2 Quantum field theory on the lattice

2.1 Fundamentals

e Quantum field theory (QFT) can be defined using Feynman’s path
integral [R. Feynman, Rev. Mod. Phys. 20, 1948]:

z = [[do(x)] explis(s)]
S = /d4$£(¢a Orp)
Here x = (wo, 71, 22, ¥3), and g, = diag(+,-,-,-)

e Physical observables can be evaluated if we add a source S —
S + J.¢.. For example, 1- and connected 2-point functions are:

1
(02) = 57| 108 Z = [1dd]o. explis]
0 0 1 e 2
(6:00) = 7o 82 = 7 [1d016.0, expliS] = (6)

e These can be computed using perturbation theory, if the coupling
constants in S are small (see any of the oodles of QFT textbooks).

e How [I, d¢(z) is defined? Needs regularization.

e However: if
— 4-volume is finite, and
— 4-coordinate z is discrete (v € aZ*, a lattice spacing),

the integral in (1) has finite dimensionality and can, in principle, be
evaluated e.g. by brute force ( = computers)

— gives fully non-perturbative results.

e Need to extrapolate: V' — oo, a — 0 in order to recover continuum
physics.
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e But: - the dimensionality of the integral is (typically) huge

- expiS IS complex+unimodular: every configuration {¢}
contributes with equal magnitude

— extremely slow convergence in numerical computations
(useless in practice).

e This is (largely) solved by using imaginary time formalism (Eu-
clidean spacetime).

e Imaginary time also admits non-zero temperature 7.

2.2 Units:

Standard HEP units, where

c=h= kB = 1,
and thus
[length] ™ = [time] ™' = [mass] = [temperature] = [energy] = GeV.

Mass m = rest energy mc* = (Compton wavelength) ™ mc/A.

(1GeV) ! =~ 0.2fm

2.3 Path integral in imaginary time
Consider scalar field theory in Minkowski spacetime:
S = / Prdt L(g,0,0) = / &z dt [10,00"¢ — V(0)]
We obtain the (classical) Hamiltonian by Legendre transformation:
H = [dvdt [x¢ - L]
= [d*xdt [}7*+ §(0:0)* + V(9)]
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Here 7 is canonical momentum for ¢: m = 6.£/5¢.
Quantum field theory: consider Hilbert space of states |¢), |r), and field
operators (¢ — ¢, 1 — 7, H — H), with the usual properties:

o OD)le) = ()[9)
o JUldo@ledol =1 [[Mldn(x)/@m)m){x| =1

~

o [6(2),0(x) = —id"(z - &)
o (glm) =expli [ dPam(z)(2)]

Time evolution operator is U(t) = et

Feynman showed that the quantum theory defined by A and the Hilbert
space is equivalent to the path integral (1). We shall now do this in
imaginary time.

Let us now consider the quantum system in imaginary time:
t—7=1it, exp|—iHt] — exp[—TH]

This makes the spacetime Euclidean: g = (+ — — =) — (+ + ++).
We shall keep the Hamiltonian H as-is, and also the Hilbert space.

Let us also discretize space (convenient for us but not necessary at this
stage), and use finite volume:

r = an, n;=0...N
/d3x — a’y
1
Oip — g[éb T+ €a) — o(7)] = Aip(T)
Thus, the Hamiltonian is:
H=d' S J#@)] + 3Ad(@) + VId@)]
Let us now consider the amplitude (¢p|e~ =75 | ,):

1) divide time in small intervals: 73 — 74 = N,a,. Obviously

(dple” |61y = (9p|(e= )N |¢4).
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2) insert 1-operators [ [[Tdei)|é:)(éil, [ [[] dmi]|ms) (]

(@5l 10a) =
/ ZH2 [T do(x) ZHl [l (2) (@nlmy,) (mxle ™ o)
< (o, |y, 1) (v, —1le ™ g 1) . X {almi) (mile ™ [¢.4)
Thus, we need to calculate
(rile o) = exp|—a'ar X (32 + J(Ai6)? + Vi)

