
8 Error analysis: jackknife & bootstrap

As discussed before, it is no problem to calculate the expectation values and statistical
error estimates of “normal” observables from Monte Carlo. However, often we have to
calculate functions which depend (possibly non-linearly) on the expectation values of
some quantities.
As a common example, we may have 2 observables, a and b, and we want the correla-
tion coefficient

ρ =

∑

i(ai − 〈a〉)(bi − 〈b〉)
√

∑

i(ai − 〈a〉)2
∑

j(bj − 〈b〉)2
=

〈(a − 〈a〉)(b − 〈b〉)〉
√

〈(a − 〈a〉)2〉〈(b − 〈b〉)2〉

where, as usual, 〈a〉 = 1/N
∑

i ai.

Now, if we write the measurements ai, bi in a file, it is of course no problem to calcu-
late ρ. However, what is the error of our result for ρ? We cannot construct a sigle-
configuration quantity ρi, which we could plug in the autocorrelation analysis.

One methdod to do the analysis would be to divide the measurements (a, b)i in M
blocks (bins), with block length ≫ τ , the autocorrelation time. Then we can calculate
ρm for each block, and use the naive error formula for the error. However, this is not
optimal: the value of ρm may vary a lot from block to block.

Jackknife and bootstrap methods are nowadays standard ways to calculate the error in
this case.
– R.G. Miller, the jackknife – a review, Biometrika 61 (1974) pg. 1–17.
– B. Efron, Computers and the theory of statistics: thinking the unthinkable, SIAM
Review, vol 21, No. 4 460 (1979)
– B. Efron, The Jackknife, the Bootstrap and Other Resampling Plans, Society for
Industrial and Applied Mathematics (1982)
– Moore, D. S., G. McCabe, W. Duckworth, and S.
Sclove (2003): Bootstrap Methods and Permutation Tests,
http://bcs.whfreeman.com/pbs/cat 140/chap18.pdf

8.1 Reminder: standard error propagation

Often we need to calculate some function f(〈a〉) of the expectation value of some
quantity a. It is of course easy to calculate 〈a〉 and insert that into f(x), but what are
the error bars of the result?

It should be noted that, as a rule, we cannot simply define fi = f(ai) and use these as
measurements of f ; normally even

f(〈a〉) 6= 〈f(a)〉 =
1

N

∑

i

fi.
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For example, let ai’s be random numbers from uniform distribution 0 ≤ ai ≤ 1, and
f(x) = 1/x. Now f(〈a〉) = 2, but 〈f(a)〉 =

∫ 1
0 1/ada = ∞.

Let us denote the average and error after N measurements as 〈a〉 and δa. As before,
the error (1-σ) is defined as the variance of the gaussian probability distribution of 〈a〉
(the distribution will be gaussian if N is large enough).

If now we have the situation that δa is small enough so that the expansion

f(〈a〉 ± δa) = f(〈a〉) ± (δa)f ′(〈a〉) + . . .

is a good approximation when truncated to the first term, we obtain the result for the
error of f(〈a〉):

δf = f ′(〈a〉) δa

What if f depends on more than 1 random variable, for example f = f(〈a〉, 〈b〉)? If the
random variables are statistically independent and the linearity above holds wrt. all of
these, the errors are added quadratically:

(δf)2 =

[

∂f

∂〈a〉

]2

(δa)2 +

[

∂f

∂〈b〉

]2

(δb)2

(This result comes from independent gaussian distributions). This generalises to any
number of random variables. For example, if we add the averages of 2 independent
random variables 〈a〉 + 〈b〉, the error will be δ =

√

(δa)2 + (δb)2.

However, very often we do not have independent statistical variables. In Monte Carlo
simulations we measure different quantitites from the same configurations; thus, the
measurements are naturally correlated. In this case the expression for the error above
has to be modified to take this into account (and we obtain cross-correlation matrix).
This rapidly becomes cumbersome, and it is recommended to use jackknife or boot-
strap analysis methods, which take these into account automatically.

8.2 Jackknife

Jackknife method is a systematic way of obtaining the “standard deviation” error of a
set of stochastic measurements:

1. Calculate average ρ̄ (or some function f ) from the full dataset

2. Divide data (a, b)i into M blocks, with block length ≫ τ . This is done in order to
get rid of autocorrelations; if there are no correlations, block length can be 1.

