
2 Quantum field theory on the lattice

2.1 Fundamentals

• Quantum field theory (QFT) can be defined using Feynman’s path
integral [R. Feynman, Rev. Mod. Phys. 20, 1948]:

Z =
∫

[

∏

x
dφ(x)

]

exp[iS(φ)]

S =
∫

d4xL(φ, ∂tφ)

Here x = (x0, x1, x2, x3), and gµν = diag(+,-,-,-)

• Physical observables can be evaluated if we add a source S →

S + Jxφx. For example, 1- and connected 2-point functions are:

〈φx〉 =
∂

i∂Jx

∣

∣

∣

∣

∣

J=0

logZ =
1

Z

∫

[dφ]φx exp[iS]

〈φxφy〉 =
∂

i∂Jx

∂

i∂Jy
logZ =

1

Z

∫

[dφ]φxφy exp[iS]− 〈φx〉
2

• These can be computed using perturbation theory, if the coupling
constants in S are small (see any of the oodles of QFT textbooks).

• How
∏

x dφ(x) is defined? Needs regularization.

• However: if

– 4-volume is finite, and

– 4-coordinate x is discrete (x ∈ aZ4, a lattice spacing),

the integral in (1) has finite dimensionality and can, in principle, be
evaluated e.g. by brute force ( = computers)

7→ gives fully non-perturbative results.

• Need to extrapolate: V → ∞, a → 0 in order to recover continuum
physics.
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• But: - the dimensionality of the integral is (typically) huge
- exp iS is complex+unimodular: every configuration {φ}

contributes with equal magnitude
7→ extremely slow convergence in numerical computations

(useless in practice).

• This is (largely) solved by using imaginary time formalism (Eu-
clidean spacetime).

• Imaginary time also admits non-zero temperature T .

2.2 Units:

Standard HEP units, where

c = h̄ = kB = 1,

and thus

[length]−1 = [time]−1 = [mass] = [temperature] = [energy] = GeV.

Mass m = rest energy mc2 = (Compton wavelength)−1 mc/h̄.

(1GeV)−1 ≈ 0.2 fm

2.3 Path integral in imaginary time

Consider scalar field theory in Minkowski spacetime:

S =
∫

d3x dtL(φ, ∂tφ) =
∫

d3x dt
[

1
2∂µφ ∂

µφ− V (φ)
]

We obtain the (classical) Hamiltonian by Legendre transformation:

H =
∫

d3x dt
[

πφ̇− L
]

=
∫

d3x dt
[

1
2π

2 + 1
2(∂iφ)

2 + V (φ)
]
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Here π is canonical momentum for φ: π = δL/δφ̇.
Quantum field theory: consider Hilbert space of states |φ〉, |π〉, and field
operators (φ → φ̂, π → π̂, H → Ĥ), with the usual properties:

• φ̂(x̄)|φ〉 = φ(x̄)|φ〉

•
∫

[
∏

x
dφ(x̄)]|φ〉〈φ| = 1

∫

[
∏

x
dπ(x̄)/(2π)]|π〉〈π| = 1

• [φ̂(x̄), φ̂(x̄′)] = −iδ3(x̄− x̄′)

• 〈φ|π〉 = exp [i
∫

d3xπ(x̄)φ(x̄)]

Time evolution operator is U(t) = e−iĤt

Feynman showed that the quantum theory defined by Ĥ and the Hilbert
space is equivalent to the path integral (1). We shall now do this in
imaginary time.

Let us now consider the quantum system in imaginary time:

t → τ = it , exp[−iĤt] → exp[−τĤ]

This makes the spacetime Euclidean: g = (+ − − −) → (+ + ++).
We shall keep the Hamiltonian Ĥ as-is, and also the Hilbert space.
Let us also discretize space (convenient for us but not necessary at this
stage), and use finite volume:

x̄ = an̄, ni = 0 . . . Ns
∫

d3x → a3
∑

x

∂iφ →
1

a
[φ(x̄+ ēia)− φ(x̄)] ≡ ∆iφ(x̄)

Thus, the Hamiltonian is:

Ĥ = a3
∑

x

[

1
2 [π̂(x)]

2 + 1
2 [∆iφ̂(x̄)]

2 + V [φ̂(x̄)]
]

Let us now consider the amplitude 〈φB|e
−(τB−τA)Ĥ |φA〉:

1) divide time in small intervals: τB − τA = Nτaτ . Obviously

〈φB|e
−(τB−τA)Ĥ |φA〉 = 〈φB|(e

−aτ Ĥ)Nτ |φA〉.
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2) insert 1-operators
∫

[
∏

x
dφi]|φi〉〈φi|,

∫

[
∏

x
dπi]|πi〉〈πi|

〈φB|e
−τĤ |φA〉 =

∫





Nτ
∏

i=2

∏

x
dφi(x)









Nτ
∏

i=1

∏

x
dπi(x)



