Introduction to de Rham cohomology

Pekka Pankka

December 11, 2013



Preface

These are lecture notes for the course “Johdatus de Rham kohomologiaan”
lectured fall 2013 at Department of Mathematics and Statistics at the Uni-
versity of Jyvaskyla.

The main purpose of these lecture notes is to organize the topics dis-
cussed on the lectures. They are not meant as a comprehensive material on
the topic! These lectures follow closely the book of Madsen and Tornehave
“From Calculus to Cohomology” [7] and the reader is strongly encouraged
to consult it for more details. There are also several alternative sources
e.g. [1, 9] on differential forms and de Rham theory and [4, 5, 3] on multi-
linear algebra.
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Chapter 1

Alternating algebra

Let v1,...,v, be vectors in R"™. The volume of the parallelepiped
P(vi,...,vp) :{t1U1+"‘+tnvn eR*":0<t;<1,i= 1,...,n}

is given by
|det [vg -+ - vy]] -

Whereas the absolute value of the determinant is independent on the order

of vectors, the sign of det [v1 - - - v,,] depends on the order of (vy,...,v,). The
quantity det [v1 - - - v,,] is therefore sometimes called “signed volume”. The
role of the sign is to detect the so-called “orientation” of vectors (v1,...,vy).

The notion of volume and “signed volume” based on the determinant
allows us to consider n-dimensional objects in n-dimensional space. In this
section, we discuss multilinear algebra which allows us to consider volumes
(and “signed volumes”) of k-dimensional (linear) objects in n-dimensional
space when k£ < n. We discuss these geometric ideas in later sections and
develop first the necessary linear theory.

1.1 Some linear algebra

We begin by recalling some facts from linear algebra; see e.g. [2, Chapter I
& 11] for a detail treatment.
Let V' be a (real) vector space, that is, we have operations

+:VxV =YV, (u,v) = u+ v,
S RxV =V, (a,v) — av,

for which the triple (V,+,-) satisfies the axioms of a vector space.



Linear maps and dual spaces

Given vector spaces V and V', a function f: V — V' is a called a linear
map if

flutav) = f(u) +af(v)

for all u,v € V and a € R. A bijective linear map is called a (linear)
isomorphism.
Given linear maps f,g: V — V'’ and a € R, the mapping

f+ag: V=V v fv)+ag(v),

is a linear map V' — V’. Thus the set Hom(V, V") of all linear maps V. — V'
is also a vector space under operations
+: Hom(V, V') x Hom(V, V') — Hom(V, V"),  (f,9)— f+g,
-t R x Hom(V, V') = Hom(V, V"),  (a, f) = af.

An important special case is the dual space V* = Hom(V,R) of V.

Theorem 1.1.1 (Dual basis). Let V' be a finite dimensional vector space.
Then V* = V. Furthermore, if (e;)l, is a basis of V, then (&;),, where
€.V — R is the map

1, 1=

is a basis of V'*.
Proof. Exercise. O

The basis (¢;); of V* in Theorem 1.1.1 is called dual basis (of (e;)i ). Note
that bases of V' and V* do not have the same cardinality (i.e V and V* do
not have the same “dimension”) if V' is infinite dimensional!

Induced maps

Given f € Hom(V, W) and a linear map ¢: U — V, we have a composition
foe e Hom(U, W):
U—*=v
N
N
for ™y if
w

The composition with fixed map ¢ induces a linear map as formalized in the
following lemma.



Lemma 1.1.2. Let U,V,W be vector spaces. Let ¢: U — V be a linear

map. Then
¢*: Hom(V, W) — Hom(U, W), f+ fop

is a linear map. Moreover, if ¢ is an isomorphism then ©* is an isomor-
phism.

Similarly, we may also consider f € Hom(U, V) and a fixed linear map
PV —W:

v—Ll.vy
AN

AN
[N iw
W

Lemma 1.1.3. Let U, V,W be vector spaces. Let ¥: V — W be a linear
map. Then
v« Hom(U, V) — Hom(U, W), f— o f

is a linear map. Moreover, if ¥ is an isomorphism then ¥, is an isomor-
phism.

The mapping ¢* in Lemma 1.1.2 is so-called pull-back (under ¢). The
mapping v, is called as push-forward. As an immediate corollary of Lemma
1.1.2 we have the following observation.

Corollary 1.1.4. Let U and V be vector spaces and ¢: U — V a linear
map. Then
e VI U fe foyp

is a linear map. Moreover, ©* is an if @ is an isomorphism.

Subspaces and quotients

A subset W C V of a vector space V is a subspace of V if u + aw € W for
all u,v € W and a € R. A coset of an element v € V' with respect to W is
the subset

v+W={v+weV:weW}

The relation ~y on V', given by the formula v ~y v < u—v € W, is an
equivalence relation with equivalence classes {v+ W: v € V}.

The set V/W of these equivalence classes has a natural structure of a
vector space given by operations

+: V/WxV/W=V/W,  (u+W),(v+W))—= (ut+v)+W,
S RxV/W —=V/W,  (a,v+V/W)— (av) + W,

that is,
(u+W)+alv+W)=(u+av)+ W



for all u,v € W and a € R. The space V/W is called the quotient space of
V' (with respect to W ). Note that the mapping

TV V/Wo—v+ W,

is linear. The mapping p is called quotient (or canonical) map.