3. For each m = 1 . . .M , take away block m and calculate the average ρ̄(m) using
the data from all other blocks.
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4. Estimate the error of ρ by calculating the deviation of ρ̄(m)’s from ρ̄:

δρ =

√

√

√

√

M − 1

M

M
∑

m=1

(ρ̄(m) − ρ̄)2

The factor (M −1)/M is there to give the correct result if we look at the errors of simple
observables. For example, assume that we have a random observable ai. Dividing
these into M blocks, we can calculate an average from each block as am. Now we
obtain the jackknife-blocked average as a(m) = 1/(M − 1)

∑

m′ 6=m am′ . Thus,

√

√

√

√

M − 1

M

∑

m

(a(m) − 〈a〉)2 =

√

√

√

√

∑

m(am − 〈a〉)2

(M − 1)M

i.e. we obtain the standard (blocked) error estimate.

Why does jackknife work? ρ̄(m) contains almost the full set of data, thus, they are quite
close to the full dataset value. Indeed, each jackknifed block ∼ a new MC average of
length N−m (However, these are naturally not independent!). This is why jackknife and
bootstrap are often called resampling methods: they construct pseudo-independent
‘new’ simulation results.

Note: parametrically,

ρ̄(m) − ρ̄ ∼ δρ/
√

M , (3)

i.e. the distribution of the results of these new “simulations” is narrower than δρ, the
expected error. Thus, we cannot really consider jackknife sets to be “new” simultations
(these would have distribution with width δρ).

As in the example in Sec. 8.1, we often want an estimate of some function of the expec-
tation value of a, f(〈a〉), where a is some quantity which we measure from simulation.
Note that this is in general very different from 〈f(a)〉!
The jackknife error estimate is naturally

δf =

√

√

√

√

M − 1

M

∑

m

(f(m) − 〈f〉)2 ≈ |f ′(〈a〉)|δa (4)

where f(m) = f(a(m)). This is typically a good approximation, because f(m) is close to
〈f〉. (Here 〈f〉 =

∑

m f(m)/M usually; it could also be 〈f〉 = f(〈a〉)).
Jackknife blocked data makes it easy to ‘chain’ the blocks through consecutive func-
tions: for example, if we want g(f(〈a〉)), where a is some statistical measurable, we can
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form a(m), average of the observable a over jackknifed block m. Now we can calculate
f(m) = f(a(m)) and g(m) = g(f(m)), from which the error is

δg(f(〈a〉)) =

√

√

√

√

M − 1

M

∑

m

(g(m) − 〈g〉)2
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Above: 642 Ising at βc;
a) sample of (E − 〈E〉, |M |)-data,
b) block averages with 200 blocks of length 2000,
c) jackknife block averages with same blocks.

Each jackknife block is very close to the final value, and the distribution of the jackknifed
data is within the error ellipse (scaled down by

√
200) of the (〈E〉, 〈|M |〉)-data.

Feeding these blocks through some (non-linear) function, the distribution of the results
gives us directly the error of the function value.

Let us calculate the correlation coefficient of a = (E − 〈E〉) and b = (|M | − 〈|M |〉),

ρ =
〈ab〉
〈a〉〈b〉

Doing this with 200 jackknife blocks as above, we have to calculate 〈a〉, 〈b〉 and 〈ab〉
for each of the 200 jackknife sets, each containing 199 × 2000 = 398000 points. Lot of
operations!

In this case, I obtain ρ = −0.7139(15).

One could also (incorrectly) assume that each of the 〈·〉’s in ρ are statistically in-
dependent. Then I would obtain, using standard independent error propagation,5

ρ = −0.7139(67). The error is 4 times too large!

5Independent errors: δ2f(a, b) = [∂f/∂a]2δ2a + [∂f/∂b]2δ2b
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8.3 Bootstrap

Bootstrap method is closely related to jackknife, but it mimics the resampling more
closely. It works as follows:

1. Divide data (a, b)i into M blocks, with block length ≫ τ (independent blocks).

2. From the set of the M blocks, pick randomly M blocks, not trying to avoid double
sampling. Thus, some blocks may not get selected at all, some once, some twice
etc.