 〈φB|πNτ
〉〈πNτ

|e−aτ Ĥ |φNτ
〉

×〈φNτ
|πNτ−1〉〈πNτ−1|e

−aτ Ĥ |φNτ−1〉 . . .× 〈φ2|π1〉〈π1|e
−aτ Ĥ |φA〉

Thus, we need to calculate

〈πi|e
−aτ Ĥ |φi〉 = exp

[

−a3aτ
∑

x

(

1
2π

2
i +

1
2(∆iφi)

2 + V [φi]
)

]

× 〈πi|φi〉+O(a2τ)

and

〈φi+1|πi〉〈πi|φi〉 = eia
3
∑

x
πi(x̄)φi+1(x̄)e−ia3

∑

x
πi(x̄)φi(x̄)

= exp[ia3aτ
∑

x
πi(x̄)∆0φi(x̄)]

where we have defined ∆0φi =
1

aτ
(φi+1 − φi).

We can now integrate over πi(x̄):
∫

[
∏

x
πi(x̄)] exp[a

3aτ
∑

x
−1

2π
2
i + (i∆0φi)πi]

=

[

2π

a3aτ

]N3
S
/2

× exp[−a3aτ
∑

x

1
2(∆0φi(x̄))

2]

Repeating this for i = 1 . . . Nτ , and identifying the time coordinate x0 =
τ = aτ i, we finally obtain the path integral

〈φB|e
−τĤ |φA〉 ∝

∫

[
∏

x
dφ]e−SE

where SE is the Euclidean (imaginary time) action

SE = a3aτ
∑

x
(12(∆µφ)

2 + V [φ])

→
∫

d4x(12(∂µφ)
2 + V [φ])

and we have the boundary conditions φ(τA) = φA, φ(τB) = φB.
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The path integral is precisely in the form of a partition function for a
4-dimensional classical statistical system, with the identification SE ↔

H/(kBT ).
For convenience, we make the system periodic in time by identifying
φA = φB and integrating over φA.
In summary:

Minkowski → Euclidean

LM → LE = −LM(x0 → ix0; ∂0 → −i∂0)

g = (1,−1,−1,−1) → g = (1, 1, 1, 1)

We can now make a connection between the correlation functions of the
“statistical” theory and the Green’s functions of the quantum field theory.
First, note that we can interpret Tφi+1,φi

= 〈φi+1|e
−aτ Ĥ |φi〉 as a transfer

matrix. In terms of T the partition function is

Z =
∫

[dφ]e−SE = Tr (TNτ )

Let us label the eigenvalues of T by λ0, λ1 . . ., so that λ0 > λ1 ≥ . . .. Note
that λi = exp−Ei, where Ei are eigenvalues of Ĥ. Thus, λ0 corresponds
to the state of lowest energy, vacuum |0〉. If we now take Nτ to be very
large (while keeping aτ constant; i.e. take ∆τ to be large),

Z =
∑

i

λNτ

i = λNτ

0 [1 +O((λ1/λ0)
Nτ )]

For example, a 2-point function can be written as (let i− j > 0)

〈φiφj〉 =
1

Z

∫

[dφ]φiφje
−SE =

1

Z
Tr (TNτ−i+jφ̂T i−jφ̂).

Taking now Nτ → ∞, and recalling aτ(i− j) = τi − τj,

〈φiφj〉 = 〈0|φ̂(T/λ0)
i−jφ̂|0〉 = 〈0|φ̂(τi)φ̂(τj)|0〉,

where we have introduced time-dependent operators

φ̂(τ) = eτĤ φ̂e−τĤ .
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Allowing for both positive and negative time separations of τi and τj, we
can identify

〈φ(τi)φ(τj)〉 = 〈0|T [φ̂(τi)φ̂(τj)]|0〉,

where T is the time ordering operator.

2.4 Mass spectrum:

• Green’s functions in time τ :

〈0|Γ(τ)Γ†(0)|0〉 =
1

Z

∫

[dφ]Γ(τ)Γ†(0)e−S

= 〈0|eĤτΓ(0)e−ĤτΓ†(0)|0〉

= 〈0|Γ(0)
∑

n
|En〉〈En|e

−ĤτΓ†(0)|0〉

=
∑

n
e−Enτ |〈0|Γ(0)|En〉|

2

→ e−E0τ |〈0|Γ(0)|E0〉|
2 as τ → ∞

where |E0〉 is the lowest energy state with non-zero matrix element
〈0|Γ(0)|E0〉.

→ measure masses (E0) from the exponential fall-off of correlation func-
tions.

2.5 Finite temperature

Connection Euclidean QFT ↔ classical statistical mechanics was de-
rived for zero-temperature quantum system. However, this can be read-
ily generalized to finite temperature:
Quantum thermodynamics w. the Gibbs ensemble:

Z = Tr e−Ĥ/T =
∫

[dφ] 〈φ|e−Ĥ/T |φ〉

Expression is of the same form as the one which gave us the Euclidean
path integral for T = 0 theory! The difference here is
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1) Finite + fixed “imaginary time” interval 1/T
2) Periodic boundary condition: φ(1/T ) = φ(0).