A fundamental fact of on linear mappings is that the kernel and the
image are vector spaces, that is, let f: V — V' be a linear map between
vector spaces, then

kerf = fH0)={veV: f(v)=0}
Imf = f[V]={fv)eV':veV}
are subspaces of V and V', respectively.

Theorem 1.1.5 (Isomorphism theorem). Let f: V — V' be a linear map
between vector spaces V' and V'. Then the mapping ¢: V/ker f — Imf,
v+ W f(v)+ W, is a linear isomorphism satisfying

f

SN

V/ker f

V

Imf

1%

where p: V. — V/Xker f is the canonical map.

The proof is left as a voluntary exercise.

Products and sums

Given a set I (finite or infinite) and a vector space V; for each i € I, the
product space [[,.; Vi has a natural linear structure given by

(v)i + a(v)); = (v + avl);
where v;, v, € V; and a € R. For I = (), we declare [],.; Vi = {0}.
If V; = V; =V for all i, € I, denote V! = [Lic; V. Note that, Vi,

in fact, the space of all functions I — V.
Note also that, for n € N, we have

V=V x .- x Vvt — a1 functions {1,...,n} — V}.

The sum of two vector spaces V @ W has (at least) three different mean-
ings in the literature. Abstractly, V & W is the product space V x W.

More concretely, if V' and W are subspaces of a vector space U, then
V 4+ W is the subspace of U spanned by V and W, that is,

VW ={v+welU:veV,we W}

If VNW = {0}, notation V@ W for V+W is commonly used. If U, however,
is an inner product space, then notation V @ W is commonly reserved for
the case that v L w for all v € V and w € W. (Be warned!)



1.2 Multilinear maps

Definition 1.2.1. Let Vi,...,V;, and W be vector spaces. A function
fiVix. - x V= Wis k-linear if, for all v; € V; (= 1,...,k),
f(or, .. v, 0+ aw, vig1,vE) = f(vr, -, Vil1, U, V41, V)
+ af(vb Vi1, W, Ui+1avk')

foralli e {1,...,k}, v,w € V;, and a € R. A mapping is multilinear if it is
k-linear for some k£ > 1.

Example 1.2.2. Let V be a (real) vector space. Then the duality pairing
V* x V — R defined by (¢,v) — @(v) is bilinear.

Remark 1.2.3. A function f: Vi X --- x Vi = W is k-linear if and only if
for every sequence (vi,...,vx) € Vi X -+ x Vi and each 1 < i < k functions

v f(vh ceey Ui—hv)vi-i-lvvk)
are linear mappings V; — W.

Example 1.2.4. Let V be a (real) vector space. Then the duality pairing
V* x V — R defined by (p,v) — @(v) is bilinear (i.e. 2-linear).

Example 1.2.5. An inner product (-,-): V. x V' — R is bilinear.

Values of multilinear maps V¥ — R depend only on values on basis
elements. This can be formalized as follows.

Lemma 1.2.6. Let V' be an n-dimensional vector space and {e1,..., e}
a basis of V. Let f: V¥ — R be k-linear, and v; = 2?21 vije; € V. for
i=1,...,k. Then

f(vl,...,vk) = Z f(ejl,...,ejk)vlji---vkjk
(j17"'7jk)€{1="'7n}k
Proof. Since f is k-linear,

n n

flog,..ov,) = f Zvljleji,...,kajkejk

J1=1 Jrk=1

— Z . ‘Zf(vljleji’ .. -,Uk;jkejk)
J1 Jk

— ZZ(Uljlvkjk)f(ejz77e]k)
J1 Jk

O]

Corollary 1.2.7. Let V' be an n-dimensional vector space and (eq,...,ep)
a basis of V.. Suppose f,g: V¥ — W satisfy

f<6j17""ejk> :g(ej17"'€jk)

for all multi-indices (j1,...,7%) € {1,...n}*. Then f =g.



1.2.1 Vector space of multilinear maps

Definition 1.2.8. Let Vi,...,V,, VW be vector spaces. We denote by
Mult(Vy X -+ x Vi, W) the set of all k-linear maps Vi x -+ x Vi — W. We
denote Mult®(V, W) = Mult([T", W).

Lemma 1.2.9. Let Vi,..., Vi, W be vector spaces. Then Mult(Vy x -+ x
Vi, W) is a (vector) subspace of Hom(Vy x - - Vi, W).

Proof. Clearly f 4+ ag: Vi X --- x Vj, — W is k-linear if f,g € Mult(V; x
o X Vi, W) and a € R. O

Definition 1.2.10. Let U, V and W be vector spaces and ¢: U — V a
linear map. Given a k-linear map f: V¥ — W, the map ¢*f: U¥ — W is
defined by formula

(1.2.1) (@), - sur) = f((ur), - p(ur))

for uy,...,up € U.

Lemma 1.2.11. Let U, V and W be vector spaces and ¢©: U =V a linear
map. Then o*f € Mult®(U, W) for every f € Mult®*(V,W). Furthermore,
the map

©* : Mult®(V, W) — Mult® (U, W)

defined by formula (1.2.1), is linear.

1.2.2 Tensor product

This section is added for completeness. We do not use tensor products in
the following sections.

Let f: V¥ — R and g: U’ — R be k- and (-linear maps respectively.
Define

f®g: VEx U SR,
(f®g)(vl7'"avk’aula"',uf) :f(vla"‘avk)g(ulv"'vvk)

Lemma 1.2.12. Let f: VF - R and g: Ut — R be multilinear. Then f®g
is multilinear. Moreover, if h: W™ — R is multilinear, then f ® (g ® h) =
(f®g)®h.