3. Calculate the quantity of interest over the selected data – for example, the corre-
lation coefficient ρ∗.

4. Repeat steps 2 and 3 a large number of times, say NB times, each time using a
statistically independent selection of the blocks to generate the bootstrap sample.
The new correlation coefficients are ρ∗

1, ρ
∗
2, . . . , ρ

∗
NB

.

5. Find values a and b so that these bracket the central 68% of the ρ∗ values:

#{ρ∗
i < a}
NB

= 0.16
#{ρ∗

i > b}
NB

= 0.16

In effect, by generating a large number (NB) of bootstrap samples one is gen-
erating the distribution function of the final result. The values a and b define the
“1-σ” cumulants of this distribution, between which 68% of the probability mass
resides. For gaussian distribution this gives directly the gaussian variance.

6. The bootstrap estimate of the standard deviation can be now given as

δρ =
b − a

2
.

Or, more accurately, we can give asymmetric errors

ρ = ρ0
+(b−ρ0)
−(ρ0−a)

where ρ0 = 〈ρ〉.

7. The points 5-6 above can be usually substituted with the bootstrap estimate of
the standard deviation:

δρ =

√

√

√

√

1

NB − 1

∑

i

(ρ∗
i − 〈ρ∗〉)2

where 〈ρ∗〉 =
∑

i ρ
∗
i /NB.
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In jackknife/bootstrap literature there is no initial blocking – successive datapoints are
considered to be statistically independent (no autocorrelations)! However, this is a
minor modification: by blocking initially we obtain statistically independent measure-
ments.

What is a sufficient number of blocks? One should have at least several tens of sam-
ples, preferably hundreds. NB in the bootstrap can go to ∼ 1000.

Note: let us have measurements ai, with expectation value 〈a〉 and “error” δa. Let us
block this into M “normal” blocks am, jackknife block averages a(m) and NB bootstrap
averages a∗

i . Now
1. am − 〈a〉 ∼ δa

√
M

2. a(m) − 〈a〉 ∼ δa/
√

M

3. a∗
i − 〈a〉 ∼ δa

Thus, jackknife “resamples” the distribution on a
very narrow range, whereas bootstrap gives the
“right” range.
For example, we may have a function f(〈a〉) which
happens to be significantly non-linear in range δa.
For jackknife, δf ∼ |f ′(〈a〉)|δa.

δa
Example: reweighting

〈O〉β =

∑

i Oi e
−(β−βc)Ei

∑

i e
−(β−βc)Ei

If the number of bootstrap samples is very large, it can become expensive to evaluate
the sums over the measurements (for each bootstrap block, we have a sum over the
full number N measurements!). This can be optimized by precalculating sums over the
original blocks.

Bootstrap and jackknife are also used in fits to the data (not discussed here).

8.4 Bias estimation

• For concreteness, let us again have a function f(〈a〉). The true value f(〈a〉) is
obtained when we calculate the average of a using infinitely many samples ai.

• Let us now denote the average over N samples a1 . . . aN as 〈a〉N , from which we
obtain an estimate f(〈a〉N) Now, if we take the average over many samples of
size N , we can calculate the expectation value 〈f(〈a〉N)〉.
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• Bias is now defined as

Bias = 〈f(〈a〉N)〉 − f(〈a〉) (5)

i.e. the deviation of the expectation value using N measurements from the one
using ∞ measurements.

• Note that the bias is a well-defined quantity, the expectation values do not have
“errors” (like a single f(〈a〉N) has).

• Many quantities do not have a bias – for example, simple observables like mag-
netization M . However, a function of 〈M〉 like 〈M〉2 has a bias!

• The original purpose for the jackknife method was bias reduction (Quenouille,
J.Roy.Statist.Soc.Ser.B, 1949).

• Calculate jackknife block averages a(n) from data ai, and let f(n) = f(a(n)) (let me
assume here that the original data ai are already “blocked”, if needed).

• Let 〈f(·)〉 =
1

N

∑

n

f(n).

• Now the Queinouille estimate for bias is

Bias = (N − 1)(〈f(·)〉 − f(〈a〉)).

