
9. Phase transitions and finite size scaling

One of the most common physical problems studied in simulations are
phase transitions in various forms (ferromagnetism, Ising model, crystal
melting, QCD . . . ).

Most (but not all!)1 phase transitions can be described by an order pa-
rameter. Mathematically, this is zero in one phase (usually called the
disordered phase), non-zero in the other phase (ordered phase). Thus,
it cannot be an analytic function at the transition point. (Examples: mag-
netization in Ising model, Polyakov line in Ising gauge).

Normally, transitions are either 1st or 2nd order. The name comes from
the number of derivatives of the free energy F = −T log Z we need
before we see discontinuous behaviour.

1A common-day transition without an order parameter is the liquid-vapour 1st order phase
transition, for example, boiling of water. There is no exact order parameter, and the two phases
can be analytically connected. The transition line ends in a critical point, where the transition
has 3-dim. Ising model universal behaviour.
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• F itself (zeroth derivative) is always continuous.

• First order — the order parameter (and almost any thermodynami-
cal quantity) has a discontinuous jump:

– latent heat: discontinuity in energy density

• Second order — second derivatives of F , i.e. various susceptibili-
ties are divergent.
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As a concrete example, the Ising model partition function with external
field H and β = 1/T

Z =
∑

{sx=±1}
exp



−β





1
2

∑

<xy>
(1 − sxsy) + H

∑

x
sx









gives magnetization M and magnetic susceptibility χM as 1st and 2nd
derivatives wrt. H:

M =
1

V
(dF/dH)H=0

χM = V (〈M2〉 − 〈M〉2) =
1

V
(d2F/dH2)H=0

(limit V → ∞ implied here.)
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Second order transitions are classified by their critical exponents, which
characterize the behaviour at the critical point. The most important here
are

Magnetization M ∼ |T − Tc|β
Mag. susceptibility χM ∼ |T − Tc|−γ

Heat capacity CV = 1
V

d〈E〉
dT ∼ |T − Tc|−α

Correlation length ξ ∼ |T − Tc|−ν

For the 2d Ising model, these exponents are known exactly: α = 0,
β = 0.125, γ = 1.75, ν = 1.

However, as already mentioned before, on a finite lattice we have finite
number of degrees of freedom and everything is analytic! This causes
several problems:

• What is a good order parameter? The order parameters are always
either zero or non-zero. For example, both
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are real order parameters in infinite volume, but 〈M〉 = 0 and
〈|M |〉 > 0 on a finite lattice. Of these, 〈|M |〉 is usable, since it is
almost zero in the symmetric phase.

• How to locate the true phase transition?

• How to measure the critical exponents?
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9.1. Finite size scaling in 2nd order phase transitions

For concreteness, let us consider Ising model. In infinite volume, the
correlation length ξ (domain size) diverges near the transition point as

ξ ∝ |t|−ν ,

with t = T − Tc ≈ βc − β.

However, because the system in simulations has a finite size Ld, when
the correlation length is ξ ≈ L, the system already becomes effectively
ordered. Thus, we can argue that the system has a pseudocritical point
when

[βc(∞) − βc(V )]−ν ∝ L ⇒ βc(V ) = βc(∞) − const. × L−1/ν

How to locate this point (if we don’t know ν or βc(∞))? Consider, for
example, magnetic susceptibility which diverges in infinite volume as

χ|M | =
1

V
(〈M2〉 − 〈|M |〉2) ∝ |t|−γ
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We can now (somewhat arbitrarily) argue that on a finite volume χ|M | has
a maximum at the pseudocritical point βc(V ). At this point the maximum
value should be

χM,max ∝ (βc(V ) − βc(∞))−γ ∝ Lγ/ν

The above (not extremely robust) argument gives us a prescription how
to determine the true critical point βc = βc(∞) and even to estimate the
critical exponents ν and γ:

1. Using various volumes V , locate the maximum of χ|M |.

2. Make a (power law) fit to the maximum location of χ|M |:

βmax = βc − c1 × Lx

Fit has 3 parameters, βc, c1, x, where x should be equal to −1/ν.

3. The exponent γ/ν can be estimated from the maximum value
χmax ∝ Lγ/ν.
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WARNING: while this process gives pretty good estimate of the infinite
volume critical point βc, the exponents can be more difficult to obtain re-
liably. This is especially so if we would use the heat capacity CV instead
of χ|M |, this is due to the fact that the critical exponent α is usually much
smaller than γ.