Proof. Exercise. O

Lemma 1.2.13. Let U,V be vector space, f € Mult*(V), g € Mult’(V),
and p: U —V a linear map. Then

e (fog) =9 f®'y.

Proof. Exercise. O
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Lemma 1.2.14. Let V be an n-dimensional vector space, (e1,. .., e,) a basis
of V and (e1,...,e,) the corresponding dual basis. Let f: V¥ — R. Then
there exists coefficients ay € R, J = (j1,...5k) € {1,...,n}*, for which

f= > asEn @ e @,
‘]:(jlruvjk)e{lr“n}k
Moreover, aj = f(ej,...,ej.) for J = (j1,...,jk) € {1,...,n}k.
Proof. Let J = (j1,...jk) and v; = Z;‘le vijej for i =1,..., k. Then

€j1®”-®€jk(1)1,...,’l)k) = Z (Ejl®'”®€jk)(ei17"'7eik)vlii"'Ukik
(/[’177“6)6{17’”}]6

= > Ejr (€iy) -+ €y, (€3 )13, + Vi,
(1177Zk)€{177n}k
= U1t Vkgy,

Thus, by Lemma 1.2.6,

Fno) = Y flej e v, vk,

(J1,0e50k)

= Z f(ej17"‘7ejk)€j1 X Qe (Ulju"‘vvkjk)'

(J1yeee5VK)
O
Lemma 1.2.15. Let V be an n-dimensional vector space, (e1, ..., e,) a basis
of V and (e1,...,ey) the corresponding dual basis. Then
(€5 ® -+ @5 ) (1, ji)elL, i}
is a basis of Mult*(V,R).
Proof. Exercise. O

Remark 1.2.16. Multilinear maps are discussed in many sources, see e.g. [4,
5] or [3]. Note, however, that for example in [3], the point of view is more
abstract and the tensor product refers to a vector space which linearizes mul-
tilinear maps. This more abstarct approach can be viewed as the next step
in this theory (which we do not take in these notes).

11



1.3 Alternating multilinear maps

The material in this section is gathered from [7, Chapter 2]; alternatively
see [3].
Throughout this section V' and W are (real) vector spaces.

Definition 1.3.1. A k-linear map f: V x ---V — W is alternating if, for
1<i<j<k,

(1.3.1)  fv1,. oy Vie1, U, Vig 1y - -, Vi1, Uiy Vg1, - - o, V) = — (U1, ..., Uk)
for all vq,...,v € V.

Example 1.3.2. Let ¢: R? x RZ — R?*2 be the mapping

oo [0,

U2 V2

where u = (uy,uz) and v = (v1,v2). Then ¢ is a linear map and the mapping
f:R?2x R? = R, (u,v) + detp(u,v), is an alternating 2-linear map. In
fact, in this sense, a determinant (R™)™ — R is an alternating n-linear map
for all n.

Lemma 1.3.3. A k-linear mapping f: V¥ — W is alternating if and only
if, for all (vy,...,v;) € VEF,

(1.3.2) flv1,...,u5) =0

if v =wv; fori#j.

Example 1.3.4. Let f,g € V* and define w: V xV — R by formula
w(v,v") = f(v)g(v') — f(v')g(v)

for v,v' € V.. Then w is 2-linear and alternating, and hence w € Alt*(V).
It will turn out that w is an alternating product (or wedge) of f and g.

Example 1.3.5. Let (¢1,e2) be the dual basis of the standard basis (e, e2)
of R2. If f = €1, g = €2, and w are as in the previous example, then

x1 -'E2:|

w((z1,y1), (x2,y2)) = T1Yy2 — T2y1 = det {
yr Y2

for all (z1,11), (z2,y2) € R?.

12



1.3.1 Space Alt*(V)
Definition 1.3.6. Let V be a vector space. We denote

AlthF(V) = {f: V¥ - R: f is an alternating k—linear}.
Here V0 = R and we identify Alt°(V) = R* = R.

Lemma 1.3.7. Let V be a vector space. Then AIt*(V) is a subspace of
Mult*(V,R), and hence of Hom([]* V,R).

Proof. Since Alt*(V) c Mult*(V,R), it suffices to observe that (clearly)
f+ag: V¥ = R is alternating for every f,g € Alt*(V) and a € R. O

Remark 1.3.8.
AN V) ={f: V = R: f is k—linear} = Hom(V,R) = V*.

Lemma 1.3.9. Let V,W be vector spaces and p: V — W a linear map.
Then
" AltF (W) — Alt*(V)

defined by
(’Ul, s 7Uk) = W(@(Ul)7 ... 780(1)16))
(as in Definition 1.2.1), is well-defined and linear.

Proof. Since ¢*: Mult*(W,R) — Mult*(V,R) is well-defined and linear, it
suffices to observe that (clearly) ¢*w is alternating for every w € Alt*(V).
O

1.3.2 Intermission: permutations

Let £ > 1. A bijection {1,...,k} — {1,...,k} is called a permutation.
We denote by Sj the set of all permutations {1,...k} — {1,...,k}. A
permutation 7 € Sy is a transposition if there exists 1 < ¢ < j < k for which
7(m) =m for m #4,j and 7(i) = j (and 7(j) = i); we denote by 7;; = Tz-(f)
the transposition satisfying 7;;(i) = J.

A permutation is even if it can be written as an even number of trans-
positions. Otherwise, a permutation is called odd. A permutation is either

even or odd. We formalize this as follows.

