering over running with fixed temper-
atures: in simulated tempering, the system goes up and down in
temperature - thus, it becomes periodically very disordered. This
avoids it getting ‘stuck’ in one configuration at low temperatures.

• Same result can be achieved with multicanonical simulation with
W (E).

• Very suitable for spin glass simulations, polymers etc.
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Parallel tempering

• Modification of simulated tempering idea:

• Again let βi’s, i = 1 . . .N , be a set of β-values chosen so that
pβi

(E) ≡ pi(E) and pi+1(E) overlap.

1. Perform a (small) number of simulation steps simultaneously on N
systems, with β = β1, β2 . . . βN respectively.

2. Propose a swap of beta-values βi ↔ βj . This is accepted with prob-
ability

p(βi ↔ βj) = min (1 , exp[−(βi − βj)(Ei − Ej)] )

where Ei is the energy of system number i.

• Iterate steps 1 and 2.

• Does essentially the same trick as parallel tempering - applicable to
similar problems.
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• Advantages: no fi’s needed, thus, no tuning! Also, method is inher-
ently parallel.
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