
2.9.1 The behaviour of the free propagator

Let us now calculate the free propagator in coordinate time. For con-
creteness we choose d = 4, and we look at the propagator at fixed
spatial momentum k:

G(k, t) =
∫ π/a

−π/a
dk0
2π

eik0tG̃(k, k0)

Denoting x = k0a, τ = t/a, and using

2 sin2
x

2
= 1− cosx,

we obtain

G(k, τa) = a
∫ π

−π
dx

2π

eixτ

2b− 2 cosx

where

b = 1 +
(ma)2

2
+

3
∑

i=1

4

2
sin2

kia

2
.

Substituting now z = eix, dz = ieixdx,

G(k, τa) =
∮

C

idz

2π

zτ

z2 − 2bz + 1

where the integration contour C is a unit circle to positive direction. Poles
of the denominator are at

z± = b±
√
b2 − 1 ∈ R, 0 < z− < 1, z+ > 1, z−z+ = 1

Thus, only the pole at z1 is inside the unit circle. The residue gives

G(k, τa) = −a zτ−
z− − z+

Thus, this is an exponentially decreasing function. Denoting

z− = 1/z+ = e−ω, coshω =
1

2
(z+ + z−) = b,

we finally obtain

G(k, τa) = a
e−ωτ

2 sinhω
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where, using coshω = 2 sinh2 ω
2
+ 1, we can express

ω = 2 sinh−1
√

(b− 1)/2 = 2 sinh−1

√

√

√

√

√

(ma)2

4
+

3
∑

i=1

sin2
kia

2
.

Thus, the propagator decreases exponentially as e−k0t, where k0 = ω/a

is the pole of the propagator with the substitution k0 → ik0 (section 2.9).
In the continuum (a→ 0, kia≪ 1) this approaches

G(k, t) =
e−ωct

2ωc

with ωc =
√

m2 + k
2, the familiar continuum expression. Note that the

Minkowski space expression can be obtained from here by substituting
tE → itM , and we obtain the propagator which oscillates with its charac-
teristic frequency ω/a.
If we now go ahad and do the full real space propagator (transform also
the k-component), we obtain

G(x) = a
∑

k

eik·x
e−ωx0/a

2 sinhω

Here, and what follows, we often denote lattice sums or integrals by
symbol

∑

k

=
∫ π/a

−π/a
ddk

(2π)d

=
1

(Na)d
∑

n

where either the first or second form is used, depending on whether the
system is of infinite size or not.

It should be noted that the Euclidean propagators, in the lattice or in the
continuum, are analytical continuations of the Feynman propagators in
Minkowski spacetime. If we do a continuous rotation k0 → eiθk0, θ = 0

Minkowski, θ = π/2 Euclidean, and denote E =
√

k
2 +m2,

G̃E =
1

(k0)2 + E2
=

1

−(eiπ/2k0)2 + E2
→ −1

(k0)2 − E2 + iǫ
≃ G̃M,Feyn.
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where now the iǫ takes care that the pole at k0 = +E is circumvented
from above and the pole at k0 = −E from below. This is naturally the
Feynman prescription.

28



3 Gauge fields

• Gauge field lagrangian in (Euclidean) continuum:

1
4
F a
µνF

a
µν =

1
2
Tr (FµνFµν)

• Field tensor

Fµν = [Dµ, Dν] = ∂µAν − ∂νAµ + ig[Aµ, Aν]

where Aµ = Aa
µλ

a, and λa are the group generators. We shall con-
sider only unitary groups U(1) [QED] and SU(N) [QCD, Electroweak].
For SU(N), the generators are orthonormalized

Trλaλb = 1
2δ

ab.

• Put gauge potential Aµ directly on a lattice? Difficult to maintain gauge
invariance.

• Good starting point for gauge field on a lattice is to consider consider
gauge fields acting in a parallel transport: As field φ ∈SU(N) is “parallel
transported” along a path p, parametrized by xµ(s), s ∈ [0, 1], gauge
fields rotate it: φ→ U(s)φ

φ

φU
• Define U(s) differentially via

dU(s)

ds
=

dxµ

ds
igAµU(s),

which can be formally solved:

U(s) = P exp

[

ig
∫

p
ds

dxµ

ds
Aµ

]

• Here P = “path ordering”: in the power series expansion of the expo-
nential one always takes A(x) in the order they are encountered along
the path.
• For U(1) (or any other Abelian group) path ordering is irrelevant.
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• Alternatively, if we divide the path into N finite intervals of length ∆s,
and xn = x(n∆s), n = 0 . . .N − 1:

U(s) ≈ P exp



ig
∑

n
∆s

dxn
µ

ds
Aµ(x

n)



 =
∏

i

exp



ig∆s
dxn

µ

ds
Aµ(x

n)





3.1 Gauge transformations

•Gauge transformation Λ(x) is a (SU(N)) group element defined at every
point. Gauge potential transforms as

Aµ → ΛAµΛ
−1 +

i

g
Λ∂µΛ

−1

• Field φ:

φ(x)→ Λ(x)φ(x)

• Path p:

U(p)→ Λ(x1)U(p)Λ−1(x0),

where x0 and x1 are the beginning and end of path.

• Closed loops: U(C)→ Λ(x0)U(C)Λ−1(x0)

• Trace of a closed loop: TrU(C) is gauge invariant!

3.2 Lattice gauge fields

• Variables: parallel transporters from one
lattice site to a neighbouring one, Links:

Uµ(x) = P exp
[

ig
∫ x+µ

x
dxµAµ

]

= exp
[

igaAµ(x+ 1
2µ)

]

+ O(ga3)

• The lattice action has to be gauge invari-
ant. Only traces of closed loops are gauge
invariant; the simplest one is plaquette U (x)

U  (x+  )

U  (x+  )

U (x)

µ

ν

µ

ν µ

ν

TrU2 = Tr Uµ(x)Uν(x+ µ)U †µ(x+ ν)U †ν(x)
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•When a small (for SU(N)),

ReTrU2 = N − a4g2

4
F a
µνF

a
µν +O(g4a6)

• →Wilson gauge action (K. Wilson, 1974):

Sg =
2N

g2a4−d
∑

2

[

1− 1

N
ReTrU2

]

=
∫

ddx1
2
Tr [FµνFµν] + O(a2g2)

Partition function

Z =
∫

[
∏

x,µ
dUµ(x)]e

−Sg

Here the integral is over group elements Uµ (compact), not over algebra
Aµ

Common notation:

β = βG ≡
2N

g2
for SU(N), β =

1

g2
for U(1).

3.3 Continuum limit for U(1) (in 4d)

• Uµ(x) = exp igaAµ(x)

• The Wilson action for U(1) is

S =
1

g2
∑

x;µ<ν

(

1− ReUµ(x)Uν(x+ µ)U †µ(x+ ν)U †nu(x)
)

=
1

g2
∑

x;µ<ν
(1− Re exp [iga(Aµ(x) +Aν(x+ µ)− Aµ(x+ ν)− Aν(x))])

Expanding Aν(x+ µ) = Aν(x) + a∂µAν(x) +
1
2a

2∂2
µAν(x) + . . .

S =
1

g2
∑

x;µ<ν

(

1− Re exp
[

iga2(∂µAν − ∂νAµ) +O(a4)
])

=
1

g2
1

2

∑

x;µ 6=ν

[

1

2
g2a2F 2

µν + O(g2a6)

]

=
1

4

∫

d4xF 2
µν
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• Error in lagrangian O(a2)

• Non-Abelian continuum limit comes in a similar way, but now one
has to be careful with the commutators. Check it! (Campbell-Baker-
Hausdorff formula eAeB = eA+B−[A,B]+... might help, but it also comes
directly from the expansion of the exponents.)

3.4 Gauge transformations:

• Gauge transform Λ(x) ∈ SU(N) lives on lattice sites

• Link variable: Uµ(x)→ U ′µ(x) = Λ(x)Uµ(x)Λ
†(x+ µ)

7→
Aµ(x)→ Λ(x)Aµ(x)Λ

†(x) + i
gΛ(x)∂muΛ

†(x)

• Trace of a closed loop is gauge invariant

• Fundamental matter: φ(x) → Λ(x)φ(x),
where φ is a N-component complex vec-
tor: operator

φ†(x)UP (x 7→ y)φ(y) =

φ†(x)Uµ(x)Uν(x+ µ) . . . Uρ(y − ρ)φ(y)

is gauge invariant.

• We want only gauge invariant animals on a lattice: lattice action +
observables must consist of closed loops (gauge only quantities) or
φ†UPφ - “strings” (matter).