Proposition 1.3.10. A permutation has a sign, that is, there exists a func-
tion sign: Sy — {£1} satisfying

sign(o) = +1, o is an even permutation,
& | —1, o is an odd permutation.
Proof. Induction on k. (Exercise.) O

13



Corollary 1.3.11. The sign: Sy — {£1} satisfies
sign(o o 0’) = sign(o)sign(o’).
In particular,
sign(rp 0+ o7y) = (=1)"
for transpositions T, ..., Tm.

Remark 1.3.12. The set Sp is a group under composition, that is, the
product oo’ is the composition o o o’. In Proposition 1.3.10 and Corollary
1.3.10 we implicitely state that Sy is generated by transpostions and the
function sign is, in fact, a group homomorphism (Sk,o0) — ({£1},-). We
do not pursue these details here.

The main observation on permutions and alternating maps is the follow-
ing lemma.

Lemma 1.3.13. Let f: V¥ — W be an alternating k-linear map and o €
Sy. Then, for (vy,...,v;) € VF,
f(Wo(1)s -+ Vo)) = sign(o) f(v1, ..., vx).

1

Proof. Let 0 =11 0---07, € S and denote 0’ = 7, " oo. Then 0 =11 00’

and, by alternating,
f(va(l)v s 7U0(k)) = f(vn(a’(l))7 s 71}71(0’(16)))
= —fVor)s -+ s Vor(h))-
Thus, by induction,

fWo(1ys -5 Vo)) = (1) f(v1,. .. ) = sign(o) f(v1, ..., vp).
O

Lemma 1.3.13 gives an easy proof for an alternative characterization of
alternate multilinear maps.

Lemma 1.3.14. Let V and W be vector spaces and f: VF — W be a k-
linear map. Then f is alternating if and only if f(vi,...,vx) = 0 whenever
v; = ;g1 for some 1 < i < k.

Proof. Exercise. O

Exercise 1.3.15. Let f: V¥ — W be a map and o € Sy,. Define the map
opw: VE S W by

(o f) (1, svk) = F(Vo(1)s - Vo(k))-

Show that (o4 f) is an alternating k-linear map if and only if f is an alter-
nating k-linear map.

14



1.3.3 Exterior product

Definition 1.3.16. Let £,/ > 1. A permutation o € Sk, is a (k, £)-shuffle
if
c(l)<o2)<---<ok)ando(k+1) < - <o(k+1).

We denote by S(k, /) the set of all (k, ¢)-shuffles.

Definition 1.3.17. Let w € Alt*(V) and 7 € AltY(V). The exterior (or the
wedge) product w AT € AIt*T(V) is defined by

WAT(UL, e Vgp) = Z sign(a)w(Va(1)s - -+ > Vo(k)) T (Va(kt1)s - - - Vor(ktt))
oeS(kL

for vy,...,v10 € V.
Lemma 1.3.18. Letw € Alt*(V) and 7 € AltY(V). ThenwAt € AItFH(V).

Proof. (See also [7, Lemma 2.6].)
By Lemma 1.3.14 it suffices to show that

WAT(V1, .y 0k41) =0

if v; = v;41 for some 1 <i < k+ L.
Let

So = {oeSk0): {iit1yeo({l,.... k) or {ii+t1}ea({k+1,....k+0)}

S. = {oeSk):ieo({l,....;k})andi+1eoc({k+1,....k+/(})}
Sy = {oeSkl):i+1e€0({l,....k})andiec({k+1,....k+(})}

Since v; = v;41, we have, for every o € Sp, either w(vy(1), ..., Vo)) =0
or T(Vg(k41)s - -+ » Vo(ktr)) = 0. Thus
WAT(VL, .y Vktr)

= Z Sign(a)w(va(l)v cee ,Ua(k))T(vo(k-‘rl)’ cee 7UU(kz+€))
oeS(k,0)

= Z Sign(a)w(vo(l)a B UU(k))T(UU(k+1)7 s 7va(k+€))
ocESY
+ Z sign(a)w(vg(l), ey Uo-(k))T(/Uo—(kJrl), ce ,UU(kJrg)).

geS_

It suffices to show that

Z sign(a)w(va(l), N 7vg(k))7(vg(k+1), ey Ug(k+g))
oeSy
= — Z sign(a)w(vg(l), N ,Ug(k))T(UU(kJrl), cey Ug(k+g)).
oeS_

15



Let o = 7; ;41 be the transposition interchanging ¢ and ¢ + 1.
Step 1: We show first that S_ — S4, 0 = a o0, is a well-defined bijection.

The inverse of the map is ¢/ — a o ¢’, so it a bijection. It suffices to
show that the target is S..

Let 0 € S_. Then there exists 1 < j < k for which o(j) = ¢ and
k+1<j <k+ ¢ for which o(j') = i + 1.

We observe that, for 1 < j < k,

i+1<o(j+1)
sincei+1¢&o({l,...,k}) and o(j + 1) > o(j) = . Similarly,
o' —1)<i

Since « is a transposition, we have

Lo(—1 a( (7)),0(G +1),...,0(k))
= (0(1) 70(] - 1) 70(.7 =+ 1)7 7U(k))
and
(a(o(k+1)),...,a(c(k+1)))
(o(k+0),....0( —1).a(o(f).0( +1).....0(k + 1)
=(o(k+1),....,0( = 1),i,0(j' +1),...,0(k+0)).
Thus

a(o(l)) << a(o(k)) and a(o(k+1)) < - < a(o(k+L)).

