
4. Cluster update algorithms

• Cluster update algorithms are the most succesful global update
methods in use. These methods update the variables globally, in
one step, whereas the standard local methods operate on one vari-
able at a time.

• Another common method: multigrid. Used a lot in solving differen-
tial equations; however, multigrid has very limited success in Monte
Carlo simulations.

• A global update can reduce the autocorrelation time of the update
and thus greatly reduce the statistical errors.

• To repeat, we recall that the expectation values (β ∼ 1/T):

〈O〉T =
1

Z

∫

∏

x
dφx O(φ) e−βE(φ)

1

• With Monte Carlo simulation: generate a series of configurations
Φ1, Φ2 . . . ΦN with some MC method. Measure Oi = O(Φi). Now

1

N

∑

i

Oi → 〈O〉, when N → ∞

• At finite N , the estimated error:

δO =

√

√

√

√

√

∑

i(Oi − 〈O〉)2

N(N − 1)

if and only if the measurements Oi are statistically independent.

• However, in reality the update modifies the previous configuration
(Markov chain). Thus, the successive configurations are correlated:
C(t) ∝ exp−t/τ . τ = autocorrelation time.

• # of independent configs is ∼ N/(2τ) → δO ≈
√

2τδOnaive.

• τ depends on the MC update algorithm: we want an update with as
small τ as possible → Cluster algorithms.

2

4.1. Fundamentals: Fortuin-Kasteleyn cluster decomposition

Ising model (arbitrary dim.):

E = − ∑

<i,j>
sisj Z =

∑

{s}
e−βE .

(si = ±1, < i, j > nearest neighbour sites).

Note: previously we defined E with a factor 1
2 in front. Thus, βhere =

βprev./2, and in 2 dimensions βc = 1/2 log(1 +
√

2) ≈ 0.44. This way is
more conventional; the transformation between normalizations is trivial.

Consider interaction between fixed n.n.-sites < l, m >, and remove it

from E:

El,m = − ∑

<i,j>6=<l,m>
sisj .

3

Define now partition functions where si, sj are equal or different:

Zsame
l,m ≡ ∑

{s}
δsl,sme−βEl,m , Zdiff.

l,m ≡ ∑

{s}
(1 − δsl,sm)e−βEl,m .

Now we can clearly write the original partition function as

Z = eβZsame
l,m + e−βZdiff.

l,m

Furthermore, defining

Z ind.
l,m ≡ ∑

e−βEl,m = Zsame
l,m + Zdiff.

l,m .

the partition function finally becomes

Z = (eβ − e−β)Zsame
l,m + e−βZ ind.

l,m

Remember that the partition function is Z =
∑

{s} p({s}). Thus, since
Zsame contains only configs where sl = sm, and Z ind. contains no restric-
tion or input for si, sj-link, the weighting factors of Z ’s can be considered

4

as relative probabilities of a bond between sites l, m and no bond (= in-
dependent states).
Normalizing the probabilities: pbond = 1 − e−2β, pind. = e−2β.

Repeating for all < i, j >,
a) sites linked to each other by bonds form clusters
b) different clusters are independent: sc = ±1

and the partition function can be written as

Z =
∑

bonds

∑

sc
pb(1 − p)n =

∑

bonds
pb(1 − p)n2Nc

Here
p = 1 − e−2β

b = # of interactions that form a bond,

n = # of interactions that do not form a bond,

Nc = # of clusters.

This decomposition is at the core of the cluster algorithms.

5

4.2. Swendsen-Wang cluster update

[Swendsen and Wang, PRL 58 (1987) 86]
Beginning with an arbitary configuration si, one SW cluster update cycle
is:

1. Inspect all nn-states si, sj. If si = sj, create a bond between sites
i, j with probability p = 1 − exp(−2β) (otherwise no bond).

