
4.20 Common (and subtle) mistakes in update algorithms

• Measure factors: Note that the detailed balance condition is correctly written in
terms of probabilities:

Wf(φ 7→ φ′)

Wf(φ′ 7→ φ)
=

peq.(φ
′)

peq.(φ)
= e(H(φ)−H(φ′))/kBT

The second equality is true only if p(φ) ∝ e−H(φ)/kBT . We have implicitly assumed
this for most of the discussion in this section, but this is not always the case!

As a simple example consider variables (x, y), with distribution p(x, y) ∝
e−H(x2+y2)/kBT . Now, one might want to use polar coordinates (r, θ) instead. Now

p(x, y) dx dy = p(x, y) r dr dθ ≡ p(r, θ) dr dθ ⇒ p(r, θ) ∝ re−H(r2)/kBT

The Jacobian factor r follows the Boltzmann factor everywhere.

Thus, for example, if we do restricted Metropolis update

r → r′ = r + S(X − 0.5)

where X is a uniform random number in interval [0,1], this is accepted with the
probability

paccept(r 7→ r′) = min

(

1,
r′e−H(r′2)/kBT

re−H(r2)/kBT

)

It is important to keep track of the correct measure (Jacobian) factors!

Excercise: how would you update a 3-dim. vector ~v which is restricted to unit
length (i.e. traces a surface of 2-sphere) and which has interaction energy H =
−~v · ~c, with some constant vector ~c? The measure is assumed homogeneous on
the 2-sphere.

• Adjustable Metropolis scale: Metropolis updates have adjustable scale factor.
This can be automatically tuned by the update algorithm to acceptance ∼ 60%,
for example. However, this tuning must not happen during measurements, or it
can ruin the detailed balance. Thus, automatic tuning should be done only in the
“thermalisation” phase.

• Other tunables in updates/measurements: Like the Metropolis scale, adjusting
some other tunables (e.g. the measurement interval) on the fly lead to incorrect
sampling. These have to be done before the measurements are taken.
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5 Particles in a potential

Let us consider a case where a set of particles interact with a 2-particle potential
V (~r1 − ~r2). For concretness, let us assume 2 dimensions. We can take the poten-
tial to be a long-range Coulomb potential with a “hard core”-like repulsion, for example,

Vij =
qiqj

|~ri − ~rj|
+

1

|~ri − ~rj|8

where qi±1 are the charges of the particles. We put
this system in a heat bath, i.e.

Z =
∫ N
∏

i=1

[d~ri] exp



−
1

T

∑

i<j

Vij





(in dimensionless units). This is a simple model for
ionic crystal ↔ liquid ↔ gas transition. 0 2 4 6 8
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Note that we neglect here the kinetic energy (and equation of motion) of the parti-
cles. Thus, this corresponds to a particle system in a heat bath; i.e. the particles can
get or lose energy through other channes than particle-particle interactions (radiation,
interactions with some other (neutral) particles, etc.).

The number of particles is given beforehand; the degrees of freedom are the particle
positions. Now it is easy to write a Monte Carlo program which updates the positions
of the particles using the Metropolis update. Let S be a tunable scale, and G1, G2

gaussian distributed random numbers. Now one update sweep is the following:

For each particle i do

1. x′
i = xi + S G1

2. y′
i = yi + S G2

3. accept (x, y)i → (x′, y′)i with probability

p = max(1, exp[−δV/T ]).

If not accepted, leave (x, y) as it was.

For concreteness, let us enclose the system in a finite box of size size. This could be
periodic, but for simplicity we consider hard walls. One should not have infinite volume,
because then the average density = 0, and evaporating particles never meet another
particle. Thus, density is one of the thermodynamic variables here.
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5.1 Metropolis update code for ions with Coulomb potential

...
double x[n_atoms],y[n_atoms]; /* coordinates of the atoms */
int q[n_atoms]; /* charge of atoms +-1 */
double scale; /* Metropolis scale */
double T; /* temperature */
double size; /* box size */
double xn,yn,e1,e2;
int accept,try,loop;
...
/* initialize etc. here */
...

The potential is given by the function

double V(double x,double y,int q1q2)
{

double r2 = x*x + y*y;
double r4 = r2*r2;

return( q1q2/sqrt(r2) + 1.0/(r4*r4));
}

Here q1q2 is the product of the charges of the particles 1 and 2 (±1), and x,y are the
components of ~r1 − ~r2. The update section of the program is

for (loop=0; loop<n_loops; loop++){
accept = try = 0;
/* modify the location, acc/rej */
for (i=0; i<n_atoms; i++) {

/* calculate the potential energy for i */
for (e1=j=0; j<n_atoms; j++) if (j != i)
e1 += V( x[i]-x[j], y[i]-y[j], q[i]*q[j] );

/* update position -- keep within box! */
do xn = x[i] + scale * gaussian_ran(); while (xn < 0 || xn > size);
do yn = y[i] + scale * gaussian_ran(); while (yn < 0 || yn > size);

/* and calculate new potential energy */
for (e2=j=0; j<n_atoms; j++) if (j != i)
e2 += V( xn-x[j], yn-y[j], q[i]*q[j] );

/* now Metropolis accept/reject */
if ( exp( (e1-e2)/T ) > mersenne() ) {
accept++;
x[i] = xn;
y[i] = yn;

}
try++;
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}
/* other stuff (measurements etc.) here ... */

}

Here scale is the adjustable Metropolis step size, which is tuned for acceptance.

NOTE: when the position of particle i is updated, only the part of the total energy
dependent on i is calculated, i.e.

Ei =
∑

j 6=i

Vij.

This has to be calculated both before and after the modification.

⇒ Update of all N atom positions requires ∝ N2 operations! With large N this becomes
very slow.

⇒ Often only interactions with nearest atoms (up to some range) are calculated ex-
actly. For atoms further away, average charge is coarse-grained (not discussed in this
course).

Phase diagram
Consider 64 ions in a box of
size 602:

• At low temperatures
T<
∼0.01 solid square

crystal

• 0.01<∼T<
∼0.03 liquid

• 0.03<∼T<
∼0.2 gas which

consists mostly of charge
neutral molecules

• 0.2<∼T gas which consists
mostly of individual ions

The transitions are not sharp
at finite system; especially gas
of molecules ↔ ions is contin-
uous even at infinite systems.

t=0.01 t = 0.02

t = 0.06 t = 0.3
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The properties of the phases can
be monitored by using various ob-
servables. Shown here in the plot:

• Average pair distance
2

N(N−1)

∑

i<j |~ri − ~rj|.

Distinguishes between
gaseous and non-gaseous
phases.

• average of the distance to
the nearest neighbour atom
of each of the atom. Be-
comes large when gas con-
sists of single ions.

• average number of ions at
distance < 2, measured from
each ion. Close to 4 for
crystals (boundary effects!),
becomes ∼ 0 for individual
ions.
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The program ions.c is available in the course web pages. If compiled
with the grace np -library, it can show animations of the Monte Carlo evo-
lution. See instructions in the program. (This requires that grace/xmgrace
-program is installed. It is available on most linux distributions, or from
http://plasma-gate.weizmann.ac.il/Grace/ .)

The method is easy to modify for other potentials or 3-dimensional space.
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