Hence aoo € S(k,f) and a oo € S;. This ends Step 1.
Step 2: We show now that, for o € 5_,

W(Va(a(1))s -+ Va(o (k) T(Va(o(k+1))s - - - » Valo(k+0)))
= W(Vs(1)s -+ » Vo(k))T (Vo (k1) - - + 5 Vo (kb)) -

Let 1 <j<kand k+1<j <k-+/{be as in the proof of Subclaim 1.
Since v; = v;41, we have

W(Va(o(1)) -+ Va(o (k)T (Va(o(k+1)): - - Va(o (k+0)))
= W(Vg(1)s -+ » Vo(j—1)s Vit 1, Vo (j41)s - - - » Vor(k))
T (Vo (kt1)s -+ +» Va(j'—1)5 Vis Vo (j/4+1)5 - - > Vo (kb))
= W(Vs(1)s+ -+ » Va(j—1)5 Vir Vo (j41)s - - Vor(k))
T (Vo (kt1)s - -+ » Vo (j'—1)5 Vit 15 Va(j/+1)s - - - » Vor(k+£))
:w(va(l)v--wvo(k)) T (Vo (kt1)s - -+ » Vo (k8 )-

16



This ends Step 2.
Final step: Combining previous steps, we have

WAT(VL, .oy Vktr)
= Z sign(a ¢} a')w(vaocx(l), N 7Uaoa’(k:))7—(vaoa’(k:+l)v ey Uocoa’(k+€))
o'eS_

+ Z sign(a)w(Va(1)s - -+ > Vo(k)) T (Va(kt1)s - - - Vor(ktt))
oeS_

= (—1) Z sign(a')w(val(l), PN ava’(k))T(UU’(/ﬂ+1)a ey Ual(k+€))
o’'eS_

+ Z Sign(a)w(vg(l), ce ,Uo-(k))T(/Uo-(k+1), ey UU(kJrg))

oeS_
=0.
O
The exterior product is bilinear in the following sense.
Lemma 1.3.19. Let w,w’ € Alt*(V), 7,7/ € AltY(V), and a € R. Then
(WHadYAT = wWAT+aW AT
WwA(T+ar") = wWATHawAT.
Proof. Exercise. O

Lemma 1.3.20. Let w € Alt*(V) and 7 € Alt*(V). Then
wAT=(—DFr Aw.

The proof of Lemma 1.3.20 ([7, Lemma 2.8]) is based on the following
observation on shuffles.

Lemma 1.3.21. Let k,¢ > 1 and o € Sk the permutation

o= [ B ist
A= Vize, i>e41

Then S(¢,k) — S(k,{), o — o oa«, is a bijection. Furthermore, sign(a) =
(_1)k€.

Proof. Let 1 < j < ¢. Then k < a(j) < a(j +1) < k+ £. Thus, for
aecSWUk),

o(a(j)) <ola(j+1)).
Hence coa € S(k,?). Thus o — oo« is well-defined. It is clearly a bijection
(the inverse map is given by o+ o o a™1).
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We show now that sign(a) = (—1)*. For 1 <i <k, let 3; € Sp4¢ be the
permutation

Bi = Tiji+1 O Tit1,i+2© " O Toyi—1,0+4i-

Then
Bi(j) =1 j+1, fori<j<l+i
7 otherwise.

Moreover, sign(3;) = (—1)¢ for every 1 <i < k.
By induction,
a=pPgo---0f.
Thus
sign(ar) = sign(Bg o -+ 0 f1) = sign(By) -+ sign(fy) = (~1)*"
O

Proof of Lemma 1.3.20. Let a € Sk¢ be the permutation in Lemma 1.3.21.
Then

T(Vo(a(1))s - -+ Vo(a(e)) = T(Va(kt1)s - - » Vo(ktt))
and
W( Vs (a(t+1)s - - s Vo(alk+t)) = W(Va(1)s - - 5 Vo (k) )-
Hence
TAW(VL, ..., Vktr)
= ) sign(o) (V1) -5 V()@ (Vo(e1)s - - -5 Vo (k)
oeS(Lk)

= Z Sign(a' ] a)T(UU’(a(l))a N ,Ugl(a(g))w(vgl(a(ngl)), Ce 7val(a(€+k)))
o'eS(k,0)

= sign(«) Z sign (o) 7 (Vo (k41))5 - - - > Vo (048) )W (Vo (1) - - + > Vot ()
o’eS(k,a)

= (=DMw AT (o1, vkge).
]

For completeness, we remark that the exterior product is associative.

Lemma 1.3.22. Let w € Alt*(V), 7 € AltY(V), and € € Alt™ (V). Then
(WAT)AE=wA (TAE) € AltFHEm (V).

Proof. [7, Lemma 2.9]. O
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1.3.4 Alternating multilinear maps and determinants
Lemma 1.3.23. Let V be a vector space and wy, ..., w, € Alt'(V). Then
wi(vr) - wi(or)

wl/\---/\wk(vl,...,vk):det

wi(v1) o wi(vk)
forall vy,...,vp € V.