Repeating the previous derivation, the partition function becomes

Z(T ) =
∫

[dφ] e−SE =
∫

[dφ] exp[−
∫ 1/T

0
dτ

∫

d3xLE ]

Thus, a connection between:
– Quantum statistics in 3d: Z = Tr e−Ĥ/T

– Classical statistics in 4d: Z =
∫

[dφ]e−S

Euclidean P.I. is a very common tool for finite T field theory analysis [J.
Kapusta, Finite Temperature Field Theory, Cambridge University Press]

2.6 Some terminology:

In numerical work, lattice is a finite box with finite lattice spacing a. In
order to obtain continuum results, we should take 2 limits:

• V → ∞ thermodynamic limit

• a → 0 continuum limit

Both have to be controlled – expensive!

1) Perform simulations with fixed a, various V . Extrapolate V → ∞.

2) Repeat 1) using different a’s. Extrapolate a → 0.

3) [ In QCD, one often has to extrapolate mq → mq,phys.. ]

T = 0:

1) V → ∞:

Nτ , Ns → ∞, a constant.

2) continuum:

a → 0.
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T > 0:

1) V → ∞:

Ns → ∞, Nτ , a constant.

2) continuum:

a → 0, 1
T = aNτ constant.

2.7 Scalar field

Free scalar field on a finite d-dimensional lattice with periodic boundary
conditions:

xµ = anµ, nµ ∈ Z

Action:

S =
∑

x
ad





1
2

∑

µ

1

a2
(φx+µ − φx)

2 +
1

2
m2φ2



 = ad
[

1
2φx2x,yφy +

1
2m

2φ2
x

]

(implicit sum over x, y), and we define the lattice d’Alembert operator as

2x,yφy = −∆2φ =
∑

µ

2φx − φx+µ̂ − φx−µ̂

a2

The action is of form S = 1
2φxMx,yφy, and

Z =
∫

[dφ]e−S = (DetM/2π)−1/2

2.8 Fourier transforms:

f̃(k) =
∑

x
ade−ikxf(x)

Since x = an, f̃(ak + 2πn) = f̃(k), and we restrict k to Brillouin zone:
−π < akµ ≤ π
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Inverse transform:

f(x) =
∫ π/a

−π/a

ddk

(2π)d
eikxf̃(k)

Note: often it is convenient to use dimensionless natural lattice units
xµ ∈ Z, −π < kµ ≤ π.
The above inverse transform is for infinite lattice. On a finite lattice 0 ≤

xµ/a < N , and for simplicity assuming periodic boundary conditions:
xµ + aN = xµ, only momenta akµ = 2π

N nµ − π, where 0 < nµ ≤ N are
allowed. Now the inverse transform is:

f(x) =
∑

k

1

(aN)d
eikxf̃(k), kµ =

2π

N
nµ − π.

This approaches the previous one when N → ∞.

Lattice propagator:

The lattice propagator G(x, y) is defined to be the inverse of operator
a−dM = (2+m2):

∑

y
ad(2x,y +m2δx,y)G(y, z) = δx,z

Take Fourier transform (G(x, y) = G(x− y)):




∑

µ

2

a2
(1− cos kµa) +m2



 G̃(k) = 1

which gives the lattice propagator

G̃(k) =
1

k̂2 +m2
, where k̂2 =

∑

µ
k̂2µ =

∑

µ

[

2

a
sin

kµa

2

]2

.

Continuum limit: when a → 0, G̃(k) = 1/(k2 +m2) +O(a2).

Generating function for Green’s functions:

S → S(J) =
∑

x
ad

[

1
2φx(2+m2)φx − Jxφx

]
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Now

Z(J) =
∫

[dφ]e−S(J) = Z(0) exp[
∑

x,y
a2d 12JxG(x, y)Jy]

N-point functions

〈φx . . . φy〉 = Z(0)−1 δ

δJx
. . .

δ

δJy
Z(J)∣

∣

∣

∣

J=0

Interactions: just modify (for example)

L = Lfree +
1

4!
λφ4

2.9 Pole structure of the propagator

In Minkowski spacetime, the pole of the propagator gives the dispersion
relation of the free particle: if k2 = m2, we have k20 = k

2 + m2. For the
Euclidean propagator the denominator is always positive, and there are
no poles.
However, the pole structure can be recovered by performing a Wick ro-
tation back to Minkowski space: kM0 ↔ −ikE0 , as will be shown in more
detail below. With this substitution we obtain for the pole

0 =

[

2

a
sin

ik0a

2

]2

+
∑

i

k̂2i +m2

→
4

a
sinh2

k0a

2
=

∑

i

k̂2i +m2

→ k0a = 2 sinh−1

√

√

√

√

√

∑

i

sin2
kia

2
+

(ma)2

4
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k 0

lattice
continuum

In figure above the lattice and continuum dispersion relations are shown
for ma = 0.2-mass particle, with k = (k, 0, 0).
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