NOTE:
Above, somewhat misleadingly, we actually used susceptibility χ|M | =
1
V (〈M2〉 − 〈|M |〉2). This is strictly speaking not equivalent to the ’true’
magnetic susceptibility χM = 1

V
(〈M2〉 − 〈M〉2). In the broken phase

these are equal, but in the symmetric phase these differ by a constant.
The critical exponents are equal, however.
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Example: 2d Ising model

2d Ising model with vol-
umes 162, 322, 642, 1282

and 2562. χ|M | reweighted
to a range of β-values
around the critical point:

The peak of χ|M | clearly
grows (like Lz, note log-
scale) and the location
moves to larger β.
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Power law fit to the location of the
maxima: βmax = βc − cLx.
(χ2/d.o.f = 0.33/2, confidence
level 0.84.)

Results:
βc = 0.88093(24); x = −1.05(2).

Right results:
βc = ln(1 +

√
2) ≈ 0.88137

x = −1/ν = −1.
We are very close, but still ∼ 2σ
off the correct values. This is
most likely due to too small vol-
ume (163).
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If we drop 163 and fix the exponent x = −1, we obtain βc = 0.88132(13),
which is perfectly compatible with the right result.
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Power law fit to the value of
the maximum: χmax = cLz.
If we exclude 162, we ob-
tain
z = 1.740(8),

which is compatible with
the right value
z = γ/ν = 1.75

(Using also 162 makes the
fit a bit worse.)
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Critical exponent β

Finite size scaling can be used to determine other exponents too: for
example, let us consider the spin-spin correlation function just at the
critical point:

〈sxsy〉 = G(|x − y|) ∝ |x − y|−(d−2+η), |x − y| → ∞,

where d is the dimensionality of the system and η is the “anomalous”
exponent of the correlation length (for 2d Ising, η = 1/4(?)).

We define the root mean square magnetization

Mrms =
√

〈M2〉 =
√

∑

x,y
sxsy/V 2.

At the infinite volume critical temperature Tc (or βc), we can approximate
behaviour of the correlation function on a finite volume as

∑

x
〈sxsy〉 ∝

∫ L/2

0
dr rd−1 G(r) ∝

∫ L/2

0
dr r1−η ∝ L2−η.
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Thus, Mrms becomes

MT=Tc

rms ∝
√

L2−d−η ∝ L−β/ν.

In the last stage we used scaling law 2 − η = γ/ν and the so-called
hyperscaling dν = 2β + γ.

Hyperscaling is not always valid: this happens, for instance, in systems

above their marginal dimensionality d∗ where the mean field values for
the critical exponents become valid. For simple spin models with local
action (Ising, for example) d∗ = 4.

13



Example: 2d Ising, again,
and determine Mrms from
lattices 162 − 2562.

Power law fit: Mrms = cLz.
The result from the fit is
z = −0.1255(4),

which is compatible with
the known value
z = −β/ν = −0.125

[Note: the plot is of log-log
type]
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Binder cumulant

Another frequently used method to determine the critical point is to use
the intersection points of the Binder cumulants. This is often better than
the maximum location of susceptibilities, because the finite size effects
are usually much reduced.
The 4th order Binder cumulant UL is defined as

UL = 1 − 〈s4〉
3〈s2〉2

(Here s is the average spin; for Ising model s = 1
Ld

∑

x sx; for sigma mod-
els, ~s = 1

Ld

∑

x ~σx, and s2 = ~s · ~s.)

UL behaves as follows:

• In the symmetric phase, T > Tc, UL = 0 + O(1/V ) as L → ∞.

• In the broken phase, T < Tc, UL = 2/3 + O(1/V ) as L → ∞.

• At the critical point, UL tends towards an universal value 0 < U ∗
L <

2/3.
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How to locate the critical point using UL?

• Using various volumes Ld, calculate UL’s as functions of β
(reweighting – remember that you have to reweight 〈s2〉 and 〈s4〉
separately!).