Proof. The proof is by induction. The claim clearly holds for £ = 1. Suppose
it holds for k > 1. Then, by the definition of the exterior product, we have,
for k+ 1,

w1 A AW (V1 - V)
=wi A (w2 A Awgyr) (V15 Vk41)
= Z sign(o)wy (’Uo-(l))OJQ VANREEIVAN wk+1(va(2), ces ,’Ug(kJrl))
ceS(1,k)
k+1
= Z(—1)1+1w1(vi)w2 VANEEWAN wk+1(v1, ey Vi1, Vg1 e e ey 'Uk:—i—l)-
i=1

Fori=1,...,k+1, let A;; be the matrix
wav) oo walvic1)  wa(vitr) ot Wk (Uo(re)
A = : : : :
wr1(v1) o wer(Vic1) wer1(Vit1) o W1 (Ve (k1))

Then, by the induction assumption and the expansion of the determinant
along the first row

k+1
wp A A wk+1(1}1, ce ,’U]H_l) = Z(—l)H_lwl(UZ‘) det A;1
=1
wi(vr) o wi(Vetr)
= det : :
wet1(v1) - Whp1 (Vk41)

Corollary 1.3.24. Let wy,...,w € AltY(V). Then
Wi A Awg #0

if and only if wy,...,wi are linearly independent in V*.
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Proof. Suppose w1 A -+ A wg # 0. Suppose towards contradiction that
w1, ...,wy are linearly dependent, that is, there exists aj,...,a; € R not all
zeroes, so that

aiwi + -+ apwg = 0.

We may assume that a; # 0 and solve wy to obtain

w1 = —— (agwz + - + apwy) -
ai
Thus
L
wl/\---/\wk:—Z—Zwi/\wg/\---/\wk:(),
° ai
=2
since w; Awa A--- Awg =0 for all 4 = 1,...,k by Lemma 1.3.23. This is a
contradiction. Thus linear maps w1, ...,w; are linearly independent.
Suppose now that wy A --- A wr = 0 and suppose towards contradic-
tion that (wi,...,wy) is linearly independent. Then there exists vectors
et,...,ep €V for which w;(ej) = d;.
Then
wi(er) -+ wi(er) wier) - wileg)
det : : = det : i :
wi(ex) - wilex) wi(er) - wi(ex)
= wi A Auwgler,...,ex) =0.

Thus columns of the determinant are linearly dependent and there exists

coefficients ay,...,ar € R (not all zero) so that
wi(e1) wi(e1)
aj + -+ ag =0.
w1 (ex) wi(ex)

We may assume that a1 # 0 and we obtain

1 k
wife) = — Y wjles)
aq =

for all = 1,..., k. But this is contradiction, since wy(e1) = 1 and
1k
- jz; w;j(er) =0.
Thus (w1, ws, . ..,wy) is linearly dependent. O
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1.3.5 Basis of Alt"(V)

Let n > k > 1. Recall that o € S(k,n — k) is a bijection {1,...,n} —
{1,...,n} satistying

1<o(l)<---<ok)<nando(k+1)<--- <o(n).

Theorem 1.3.25. Let V' be n-dimensional (real) vector space, (e1,...,en)

a basis of V and (e1,...,&,) the corresponding dual basis. Then

(1.3.3) (Ea(r) A+ N o)) oeS(kn—k)

is a basis of Alt*(V'). Moreover, for every w € Alth(V),

(1.3.4) w= Z w(ea(l), e ,eg(k))é‘g(l) N Neg(k)-
oeS(k,n—k)

Corollary 1.3.26. Let V' be an n-dimensional vector space. For0 <k <n,

dim ALt (V) = #£S(k,n — k) = (Z) .

In particular, Alt"(V) = R. Moreover, for k > n, Altf(V) = {0}.

Proof of Theorem 1.3.25. We show first the linear independence. Suppose
ar € R (0 € S(k,n — k)) are such coefficients that

Z oEg(1) N NEg(k) = 0.

Let 7 € S(k,n — k). By Lemma 1.3.23,
Ex(1) N Negky(€r(1)s - -+ Er(k)) = Oor
for every o € S(k,n — k). Thus
ar = arery N ANergy(€rr) - Er(i)
= Z AoEa(1) N N Ea(i) (Ex(1)s -+ -5 Ex(k))
_—

for every 7 € S(k,n — k). Hence (1.3.3) is linearly independent.
We show now (1.3.4). This proves that the sequence in (1.3.3) spans
Alt*(V). Let v; = E?:l vijej € V fori=1,...,k. Then

wvg,...,vx) = Z Uiy o Uk (€gps - - €5y)
(J15--7k)

- Z Z V1, (o(1)) " 'vkvf(ﬂ(k))w(eT(U(l))’ . 'eT(U(k)))
oeS(n,k) TESK

= DD sgn(M)rre)  Okre) @ €o(1)s - Colr))
ceS(n,k) TESk
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On the other hand,

1, a=0
50'(1) VANERRIAN Ea(k) (ea(l), e ea(k)) = { 07 otherwise

for all o, € S(k,n — k) (by Lemma 1.3.23 or directly from definition).
Thus

(1.3.5)
€o(1) ARRRRA 6a'(k)(vl’ v 7Uk?)

= Z Z sign(T)vLT(a(l)) C Uk (k) | Eo(1) VANCEIAN 50(1@)(@1(1)7 e ea(k))

a€cS(kn—k) \TESk

- Z SIgN(T)V1 (0 (1)) " Vkyr(o(k)-
TESE

Hence

w(v,..., o) = S sV o) k(o k) @ (€a(1)s - - - Eo(h)
oceS(k,n—k) TES)
= Y s A Aoy (01, 0R)W(En(1)s - - Ea(r))
ceS(kn—k)
= Z w(ea(l), ce. eg(k))Eg(l) N Neg(k) (U1, V).
ceS(k,n—k)

O]

Remark 1.3.27. Note that, forn =k and o = id, we may combine Lemma
1.3.23 and (1.3.5) to obtain the formula

det[vr- v =1 A ANep(vr, ..., 0p) = Z Sign(T)V1r(1) *** Vnr(n)-
TESn

This representation formula is usually taken as a definition of the determsi-
nant.