2. Construct clusters = sets of points connected by bonds.
3. Set each cluster to a random value ±1.

6

The configuration changes a lot in one update!
Is this a valid update? It satisfies

a) ergodicity (obvious)

b) detailed balance:
P (A 7→ B)

P (B 7→ A)
= exp−β(EB − EA)?

Proof: consider A 7→ C 7→ B, where C is some bond configuration
compatible with both A and B. Since the clusters in C are indepen-
dent, P (C 7→ A) = P (C 7→ B) = 1/2Nc.

Now,
P (A 7→ C)

P (B 7→ C)
=

pb (1 − p)dA

pb (1 − p)dB

= exp[−β(EB − EA)]

where dA,B are the numbers of similar nn-states which are not con-
nected by a bond. The last step comes from EA = dim×V −2(b+dA).
Thus A 7→ C 7→ B and B 7→ C 7→ A satisfy detailed balance for arbi-
trary C, and the total transition probabilities A 7→ B, B 7→ A must do
it also.

7

4.3. Wolff single cluster update

[U. Wolff, PRL 62 (1989) 361]

Principle: do the cluster decomposition as in S-W, but invert (‘flip’) only
one randomly chosen cluster! In practice:

1. Choose random site i.
2. Study neighbouring sites j. If sj = si, join site j to cluster with

probability p = 1 − exp(−2β).
3. Repeat step 2 for site j, if it was joined to the cluster. Keep on doing

this as long as the cluster grows.
4. When the cluster is finished, invert the spins which belong to it.

• Usually slightly more effective than S-W (the average size of the clus-
ters is larger. Why?).
• The minimum cluster size = 1, maximum = volume.
• Nicely recursive.
• Satisfies detailed balance.

8

Cluster update in c-pseudocode:

On the next page is a c-code snippet which performs Wolff cluster up-
date.

• s[loc]: spin array, and dran() is a random number generator which
returns a number fro 0 to 1.

• n neighbours = 2 × d is the number of neighbours a site has.

• neighbour[i][loc] is the neighbour array: it gives the index of the
site loc to direction i.

• s[loc] is flipped during the cluster growth: this prevents revisiting
sites already included in the cluster.

• Recursion (as shown) is neat but not efficient! Better to unroll the
recursion with loops and temporary arrays.
(Besides, there are unnecessary variables pushed on the stack: state,
which is constant, and new loc, which is just unnecessary).

9

void update_cluster()
{
int start,state;

start = dran() * volume; /* starting location */
state = s[start]; /* starting spin value */
/* start growing and inverting the cluster */
grow_cluster(start, state);

}

void grow_cluster(int loc,int state)
{
int i,new_loc;

s[loc] = -s[loc]; /* invert the spin at this location */

/* begin loop over neighbour locations */
for (i=0; i<n_neighbours; i++) {

new_loc = neighbour[i][loc]; /* neighbour index */

if (s[new_loc] == state && exp(-2.0*beta) < dran())
grow_cluster(new_loc,state);

}
}

10

As an example, let us consider 2-dimensional Ising model. It has 2nd
order phase transition at β = 1/2 log(1 +

√
2) ≈ 0.44 (Curie point).

Correlation length (and cluster size!) diverges when one approaches the
critical point.

Compare the performance of
a) Metropolis (typewriter ordering) and
b) Wolff cluster algorithm.

11

System size 642, β = βc ≈ 0.44.

Compare measurements of ab-

solute value of magnetization

|M | = |∑

i
si|

Cluster update covers the
phase space much faster than
Metropolis! (which was the
best of the “single-site” update
methods).

0 2000 4000 6000 8000 10000
0.0

1000.0

2000.0

3000.0

4000.0

|M|

Metropolis update

0 2000 4000 6000 8000 10000
configuration

0.0

1000.0

2000.0

3000.0

4000.0

|M|

Cluster update

12

The autocorrelation function
describes how fast measure-
ments become decorrelated.

