Simulation methods in physics

Kari Rummukainen, spring 2003 kari.rummukainen@helsinki.fi

Intro

- This course covers (mostly) basic + somewhat more advanced Monte Carlo methods *lattice MC simulations*.
- Monte Carlo is an extremely broad term many (not necessarily computer!) simulation methods involving random numbers are called Monte Carlo such-and-such.
- In these lectures, we shall mostly concentrate on solving *partition functions* on a (usually) regular *lattice*:

$$Z = \int \left[\prod_{\mathbf{x}} d\phi(\mathbf{x}) \right] \exp\left[-\frac{1}{k_B T} H(\phi)\right]$$

Here $H(\phi)$ is the Hamiltonian (energy) of the system, k_B the Boltzmann constant and T temperature.

The coordinates are

$$\mathbf{x}_i = \mathbf{a}n_i, \qquad n_i = 0 \dots N_i$$

where *a* is the *lattice spacing* (physical length), and the lattice has

$$N = \prod_{i=1}^{d} N_i$$

discrete points (i.e. the box is d -dimensional).

- The integral is N× dim(φ) -dimensional well-defined, in principle computable! However, the dimensionality is huge typically 10⁶ 10⁹ → Monte Carlo integration is needed.
- Example: Ising model

$$Z = \sum_{\{s_i = \pm 1\}} \exp[-\beta/2 \sum_{\langle ij \rangle} (1 - s_i s_j)]$$

Here the sum in the exponent goes over the nearest-neighbour sites of the lattice. (Note: dimensionless, "lattice" units!)

• Lots of applications within statistical physics and condensed matter physics (crystalline structure, spin models, superconductivity, surface physics, glassy systems ...)

Lattice field theory

• The Feynman path integral (in Euclidean spacetime):

$$Z = \int \left[\prod_{x} d\phi(x)\right] \exp[-S(\phi)]$$

- Discretize space → the path integral becomes mathematically welldefined. However, our space-time is not discrete → the results have to be extrapolated to the continuum limit, where the lattice spacing a goes to zero.
- Field theory on the lattice:
 - provides an explicit ultraviolet cutoff, removing the UV divergences so common in field theories. These have to be renormalized before the continuum limit is taken.
 - allows the use of (almost all of) the analytical tools used for continuum field theories – especially, the lattice perturbation the-

ory is equivalent to the standard one (but more cumbersome to use).

- provides new analytical methods and tools, not possible for continuum field theories (strong coupling/"high temperature" expansions, duality relations etc.).
- emphasizes the connection between *field theory and statistical mechanics*: Feynman path integral = partition function. All of the tools developed for statistical mechanics are at our disposal!
- permits the evaluation of the path integral numerically, using *Monte Carlo calculations*. The integral is evaluated as-is, without expanding it in any small parameter (\equiv *non-perturbative*).

Models studied in HEP context:

• Lattice QCD:

Almost all interesting QCD physics non-perturbative!

Since around 1980 Quantum Chromodynamics (QCD) has been studied extensively on the lattice. The results have given invaluable *qualitative* insights (confinement); and, during the last \sim 5 years the results have also been *quantitatively* comparable to experiments.

• Confinement mechanism, hadronic mass spectrum, matrix elements ...

• QCD phase transition at $T\approx 150\,$ GeV

Light hadron masses (CP-PACS collaboration, 2002).

• Electroweak phase transition:

Electroweak theory at T = 0 is perturbative: coupling constants are small, and the gauge bosons W, Z are massive. However, as T increases, the "broken SU(2) symmetry" is restored: gauge bosons become massless, and IR singularites make the theory nonperturbative.

Since \sim 1994 EW theory (theories) have been studied extensively on the lattice, with very solid results \Rightarrow we know how the EW phase transition behaves. Applied also to MSSM (Minimal Supersymmetric Standard Model)

- Many other models ...
 - QED
 - Ginzburg-Landau theory (superconductivity)
 - Quantum gravity

Textbooks about MC methods:

- Gould, Tobochnik: An introduction to Computer Simulation Methods: Applications to Physical Systems. Pretty elementary.
- K. Binder und D.W. Heermann, Monte Carlo Simulation in Statistical Physics, Springer Series in Solid-State Sciences 80, Springer 1988. More condensed and advanced.

Books about lattice field theory:

- M. Creutz, *Quarks, Gluons and Lattices*, Cambridge University Press 1983
- I. Montvay and G. Münster, *Quantum Fields on a Lattice*, Cambridge University Press 1994
- H.J. Rothe. *Lattice Gauge Theories: an Introduction*, World Scientific 1992

• . . .