(mil¢i) + O(a?)
and
(Gisn|mi) (| = o1 22y Ti(B)Git1 (T) o —ia® 30, mi ()i (T)
= explid’a, Y 7i(Z) Aogi(T)]

where we have defined Ag¢; = ;(@H — 0;).
We can now integrate over m;(7): '
/[H mi(Z)] expla’a, Y. =177 + (Do) Ti]

o 1N5/2
3 x exp|—a’a; Y %(Aogbi(aﬁ))Q]
a-ar T

Repeating this for : = 1... N,, and identifying the time coordinate z, =
T = a,t, we finally obtain the path integral

(@ple ™ [¢a) o [[[Tdole "

where Sg is the Euclidean (imaginary time) action

S = a%ar (A0 + Vo)
> [t (0,0 + Ve

and we have the boundary conditions ¢(74) = ¢4, ¢(78) = ¢5.
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The path integral is precisely in the form of a partition function for a
4-dimensional classical statistical system, with the identification Sg «
H/(kgT).

For convenience, we make the system periodic in time by identifying
»4 = ¢p and integrating over ¢ 4.

In summary:

Minkowski — Euclidean
ﬁM — ,CE = —EM(I'O — ixo;ﬁo — —i@o)
g = (1,—1,—1,—1) — g = (1,1,1,1)

We can now make a connection between the correlation functions of the
“statistical” theory and the Green'’s functions of the quantum field theory.
First, note that we can interpret Ty, ». = (¢i11]e “|¢;) as a transfer
matrix. In terms of 7" the partition function is

7z = [ldgle % = Tr(1T™")

Let us label the eigenvalues of T'by Ay, A1 ..., sothat \;j > A\; > .... Note
that \; = exp — F;, where E; are eigenvalues of H. Thus, A\ corresponds
to the state of lowest energy, vacuum |0). If we now take NV, to be very
large (while keeping a, constant; i.e. take A to be large),

Z =3 N7 =21+ O0((A/20)™)]
For example, a 2-point function can be written as (leti — j > 0)
1 —S5E 1 Ny —i+j 2i—j 7
(0iy) = - [1d)gide*r = ZTr(TNHGT4).
Taking now N, — oo, and recalling a,(i — j) = 7, — 75,

($i65) = (O1(T/20)' 8|0} = (06(7:)o(;) 0]
where we have introduced time-dependent operators

o(r) = e,
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Allowing for both positive and negative time separations of 7; and 7;, we
can identify

($(7:)9(73)) = (0| T [d(7:)$(73)]]0).

where 7T is the time ordering operator.

2.4 Mass spectrum:

e Green’s functions in time 7:

OEOTOI0) = (A6 )
= (01" T(0)e 7T (0)[0)
= (O[T(0) X |Ew) (Enle 7T (0)[0)
= e PTOI0(0) B
— e BT0|D(0)|Ep))?  asT — oo

where |Ey) is the lowest energy state with non-zero matrix element
(O[T (0) | Eo)-

— measure masses (E,) from the exponential fall-off of correlation func-
tions.

2.5 Finite temperature

Connection Euclidean QFT < classical statistical mechanics was de-
rived for zero-temperature quantum system. However, this can be read-
ily generalized to finite temperature:

Quantum thermodynamics w. the Gibbs ensemble:

Z=Tre M = [[dg] (gle™""/"|)

Expression is of the same form as the one which gave us the Euclidean
path integral for T" = 0 theory! The difference here is
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1) Finite + fixed “imaginary time” interval 1/7
2) Periodic boundary condition: ¢(1/7") = ¢(0).
Repeating the previous derivation, the partition function becomes

Z(T) = /[dgb] e 5F = /[qu] exp|— /OI/T dT/dSSU,Cg]

Thus, a connection between:

— Quantum statistics in 3d: Z = Tre—H/T

— Classical statistics in 4d: Z = [[d¢]e®

Euclidean P.I. is a very common tool for finite T field theory analysis [J.
Kapusta, Finite Temperature Field Theory, Cambridge University Press]|

2.6 Some terminology:

In numerical work, lattice is a finite box with finite lattice spacing a. In
order to obtain continuum results, we should take 2 limits:

e V — oo thermodynamic limit
e ¢ — (0 continuum limit

Both have to be controlled — expensive!