Let now Oi = |M |i− < |M | >,
where |M |i is the measurement
#i of |M |. Autocorrelation func-
tion C(t) of |M |:

C(t) ≡
1

N−t

∑

i OiOi+t

〈O2〉 ∝ e−t/τ

0 100 200 300 400
τ

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

C(τ)

Autocorrelation function of |M|

Metropolis:

Cluster

13

• Exponential autocorrelation
time: the exponential decay
length of C(t) at large t.

• Integrated autocorrelation
time: τint. ≡ 1

2 +
∑∞

t=1 C(t).

Shown here is the integrated
autocorrelation time τint. mea-
sured from different lattice sizes
L2 = 82 – 2562 at βc.

10 100
L

1

10

100

1000

10000

τ

Autocorrelation of |M|

Metropolis:
z = 2.01(14)

Cluster

z = 0.34(4)

• Expected behaviour: τa ∝ Lz, where z is the dynamical critical expo-
nent. For local (dissipative) algorithms, z>∼2.

14

• For volumes ∼ 2562, cluster algorithm is ∼ 1000 times better than
Metropolis!

• Measured in real (cpu/wallclock) time, cluster is even better (at the
critical temperature βc = 0.44):
time/update ∝ V (local Metropolis)
time/update ∝ V x, where x < 1

Using the example of section 3.14, 2d Ising, volume 642, and measuring
the integrated autocorrelation time of E:

τint. time(ms)/iteration time(ms)/iter. ×2τint

Cluster 5.7 0.28 3.2
Metro, typew. 54 1.0 108
HB, typew. 157 1.2 364
Metro, random 271 1.4 748
HB, random 316 1.6 1004

15

4.4. What about other models?

Cluster algorithms can work, if one can embed an Ising system into the
original system. Example: O(N) non-linear sigma model:

The Hamiltonian of the model is

E = − ∑

<ij>
σi · σj , where |σi|2 =

N
∑

α=1
(σα

i)2 = 1

Thus, spins σi are N -dimensional vectors of unit length.
Embedding: [U.Wolff, PRL 62 (1989) 361]

Map arbitrary sigma model configuration to Ising model with Hamiltonian

EI = − ∑

<ij>
Jijsisj

as follows:

• Choose a random O(N) vector r.

16

• Set all Ising model links Jij = (r · σi)(r · σj).
• Ising update si → −si corresponds to reflection of σi along the vec-

tor r: σi → σi − 2(r · σi) r

• Initially, all si = +1.

After the mapping, we can use either S-W or Wolff update on the Ising
spins. In practice, one Wolff update cycle proceeds as follows:

1. Choose random O(N) vector r.
2. Choose random site i as the starting point for the cluster.
3. Study neighbouring sites j. Join site j to cluster with probability

p = 1 − exp(−2βJij), where Jij = (r · σi)(r · σj).
4. Repeat step 3 for all sites joined to the cluster. Keep on doing this

as long as the cluster grows.
5. When the cluster is finished, reflect σi → σi − 2(r · σi) for all sites

which belong to the cluster.

Typically the reflection is performed during the cluster growth.

17

Single cluster O(N) sigma model algorithm works even better than for
Ising: In 3-dimensional O(4) sigma model, the dynamical critical expo-
nent z becomes negative.

In what models clusters work, in what models they fail?

Clusters (usually) fail, if
• there are frustrated couplings (spin glasses, gauge theories . . .)
• one cannot construct a symmetric reflection operation
• spins are ‘frozen’ in place by external fields etc.

Cluster updates are (normally) usable only in proximity of a 2nd order
phase transitions: large correlation lengths → large clusters.

Nevertheless, sometimes they are useful when correlation lengths are
finite but still large (� 1) in lattice units.