• Find the point where UL(β)-curves cross. Usually, one finds the
crossings using ascending pairs of volumes (L1/L2, L2/L3, . . . ,
where L1 < L2 < L3 . . .). These are extrapolated to L → ∞,
if needed. However, usually the finite volume dependence of the
crossing point is very small!
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Example: 2d Ising model
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Left: UL measured from 162 simulation. Right: volumes 162−2562, zoom-
ing in very close to the critical point βc. Clearly, the slope of UL becomes
larger as L increases. The intersection points move only slightly.
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How the intersection point
evolves as L increases?
There is no clear finite L

systematics (within the sta-
tistical errors) at various
L. The largest volume pair
128/256 alone gives
β128/256

c = 0.88144(6),
which is already practically
compatible with the known
value
βc ≈ 0.88137

(Compare this to the maxi-
mum of χ|M |!)
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Justifying FSS: order parameter probability distributions

Where does the Binder cumulant behaviour come from? In general, we
can approach the finite size scaling systematically using phenomenolog-
ical order parameter probability distributions PL(s), which depend on the
system size L (or volume V = Ld).

• If T > Tc and L � ξ, the correlation length, we are deep in the
symmetric phase (remember that ξ ∝ |T − Tc|−ν). We assume here
H = 0. Now the probability distribution can be described as a Gaus-
sian:

PL(s) =

√

√

√

√

V

πα
exp[−s2V/α]

α is a function of β but independent of L, it is related to susceptibility:

χM = V
∫

dss2PL(s) = α/2.
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• If T < Tc and L � ξ, we are deep in the broken phase. The proba-
bility distribution is a sum of 2 Gaussians, centered around magne-
tization ML near ML=∞(β):

PL(s) =

√

√

√

√

V

πα

[

1

2
exp[−(s − ML)2V/α] +

1

2
exp[−(s + ML)2V/α]

]

.

• Region around T ∼ Tc, ξ>∼L: the distribution cannot (necessarily)
be described by simple Gaussians. The idea is that PL, which is a
function of s, L, ξ (T comes along through the temperature depen-
dence of ξ), is a function of scaled variables L/ξ, sξβ/ν:

PL(s) = ξβ/νg(L/ξ, sξβ/ν) = Lβ/νf(L/ξ, sLβ/ν)

The power in front ensures that we can normalize PL,
∫

dsPL(s) = 1,

and the last equality comes from the relation Lβ/ν = (L/ξ)β/νξβ/ν.
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From this we can immediately obtain the standard scaling relations

〈|s|〉T=Tc
∝ L−β/ν

χ|M | = V (〈s2〉 − 〈|s|〉2) ∝ Lγ/ν

From these distributions it is straightforward to obtain our results for the
Binder cumulants:
T > Tc: UL → 0

T < Tc: UL → 2/3

T ∼ Tc: UL ≈ 1 − χ̄4(L/ξ)

3(χ̄2(L/ξ))2

T = Tc: UL → U∗
L = 1 − χ̄4(0)

3(χ̄2(0))2

where χ̄2 = L2β/ν〈s2〉, and χ̄4 = L4β/ν〈s4〉.
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How to get reliable error estimates in FSS?

In FSS, reweighting is presently the standard tool for locating maxima
of susceptibilities/crossing points of some cumulants. Care should be
taken in order to get reliable error estimates:

1. Divide the simulation data in jackknife or bootstrap blocks (see sect.
6!).

2. Reweight blocks separately to a suitable range of β-values.

3. Get the maximum value and location for each of the blocks.

4. Now the error estimate for the maximum location, using jackknife,
for example, is

δβmax =

√

√

√

√

N − 1

N

∑

n
(β

(m)
max − β̄max)2

where β̄max is the average value of βmax.
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Locating the maximum in stage 3 can be cumbersome. The easiest
way to do this is probably just to reweight using a very fine β-spacing,
and using the maximum location. More accurate result can be reliably
obtained by taking 3 points around the maximum and fitting a parabola to
these points, and using the maximum location and value of the parabola.
This is reliable because the reweighted curves are very smooth if the β-
spacing is sufficiently fine.

Similar methods can be used for locating the crossing of cumulants. Now
one locates the crossing point for a pair of volumes, jackknife/bootstrap
block by block.
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9.2. Finite size scaling in 1st order phase transitions

First order transitions are characterized by a discontinuity in the order
parameter and thermodynamic densities, with an associated delta-peak
behaviour in the susceptibility. Jump in energy density ≡ latent heat.

However, at finite V thermodynamic
quantities (energy, say) become
continuous and rounded. Instead of
δ-function behaviour in susceptibil-
ity (CV = d〈E〉/dT ), there is just a
’hump’.