Taking the formula for the determinant in Remark 1.3.27 and combining
it with Lemma 1.3.23, we also get a (useful) formula which could be taken
as the definition of exterior product of dual vectors.

Lemma 1.3.28. Let V be a vector space and let wy, . .. ,wy, € Alt*(V). Then

Wi A Awp(vn, o) = Y sign(o)wi (Ve(1) -+ wn(Var))-
€Sy,
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1.3.6 Exterior ring Alt*(V)

Let V be an n-dimensional vector space. Having the exterior product at our
disposal, we may define the exterior ring Alt*(V') of the vector space V' by
setting

Al (V) = @D AF(V) = Al (V) x ATt (V) x -+ x Alt"(V).
k>0

Thus the elements of Alt*(V') are sequences
w = (wo,..-,wn).

Since there is no confusion between k- and ¢-linear maps, we may also un-
ambiguously write

n
w:Z(O,...,O,wk,O,...,O):w0+wl+...+wm
k=0

where wy € Altk(V); note that components in this sum are uniquely deter-
mined.

The exterior product A: Alt*(V) x Alt (V) — Alt*+*(V) induces a mul-
tiplication A: Alt*(V) x Alt*(V) — Alt* (V) with

n n n
(Zwk>/\<27’k> = Zwk/\’fg.
k=0 k=0 k=0

Definition 1.3.29. Vector space Alt*(V') with exterior product A is called
an exterior ring of V.

Given a linear map ¢: V — W, there exists a ring homomorphism
©*: Alt* (W) — Alt*(V) given by the formula

n n
P wn) =D ¢
k=0 k=0
The map ¢* is clearly linear and, by Lemma 1.3.30 (below), it satisfies
C(WAT) = wA T

for all w, 7 € Alt*(W).

Lemma 1.3.30. Let V,W be vector spaces, w € AItF(W), 7 e AltY(W),
and ¢: V. — W a linear map. Then

P (WAT) =@ wA T
Proof. Exercise. O
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Chapter 2

Differential forms

Let n,k > 0. Let (e1,...,e,) be a standard basis of R” and (eq,...,&,) the
corresponding dual basis.

By results in the previous section, we have that Altk(R”) is a vector
space with basis (¢5),c5(k,n—k), Where

€0 = Eq()) N NEg(k)-

Thus we have linear isomorphism

n

R(k) = RS(kn—k) = Altk(Rn) 7

where R3(*"=k) i5 the vector space of all functions S(k,n — k) — R.

We give R3E=F) and Alt*(R™) topologies which are induced by these
linear isomorphisms. (A careful reader checks that the given topologies are
independent on the chosen linear isomorphisms. We leave this to the careful
reader, though.)

Let U C R™ be an open set. Let w: U — Alt*(R™) be a function. Then
w(z) € AltF(R™) for every € U. Thus, for every x € U, there exists
coeffiecients f,(z) € R for which

w(x) = Z fo(x)es.

ceS(k,n—k)

In particular, for every o € S(k,n — k), we have a function f,: U — R. For
every a € S(k,n — k) and = € U, we also have the formula

(w(x» (eoz(l)a s 7ea(k)) = fa(l').

Based on this observation, we give the following definition for smooth-
ness. (A careful reader again verifies that the smoothness does not depend
on chosen basis.)
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Definition 2.0.31. Let U C R" be an open set. A function w: U —
AltF(R™) is C*®-smooth if the function U — R,

T = (UJ(JI)) (ea(1)7 s ,Ca(k)),
is smooth for every a € S(k,n — k).

Convention 2.0.32. To avoid unneccessary parenthesis, it is common to
write
wr = w(z) € AltF(R")

and
wr(v1, .. vp) = (w(z)) (v, ..., vk)

forx € Q and vy,...,v € R™.

Definition 2.0.33. Let U C R" be an open set. A differential k-form is a
C*°-smooth function U — Alt*(R™). We denote by QF(U) the vector space
of all differential k-forms U — Alt*(R™).

Remark 2.0.34. We also call elements of Q¥(U) differential forms, k-
forms, or just forms, for short.

Example 2.0.35. (1) Let U C R" be an open set. Then x — g1 A---Ney,
is a differential form QF(U). We call this usually a volume form and
denote it by voly.

(2) Let U =R"\ {0}. Then the map p: U — Alt""'(U),

x
(pz)(V1y. . yUp—1) =1 A Nep (m,vl, .. .,Un_l)

is an (n — 1)-form in Q"~Y(U) (Ezercise).
The exterior product Alt*(R") extends to differential forms as follows.

Definition 2.0.36. Let U C R™ be an open set. Let w € QF(U) and
7€ QYU). The map w A 7: U — At (R™) defined by

(2.0.1) (WAT)g =wg ATy
for z € Q is the exterior product w AT € Q¥(U) of w and 7.