18

More conditions:

In order to work, the reflection operation Rσ = σ′ must satisfy the follow-
ing: the set of the fixed points of the reflection (Rσ = σ) must separate
the phase space of σ in two disconnected sets.
For example, in O(3), the fixed points are the points with r · σ = 0, i.e.
the points on the ‘equator’ perpendicular to the reflection vector r. This
divides O(3) into disconnected ‘northern’ and ‘southern’ hemisphere.
Mathematically: fixed point set should have codimension 1 [Lüscher,
Weisz, Wolff, NPB 359 (1991) 221].

19

4.5. Cluster search

• The presented algorithm for growing the cluster is a depth-first algo-
rithm: it starts from the root and follows the cluster tree branch as
far as possible, before taking another branch.

• Another option is width-first:

1. Start from the root.

2. Mark all neighbouring points which are accepted to the cluster.

3. Looping through all these points, mark all points where the clus-
ter grows further.

4. Continue from 3. for these new points, until no more points are
accepted.

• Both the depth-first and width-first require comparable amount of in-
formation, and are probably about as good. Width-first is somewhat
easier to program, though.

20

• However, for Swendsen-Wang update all of the clusters have to be
found. In this case there exists an optimized cluster search algo-
rithm by Hoshen and Kopelmann.

21

4.6. Reduced variance

• Clusters can also substantially reduce statistical noise in some
measurements – this is in addition to the acceleration in update
speed (reduced variance).

• For example, consider spin-spin correlation function

G(i, j) = sisj 〈G(i, j)〉 ∼ e−|i−j|/ξ

• Using normal MC averaging over spin configurations (whichever al-
gorithm we use), the variance of G is

〈G2〉 − 〈G〉2 ≈ 1 − e2|i−j|/ξ ≈ 1

Thus, the absolute error is ∼ constant independent of |i − j|, and
signal/error∼ e−|i−j|/ξ.

22

• However, consider the expectation value using the cluster partition
function

〈G(i, j)〉 =
1

Z

∑

bonds

pb(1 − p)n ∑

sclust.

sisj

The last sum is clearly

∑

sclust.

sisj =







1 if si and sj belong to the same cluster
0 otherwise.

• Thus, in a (Swendsen-Wang) cluster MC update/measurement, we
measure

〈sisj〉SW =

〈

∑

clust.

Θc(i)Θc(j)

〉

SW

where Θc(i) = 1 if point i belongs to cluster c, 0 otherwise. Since
the fraction of 1 to 0’s must be e−|i−j|/ξ, the variance is

(〈G2〉 − 〈G〉2)SW ≈ e−|i−j|/ξ − e−2|i−j|/ξ ≈ e−|i−j|/ξ

23

The absolute error ∼ e−|i−j|/2ξ, and signal/error∼ e−|i−j|/2ξ.

• An exponential factor is gained over the ‘naive method! This is due
to the fact that the cluster measurement effectively sums over all
possible spin configurations compatible with the cluster decomposi-
tion.

• Another example: magnetic susceptibility

χM = 〈M2〉 =
1

V

∑

i,j

sisj =
1

V

∑

clust.

N2
c

where Nc is the cluster size, and we assume 〈M〉 = 0 (T > Tc).

• This readily generalizes to other spin observables. However, 3- or
higher point functions do not usually gain from cluster measure-
ments, nor observables which depend on energy. The operators
rapidly become quite complicated, for example,

〈sisjsksl〉 = θ(i, j, k, l) + θ(i, j)θ(k, l) + θ(i, k)θ(j, l) + θ(i, l)θ(j, k).

24

• The above was for Swendsen-Wang type update. What about the
Wolff single cluster update? In this case, the clusters are chosen
with biased probability pc = Nc/V . This we can compensate by
multiplying the observable with 1/pc, and thus

〈sisj〉1C =

〈

V

Nc
Θc(i)Θc(j)

〉

1C

• Likewise, the single-cluster susceptibility measurement becomes

χM = 〈M2〉 = 〈Nc〉1C

• Through the Ising embedding, the reduced variance measurements
can be done also for other models.

25