1) Perform simulations with fixed a, various V. Extrapolate V' — oc.
2) Repeat 1) using different a’s. Extrapolate a — 0.

3) [ In QCD, one often has to extrapolate m, — m, phys.- ]

T =0:

1) V — oc:
N,., Ny — o0, a constant.

2) continuum:

a — 0.
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T > 0:

1) V — oc:
N, — o0, N, a constant, e St
2) continuum: RN

a — 0, 7 = aN, constant.

2.7 Scalar field

Free scalar field on a finite d-dimensional lattice with periodic boundary
conditions:

T, =an,, n, €2

Action:

S =Y a %Zﬂ:

T

1 1
?((ﬁx—&-u - ¢£E)2 + §m2¢2 = ad {%bemm,y(ﬁy + %mQCb:ﬂ
(implicit sum over x, y), and we define the lattice d’Alembert operator as

Oy y@y = —AQQS =y 200 — Qo — Pu—p

1 a?

The action is of form S = 3¢, M, ,¢,, and

7 = [ldgle™® = (Det M/2r)~!/?

2.8 Fourier transforms:
J(k) = Y ate ™ f (@)

Since = = an, f(ak + 27n) = f(k), and we restrict k to Brillouin zone:
—m <ak, <
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Inverse transform:

o )

= [ 8

—m/a (27)4

Note: often it is convenient to use dimensionless natural lattice units
x, €4, —m <k, <m.

The above inverse transform is for infinite lattice. On a finite lattice 0 <
r,/a < N, and for simplicity assuming periodic boundary conditions:
z, + aN = z,, only momenta ak, = 3*n, — v, where 0 < n, < N are
allowed. Now the inverse transform is:

1 g ¥ 2T
f(ZU) - % (aN)delkxf(k)7 k# = N T

N

This approaches the previous one when N — ~c.

Lattice propagator:
The lattice propagator G(z,y) is defined to be the inverse of operator
a~ M = (O + m?):

Z ad(Dx,y + m25x,y)G(ya Z) = 53:,2

Yy

Take Fourier transform (G(x,y) = G(z — y)):

> 2 (1 —coskya) +m?| G(k) =1

W a?

which gives the lattice propagator

. 1 2

2 k
G(k) = - , n?
k% + m?2

— sin —
a 2

where k? = %:k:i =

m

Continuum limit: when a — 0, G(k) = 1/(k* + m?) + O(a?).

Generating function for Green'’s functions:
S — S(J) =Y a [Lo.(0+m*)p, — J,6,]
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Now
2(J) = [lagle ") = Z(0) exp[y a*} 1, Gi(z,y) )]

N-point functions

o8
0J, 8,

(G ... b)) = Z(0)7!

Interactions: just modify (for example)

1 4
L= »Cfree + @A¢

2.9 Pole structure of the propagator

In Minkowski spacetime, the pole of the propagator gives the dispersion
relation of the free particle: if k2 = m?, we have k2 = k* + m?. For the
Euclidean propagator the denominator is always positive, and there are
no poles.

However, the pole structure can be recovered by performing a Wick ro-
tation back to Minkowski space: k) + —ikF, as will be shown in more
detail below. With this substitution we obtain for the pole

2 ko]’ -
0 = [sinzga + 3 k7 +m?
a i

4 k ~
— sinhZSCZ:Zk?—l—m?
a i

(ma)?

4

ki
— koa = 2sinh™! \JZSim2 2a +
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4 I I

— lattice
---- continuum

ol \ \

\
-3 -2 -1 0 1 2 3
k

In figure above the lattice and continuum dispersion relations are shown
for ma = 0.2-mass particle, with k = (k, 0, 0).
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