4.20 Common (and subtle) mistakesin update algorithms

e Measure factors: Note that the detailed balance condition is correctly written in
terms of probabilities:

Wi0— &) _ pea(d) _ e)-n)mar
Wf(¢/ = ¢) peq-(¢)

The second equality is true only if p(¢) oc e=(@)/k5T \We have implicitly assumed
this for most of the discussion in this section, but this is not always the case!

As a simple example consider variables (z,y), with distribution p(z,y) o
e~ H*+v*)/ksT  Now, one might want to use polar coordinates (r,0) instead. Now

p(z,y) dxdy = p(z,y) rdrdd = p(r,0)drdd = p(r,0) « re H(?*)/ksT

The Jacobian factor r follows the Boltzmann factor everywhere.

Thus, for example, if we do restricted Metropolis update
r—r' =r+S5(X—0.5)

where X is a uniform random number in interval [0,1], this is accepted with the
probability

! . Tle_H(TQ)/kBT
paccept(r =T ) = min <1’ W

It is important to keep track of the correct measure (Jacobian) factors!

Excercise: how would you update a 3-dim. vector v which is restricted to unit
length (i.e. traces a surface of 2-sphere) and which has interaction energy H =
—v - ¢, with some constant vector ¢? The measure is assumed homogeneous on
the 2-sphere.

e Adjustable Metropolis scale: Metropolis updates have adjustable scale factor.
This can be automatically tuned by the update algorithm to acceptance ~ 60%,
for example. However, this tuning must not happen during measurements, or it
can ruin the detailed balance. Thus, automatic tuning should be done only in the
“thermalisation” phase.

e Other tunables in updates'measurements: Like the Metropolis scale, adjusting
some other tunables (e.g. the measurement interval) on the fly lead to incorrect
sampling. These have to be done before the measurements are taken.
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5 Particlesin a potential

Let us consider a case where a set of particles interact with a 2-particle potential

V(1 — 7). For concretness, let us assume 2 dimensions. We can take the poten-

tial to be a long-range Coulomb potential with a “hard core”-like repulsion, for example,
1I—— 7 T — ——

0.5
where ¢; + 1 are the charges of the particles. We put

this system in a heat bath, i.e. vl

0

T

1
—TZVU

i<j

Z = /f[l[dﬁ] exp

(in dimensionless units). This is a simple model for
ionic crystal < liquid < gas transition. 0

Note that we neglect here the kinetic energy (and equation of motion) of the parti-
cles. Thus, this corresponds to a particle system in a heat bath; i.e. the particles can
get or lose energy through other channes than particle-particle interactions (radiation,
interactions with some other (neutral) particles, etc.).

The number of particles is given beforehand; the degrees of freedom are the particle
positions. Now it is easy to write a Monte Carlo program which updates the positions
of the particles using the Metropolis update. Let S be a tunable scale, and G;,G>
gaussian distributed random numbers. Now one update sweep is the following:

For each particle ¢ do
1. 2. =2, +S5SG,
2. yi =y, + S Gy
3. accept (z,y); — («',y"); with probability
p = max(1, exp[—dV/T]).

If not accepted, leave (z,y) as it was.

For concreteness, let us enclose the system in a finite box of size si ze. This could be
periodic, but for simplicity we consider hard walls. One should not have infinite volume,
because then the average density = 0, and evaporating particles never meet another
particle. Thus, density is one of the thermodynamic variables here.
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5.1 Metropolisupdate code for ionswith Coulomb potential

coordi nates of the atoms */
charge of atons +-1 */
Metropolis scale =/
tenperature */

box size x/

doubl e x[ n_atons], y[ n_atons];
int g[n_atons];

doubl e scal e;

doubl e T;

doubl e si ze;

doubl e xn, yn, el, e2;

int accept,try,loop

~ Y~
¥ X X 3

/= initialize etc. here =/

The potential is given by the function

doubl e V(doubl e x, double y,int glg2)

doubl e r2
double r4

X*X + y*y;
r2xr2;

return( qlg2/sqrt(r2) + 1.0/ (r4xrd4));
}

Here q192 is the product of the charges of the particles 1 and 2 (+1), and x, y are the
components of 7} — 5. The update section of the program is

for (loop=0; |oop<n_I| oops; |oop++){
accept =try = 0;
/+ nmodify the location, acc/rej =*/
for (i=0; i<n_atoms; i++) {

[+ calculate the potential energy for i =*/

for (el=j=0; j<n_atoms; j++) if (j !'=1)
el += V( x[i]-x[j1, ylil-y[il, alil~aljl );
[+ update position -- keep within box! =/
do xn = x[i] + scale * gaussian_ran(); while (xn < 0 || xn > size);
do yn = y[i] + scale * gaussian_ran(); while (yn <0 || yn > size);

[+ and cal cul ate new potential energy =*/
for (e2=)=0; j<n_atons; j++) if (j !=1)
e2 += V( xn-x[j], yn-y[jl, alil=alj]l );

[+ now Metropolis accept/reject =/
if ( exp( (el-e2)/T) > nmersenne() ) {

accept ++;

x[i] = xn;

yli] =ynm
try++;
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/= other stuff (measurenents etc.) here ... */

}

Here scal e is the adjustable Metropolis step size, which is tuned for acceptance.

NOTE: when the position of particle 7 is updated, only the part of the total energy
dependent on i is calculated, i.e.

Ei=3_Vy.
j#i
This has to be calculated both before and after the modification.

= Update of all N atom positions requires o« N? operations! With large N this becomes
very slow.

=- Often only interactions with nearest atoms (up to some range) are calculated ex-
actly. For atoms further away, average charge is coarse-grained (not discussed in this
course).

t=0.01 t=0.02

Phase diagram

Consider 64 ions in a box of
size 602:
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The properties of the phases can
be monitored by using various ob- . S.D“.d. _ quUidu moleculorges aul)micgz:s _
servables. Shown here in the plot: ! I

avé. pair distance/ 5

e Average pair distance

Ny Zi<s 1T — Tl

Distinguishes between
gaseous and non-gaseous
phases.

e average of the distance to
the nearest neighbour atom
of each of the atom. Be-
comes large when gas con- :
sists of single ions. P pd i

e average number of ions at
distance < 2, measured from
each ion. Close to 4 for
crystals (boundary effects!),

becomes ~ 0 for individual temperature
ions.
The program ions.c is available in the course web pages. If compiled

with the grace_np -library, it can show animations of the Monte Carlo evo-
lution.  See instructions in the program. (This requires that grace/xmgrace
-program is installed. It is available on most linux distributions, or from
http://plasma-gate. wei zmann. ac.il/ G ace/ )

The method is easy to modify for other potentials or 3-dimensional space.
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