• This leads to the bias-corrected jackknifed estimateof f :

f̃(〈a〉) = f(〈a〉) − Bias = Nf(〈a〉) − (N − 1)〈f(·)〉 (6)

• The usual rationale for bias correction goes as follows: if we assume that

〈f(〈a〉N)〉 = f(〈a〉) +
c1

N
+

c2

N2
+ . . . (7)

Now, because each jackknife blocked set contains only N − 1 measurements,

〈f(·)〉 = 〈f(〈a〉N−1)〉. (8)

Now we can eliminate the “error” term ∝ 1/N , giving us the bias correction result.

• While in principle the bias correction can be performed, in practice it is often of
very limited use. Usually the bias correction is completely overwhelmed by the
statistical error of the sample.
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9 Example: 2nd order phase transition and finite size scaling

One of the most common physical problems studied in simulations are phase transi-
tions in various forms (ferromagnetism, Ising model, crystal melting, QCD . . . ).

Most (but not all!)6 phase transitions can be described by an order parameter. Math-
ematically, this is zero in one phase (usually called the disordered phase), non-zero in
the other phase (ordered phase). Thus, it cannot be an analytic function at the transi-
tion point. (Examples: magnetization in Ising model, Polyakov line in Ising gauge).

Normally, transitions are either 1st or 2nd order. The name comes from the number
of derivatives of the free energy F = −T log Z we need before we see discontinuous
behaviour.

• F itself (zeroth derivative) is always continuous.

• First order — the order parameter (and almost any thermodynamical quantity)
has a discontinuous jump:

– latent heat: discontinuity in energy density

• Second order — second derivatives of F , i.e. various susceptibilities are diver-
gent.

As a concrete example, the Ising model partition function with external field H and
β = 1/T

Z =
∑

{sx=±1}

exp



−β





1
2

∑

<xy>

(1 − sxsy) + H
∑

x

sx







 (9)

gives magnetization M and magnetic susceptibility χM as 1st and 2nd derivatives wrt.
H:

M =
1

V
(dF/dH)H=0

χM = V (〈M2〉 − 〈M〉2) =
1

V
(d2F/dH2)H=0

(limit V → ∞ implied here.)

6A common-day transition without an order parameter is the liquid-vapour 1st order phase
transition, for example, boiling of water. There is no exact order parameter, and the two phases
can be analytically connected. The transition line ends in a critical point, where the transition
has 3-dim. Ising model universal behaviour.
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Second order transitions are classified by their critical exponents, which characterize
the behaviour at the critical point. The most important here are

Magnetization M ∼ |T − Tc|β
Mag. susceptibility χM ∼ |T − Tc|−γ

Heat capacity CV = 1
V

d〈E〉
dT

∼ |T − Tc|−α

Correlation length ξ ∼ |T − Tc|−ν

(10)

For the 2d Ising model, these exponents are known exactly: α = 0, β = 0.125, γ = 1.75,
ν = 1.

However, as already mentioned before, on a finite lattice we have finite number of
degrees of freedom and everything is analytic! This causes several problems:

• What is a good order parameter? The order parameters are always either zero
or non-zero. For example, both

M =

〈

1

V

∑

i

si

〉

|M | =

〈∣

∣

∣

∣

∣

1

V

∑

i

si

∣

∣

∣

∣

∣

〉

are real order parameters in infinite volume, but 〈M〉 = 0 and 〈|M |〉 > 0 on a finite
lattice. Of these, 〈|M |〉 is usable, since it is almost zero in the symmetric phase.

• How to locate the true phase transition?

• How to measure the critical exponents?

9.1 Finite size scaling in Ising model

For concreteness, let us consider Ising model. In infinite volume, the correlation length
ξ (domain size) diverges near the transition point as

ξ ∝ |t|−ν , (11)

with t = T − Tc ≈ βc − β.