• For example, the matter field kinetic term

(Dµφ)
†(Dµφ),

where Dµ = ∂µ + igAµ, becomes

1

a2



2dφ†φ− 2
∑

µ
φ†(x)Uµ(x)φ(x+ µ)




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• Elitzur’s theorem: expectation values of gauge non-invariant object
= 0: 〈Uµ(x)〉 = 0.

3.5 Gauge fixing on the lattice

• Something you don’t want to do

• Necessary for perturbative calculations

• Most of the (Euclidean) continuum gauges go over to lattice

• Special gauge: maximal tree

• A tree which connects every point of the lattice, but does not have
closed loops.

• Link matrices Uµ(x) are fixed to arbitrary values (for example all = 1)
in the tree

• Expectation values of gauge invariant quantities do not change
(proof: easy)

• (Almost) complete gauge fixing
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3.6 Confinement and Wilson loop

• Potential between static charge and anticharge, separated by R:

V (R→∞)→






∞ : confinement
finite: no confinement

• Standard probe: Wilson loop WRT . Let W be a rectangular path of
size R× T along x1 (say) and x0 = τ directions.

WRT = TrP exp ig
∮

W
dsµAµ = Tr

∏

<xy>∈W
Uxy.

Now − logWRT gives the “free energy” of a static charge-anticharge
(“quark-antiquark”) system separated by R and which evolves for
time T :

− log〈WRT 〉 = V (R)T valid as T →∞

T

R

• Perimeter law: − log〈WRT 〉 ∼ m(2R+ 2T )

Free charges, m: “mass” of the charge due to gauge field

• Area law: − log〈WRT 〉 ∼ σRT ; V (R) = σR

Charges confined with linear potential, σ: string tension

• In general, 1
T log〈W 〉 ∼ σR+ const. + c/R + . . .
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3.6.1 Motivation:

• In temporal gauge A0 = 0 → U0 = 1 we can define gauge field
Hamiltonian Ĥ [Kogut-Susskind]

• Ψ: (trial) wave function of qq̄ pair at x̄, ȳ; spatial gauge transforma-
tions

Ψab → Λac(x̄)Λ
†
bd(ȳ)Ψcd

• Ĥ gauge invariant: 〈Ψ′|e−T Ĥ |Ψ〉 = 0 unless Ψ, Ψ′ have similar gauge
transformation properties.

〈Ψ|e−T Ĥ |Ψ〉 =
∑

n
|〈Ψn|Ψ〉|2e−EnT

→ |〈Ψ0|Ψ〉|2e−E0T when T →∞

• E0 = V (R) ground state energy of static charges (R = |x̄− ȳ|)

• Trial wave function: Ψab = Uab(x 7→ y)Ψvac, where Ψvac is the (gauge
invariant) vacuum wave function

〈Ψ|e−T Ĥ |Ψ〉 =
1

Z

∫

[dU ] Tr [U †(T ; x̄ 7→ ȳ)U(0; x̄ 7→ ȳ)]e−S

= 〈WRT 〉

• WRT gauge invariant: can be measured in any gauge:

− 1

T
log〈WRT 〉 → V (R)

as T →∞.

• If we can guess/construct Ψ ≈ Ψ0, T need not be very large.
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3.7 Measuring the string tension from Monte Carlo

The Wilson loops become exponentially small (∼ e−σRT ) as the size in-
creases. However, the statistical noise is ∼ constant in magnitude in-
dependent of loop size! Thus, we need to increase the number of mea-
surements exponentially as the loop size increases.

Smearing improves the situation: instead
of using only straight const-T legs in the
loop, take an averaged sum over paths
around the straight one. The smearing is
to mimic the wave function of the desired
qq̄ ground state. The hope is that now
a smaller T -extent would be sufficient to
get the asymptotic behaviour, i.e. look
like the limit T →∞.

R

T

Smearing can be done recursively: let i ⊥ t, and

Ui(x)← Ui(x) + c
∑

j⊥i,t
Uj(x)Ui(x+ ĵ)U †j (x+ î)

= +

i.e. substitute link matrices on a plane ⊥ to t by the weighted average of
the link and the staples (which are also ⊥ to t). This can be repeated a
few times.
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3.8 Wilson loop in pure gauge SU(3)

[Bali,Schilling, Wachter 1995] 483 × 64 quenched lattice, β = 6.8
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For large loops

〈W 〉 ∼ e−V (r)T

Phenomenological form

V (r) = V0 + σr − e

r
+ f

[

GL(~r)−
1

r

]
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