E

T

V finite

metastable

In simulations, this behaviour is visible only if the simulation time � au-
tocorrelation time τat the transition point. This is typically very large,
τ ∝ exp[−σ2Ld−1], where σ is the tension of the interface between the
low-temperature and high-temperature phases.

24



Probability distribution

In first order transitions the correlation
length remains finite in both the hot
and cold phases. If L � ξ in both
phases, the probability distribution of
the order parameter P (s) at the crit-
ical point will be mostly a sum of 2
Gaussians, centered around “hot” and
“cold” (symmetric and broken) expec-
tation values.

However, if the order parameter is be-
tween the hot and cold phases, then
the system is in a mixed phase: �������������������
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At Tc in the mixed phase, P (s) ∝ exp[−σ2Ld−1], where σ is the interface
tension and 2Ld−1 is the total area of the interfaces (periodic boundary
conditions!). P (s) is ∼ flat, because the probability does not depend
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on the fraction of the hot and cold phases (only through surface-surface
interactions) and s = (Vhotshot + Vcoldscold)/V .

Note: this flat part becomes visible only if the volume is large enough.
Usually the suppression of P (s) in the middle is so strong that normal
simulation methods are not good enough, and one has to use multi-
canonical methods.

The behaviour of the probability distribution is actually used to measure
the surface tension σ:

σ = lim
V →∞

1

2Ld−1
ln

pmin

pmax
.

Here pmin is the minimum of the distribution between the peaks, and
pmax is the maximum. This formula has several subleading finite size
corrections, which help to extrapolate the infinite volume limit [Bunk,
Int.J.Mod.Phys.C3(1992)].
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Potts model

Potts models are prototypes of models which exhibit a 1st order phase
transition. A q-state Potts model is defined through

Z =
∑

sx=1...q

exp[−βE] E =
∑

<x,y>
[1 − δ(sx, sy)]

Ising model is a Potts model with q = 2. In 2 dimensions, Potts models
are self-dual, and the critical temperature is known: βc = ln(1+

√
q). Also

known are the correlation lengths and the latent heat. The transition is
of second order if q ≤ 4, otherwise first order. (In 3d the transition is
second order only if q = 2.)

The transition is very “weakly first order” if q is small. For example, when
q = 5 the latent heat is L ≈ 0.053, interface tension σ ≈ 0.000199, the
correlation length in disordered phase ξ ≈ 2512. The “natural” magnitude
for all of these quantities is 1.
For q = 20, the transition is strong: L ≈ 1.2, σ ≈ 0.18, ξ ≈ 2.7.
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Probability distribution of the 20-state
Potts model at the critical point
βc = ln(1 +

√
20).

Clearly, the central part of the
distribution approaches flat
as the volume increases.
However, the volumes needed are
very large!
[A. Billoire, T. Neuhaus and B. Berg, 1994]
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Probability distribution in 1st order transitions

As for the 2nd order phase transitions, we can construct phenomenolog-
ical models for the probability distribution in 1st order transitions, which
depend on the system size L (V = Ld).

• Let us look at a temperature-driven order-disorder transition. At the
transition point (infinite V ), 〈E〉 jumps from E− to E+.

• In first order transitions ξ remains finite in both phases (unless there
are Goldstone modes, which we neglect here). Let us assume that
L � ξ. Now we can describe the bulk phases with Gaussians

P+(E) ∝ exp



−(E − 〈E(T )〉+)2V

2T 2C+





(equivalently for P−). Here C+ is the heat capacity of the hot bulk
phase, C+ = ∂〈E〉/∂T . This implies that 〈E〉+ = E+ + C+∆T .
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• Thus, neglecting the “surface contributions”, the probability near the
critical temperature Tc is a sum of 2 Gaussians:

PL(E) ∝ a+√
C+

exp



−(E − E+ − C+∆T )2V

2T 2C+





+
a−√
C−

exp



−(E − E− − C−∆T )2V

2T 2C−





• Here a+ and a− are the relative probabilities (weights) of the 2
phases. At T = Tc the phases have equal probability. If we have q+

degenerate symmetric phases and q− degenerate broken phases
(for q-state Potts models, q+ = 1, q− = q), we have

a+ = q+ exp





(E+ − E−)∆T V

2T 2
c





a− = q− exp



−(E+ − E−)∆T V

2T 2
c
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• Thus, we can calculate the expectation value of energy and C:

〈E〉L =
a+E+ + a−E−

a+ + a−
+ ∆T

a+C+ + a−C−
a+ + a−

and

CL =
∂〈E〉L

∂T
=

a+C+ + a−C−
a+ + a−

+
q+q−V

T 2
c

[E+ − E− + (C+ − C−)∆T ]2

(a+ + a−)2

• The first term in CL just smoothly interpolates between the bulk val-
ues. The second term diverges as V → ∞, it has a peak where
(a+ − a−) has a minimum value, or

∆T ≈ T 2
c

V

ln(q−/q+)

E+ − E−
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with the height

Cmax
L ≈ (E+ − E−)2

4T 2
c

V +
C+ − C−

2

• Thus, in 1st order transitions, the peak of the susceptibility diverges
as ∝ V , and the location behaves as 1/V . Comparing to 2nd order
critical exponents, this corresponds to ν = d and γ = ν.

• NOTE: the behaviour of Cmax
L is very easy to obtain from a straight-

forward scaling argument: at Tc, the distribution PL(E) is a sum of
2 Gaussians at E+ and E−. Ignoring the shift 〈E〉 ≈ (E+ + E−)/2,
and |E − 〈E〉| ≈ (E+ − E−)/2. Thus,

CL ∝ V 〈(E − 〈E〉)2〉 ≈ V
1

4
(E+ − E−)2
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More precisely, there are several classes of mixed phases. In 3d,
we have bubbles (droplets), cylinders and slabs. Here θ is the or-
der parameter. The probability distribution is PX(θ) = exp[−σAX(θ)],
where X is bubble, cylider or slab, and AX is the area. For example,
Abubble(θ) = (4π)1/3(3V )2/3θ2/3 where I normalized the bulk values θ1 = 0,
θ2 = 1.

Droplet

Slab

Cylinder

θ

lo
g 

P
(θ

) 
 =

  -
F

(θ
)

droplet

cylinder

slab
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However, these geometric shapes are practically invisible in ’normal’ vol-
umes achieved in Monte Carlo simulations.
Example of a bubble from a Monte Carlo simulation of a so-called cubic
asymmetry model:
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Identifying and locating first order transitions

Often it can be difficult to tell whether a transition is of first or second
order (or if there is a transition at all!). Take, for example, q = 5 2-dim.
Potts model, where we know that the correlation length at the transition
is ∼ 2500. The lattice size must be much larger than this if we want to
distinguish reliably the order of the transition!

Example: SU(2)-Higgs theory. This is an effective theory of the Standard

Model of particle physics; it describes the high-temperature symmetry
restoring phase transition of the SM. At T < Tc ∼ 100GeV (∼ 1012 K),
the SM is in the broken phase (“Higgs condensate” ↔ magnetization);
at T > Tc in the symmetric phase. In the early Universe this transition
occurred ∼ 10−15 seconds after Big Bang.

The SU(2)-Higgs theory has been studied in detail 1994–2000 using
lattice simulations. Since the Higgs particle has not yet been found, the
phase diagram depends on the unknown mass of the Higgs mH :
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When mH is small, the tran-
sition is “strong”, but gets
weaker as mH increases.
The 1st order transition line
ends at a critical Higgs mass
mH,crit ≈ 72 GeV. At larger
Higgs masses there is no tran-
sition (cf. water-vapour transi-
tion).

Let us look at the point at
mH ∼ 52 GeV (in the following
plots this is labeled as 60 GeV,
due to outdated historical rea-
sons).
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The probability distribution of
the Higgs field squared |φ|2
(“magnetization”) at Tc has a
clear 2-peak structure, which
becomes stronger as the vol-
ume is increased:
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The maximum of the suscep-
tibility diverges as 1/V (in the
figure C(R2) = χ|φ2|/V ).
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Locating the critical point: we
can use the maximum location
of the susceptibilities (here we
have 2 order parameters, R =
|φ| and L, and hence 2 sus-
ceptibilities). These behave
as 1/V .
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However, a more precise method is to use equal weight histogram
method: for each volume, find the temperature where the probabilities
(area of the peaks) of the 2 phases are equal. This has only corrections
∝ exp[−σA].
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At mH ∼ 68 GeV (here la-
belled as 70 GeV) the tran-
sition is clearly weaker: the
separation of the peaks is not
nearly as strong as before. 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
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