However, because the system in simulations has a finite size Ld, when the correlation
length is ξ ≈ L, the system already becomes effectively ordered. Thus, we can argue
that the system has a pseudocritical point when

[βc(∞) − βc(V )]−ν ∝ L ⇒ βc(V ) = βc(∞) − const. × L−1/ν (12)

How to locate this point (if we don’t know ν or βc(∞))? Consider, for example, magnetic
susceptibility which diverges in infinite volume as

χ|M | =
1

V
(〈M2〉 − 〈|M |〉2) ∝ |t|−γ (13)
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We can now (somewhat arbitrarily) argue that on a finite volume χ|M | has a maximum
at the pseudocritical point βc(V ). At this point the maximum value should be

χM,max ∝ (βc(V ) − βc(∞))−γ ∝ Lγ/ν (14)

The above (not extremely robust) argument gives us a prescription how to determine
the true critical point βc = βc(∞) and even to estimate the critical exponents ν and γ:

1. Using various volumes V , locate the maximum of χ|M |.

2. Make a (power law) fit to the maximum location of χ|M |:

βmax = βc − c1 × Lx (15)

Fit has 3 parameters, βc, c1, x, where x should be equal to −1/ν.

3. The exponent γ/ν can be estimated from the maximum value χmax ∝ Lγ/ν .

WARNING: while this process gives pretty good estimate of the infinite volume critical
point βc, the exponents can be more difficult to obtain reliably. This is especially so if
we would use the heat capacity CV instead of χ|M |, this is due to the fact that the critical
exponent α is usually much smaller than γ.

NOTE:
Above, somewhat misleadingly, we actually used susceptibility χ|M | = 1

V
(〈M2〉 −

〈|M |〉2). This is strictly speaking not equivalent to the ’true’ magnetic susceptibility
χM = 1

V
(〈M2〉 − 〈M〉2). In the broken phase these are equal, but in the symmetric

phase these differ by a constant. The critical exponents are equal, however.
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9.2 Example: 2d Ising model results

2d Ising model with volumes
162, 322, 642, 1282 and 2562.
χ|M | reweighted to a range of β-
values around the critical point:

The peak of χ|M | clearly grows
(like Lz, note log-scale) and the
location moves to larger β.
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Power law fit to the location of the max-
ima: βmax = βc − cLx.
(χ2/d.o.f = 0.33/2, confidence level
0.84.)

Results:
βc = 0.88093(24); x = −1.05(2).

Right results:
βc = ln(1 +

√
2) ≈ 0.88137

x = −1/ν = −1.
We are very close, but still ∼ 2σ off the
correct values. This is most likely due to
too small volume (163).
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If we drop 163 and fix the exponent x = −1, we obtain βc = 0.88132(13), which is
perfectly compatible with the right result.
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Power law fit to the value of the
maximum: χmax = cLz.
If we exclude 162, we obtain
z = 1.740(8),

which is compatible with the
right value
z = γ/ν = 1.75

(Using also 162 makes the fit a
bit worse.)
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9.3 Critical exponentβ

Finite size scaling can be used to determine other exponents too: for example, let us
consider the spin-spin correlation function just at the critical point:

〈sxsy〉 = G(|x − y|) ∝ |x − y|−(d−2+η), |x − y| → ∞, (16)

where d is the dimensionality of the system and η is the “anomalous” exponent of the
correlation length (for 2d Ising, η = 1/4(?)).

We define the root mean square magnetization

Mrms =
√

〈M2〉 =
√

∑

x,y

sxsy/V 2. (17)

At the infinite volume critical temperature Tc (or βc), we can approximate behaviour of
the correlation function on a finite volume as

∑

x

〈sxsy〉 ∝
∫ L/2

0
dr rd−1 G(r) ∝

∫ L/2

0
dr r1−η ∝ L2−η. (18)

Thus, Mrms becomes

MT=Tc

rms ∝
√

L2−d−η ∝ L−β/ν . (19)

In the last stage we used scaling law 2 − η = γ/ν and the so-called hyperscaling
dν = 2β + γ.
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Hyperscaling is not always valid: this happens, for instance, in systems above their

marginal dimensionality d∗ where the mean field values for the critical exponents be-
come valid. For simple spin models with local action (Ising, for example) d∗ = 4.

Example: 2d Ising, again, and
determine Mrms from lattices
162 − 2562.

Power law fit: Mrms = cLz.
The result from the fit is
z = −0.1255(4),

which is compatible with the
known value
z = −β/ν = −0.125

[Note: the plot is of log-log type]

10 100

L

0.5718

0.6575

0.7561

M
rms
T=T

c

16
2
 - 256

2
 Ising model

L
-0.1255(4)

86