Abstractly, we have have obtained a bilinear operator

A: QF(U) x QYUY — QFFH4 ).
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2.1 Exterior derivative

Let U be an open set in R™ and f: U — R a smooth function.
Definition 2.1.1. The differential df of f is the 1-form df: U — Alt'(R")

defined by
(d)a(v) = lim TEHI 2]

Remark 2.1.2. The differential df of f is nothing but the standard linear
map given by the directional derivatives. By the multivariable calculus,

df (v) = (v, V),
where Vf: U — R" is the gradient of f

0
37]01(90)
vi=|

0

%(fﬁ)
Example 2.1.3. Let x = (x1,...,2,): R — R" be the indentity map with
coordinate functions x;: R — R (i.e. x;j(vi,...,v,) = v;). Then

dl‘i = &4,

where €; is the element of the (standard) dual basis.(Exercise.)

Corollary 2.1.4. Let U C R" be an open set and w € Q¥(U). Then

w= Z wgd$a(1) VANRERIVAN d.l‘g(k),
oeS(k,n—k)
where wy is the function wy () = We(€x(1ys - - - Co(k))-
Proof. Exercise. O

2.1.1 Exterior derivitive of a k-form

Observation 2.1.5. Let U be an open set and w € QF(U). Let v =
(v1,...,v) € (RMF and consider the function w’: U — R defined by

@) =walvn ) =Y wo@)eat A Aoy Uy ).
oeS(k,n—k)

Then, for w € R™,

v . wY(z+tw) — w?(z)
(d)aw) = lim :

t—0 t

= tim S (o + ) — wo(@))e (v, k)

= ) (dwe)z(w)es(v1, ..., vp)

o
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Remark 2.1.6 (Alternative approach). Since Alt¥(V) is a vector space, we
may also consider w: U — AltF(U) as a vector valued function (or a map!)
and define the differential (Dw), at z € U as a linear map R™ — AltF(R™)
by formula

(Dw)z(w) = %E}% 7 (Wattw — We) -

Note that (Dw),(w) is an alternating k-linear map and

1
(Dw)alw) (01, 06) = T T (s — 02) (0, 05)
1
= %g%;(wxﬂw(vl,...,vk)—wm(vl,...,vk))

for vy, ..., v, € R™. Thus, for v = (v1,...,v) € (R")* and w € R",

((Dw)z(w)) (v1, ..., v5) = (dw")z(w).

Convention 2.1.7. Given a k-form w € Q¥(U). In what follows we use the
notation

wm(vl, NN ,{J\Z‘, NN ,Q}k) = wx(vl, cee s Ui—15U415 - - - ,Q}k)
to indicate that we have removed the ith entry.

Observation 2.1.8. We make now the final observation before the defini-
tion of the exterior product. Let w = fdx;, A -+ Adxy, € Q¥(U). Then, for
Vlyewoy Vg4l € Rn)

df/\dxil AR /\d.%'ik(’l)l,...,karl)

= Z sign(a)df(vg(l))da:il VANERRIAN dazik (UU(2)7 - 7Ua(k+1))
(2.1.1) o€S(1,k)
k+1

= (=1 df (vi)dai, A Adiy (v1,. T VRg)
=1

Definition 2.1.9. Let w € QF(U). The exterior derivative dw € Q*1(U)
of w is the (k + 1)-form

k+1
(d)o(vr, oy vrp) = 3 D (1) (dwo)a(vi)ea (V1. o, Ty v).
oceS(k,n—k) i=1

Remark 2.1.10. (1) By (2.1.1), we have that

dw = Z dwy N d:rg(l) VANRERIVAN d$a(k)-
ceS(kn—k)
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(2) Clearly
dw+ar) = dw + adr

for w,7 € Q¥(U) and a € R.
(8) Since dxi, A --- Adx;, has constant coefficients, we have
d(dzy, N---Ndx;,) =0
for every iy, ... i € {1,...,n}.

The two most important properties of the exterior product are the Leib-
niz rule and the fact that the composition of exterior derivatives is zero. We
begin with the latter.

Lemma 2.1.11. Let w € Q¥(U). Then d*w = d(dw) = 0.

Proof. Let f € C*°(U) and dxy = dx;y, A--- Adzg,, where I = (iy,...,i).
Then

n n o on 2
d*(fdx;) = d (Z gidmi> Ndrp =) <£ A’;dxj> Adx; A dzg
X X i 741

k
0*f
= (dxj A dx;) A\ dzg
J',ZZ=1 Owjw;

= Z < f °f > (dxj A dx;) ANdxp = 0.

a’L‘jl'i al'il'j

1<
The claim now follows by linearity. O

The Leibniz rule for the exterior product has the following form.

Lemma 2.1.12. Let w € Q¥(U) and 7 € QY(U). Then
dwAT) =dw AT+ (=1)FwAdr.
Proof. 1t suffices to consider cases w = fdx; and 7 = gdxj, where dx; =
dxi; A --- Ndwx;, and dxy = dxj, A --- Ndxj, for I = (i1,...,4) and J =
(J1s-- -, Je). Since
dwAT) = d((fg)dzr ANdxy)
= d(fg) Ndxr Ndxy
= (9df + fdg) Ndxy Ndxy
= (df Ndzxr) AN gdry+ fdg ANdxp Adzy
= dw AT+ (=DEfde; Adg Aday
= doATH+ (-DFwndr
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We record as an observation that the exterior product for functions,
Leibniz rule and the composition property uniquely determine the exterior
product.

Corollary 2.1.13. Suppose that, for every k >0, dy: QF(U) — QFL(U) is
a linear operator satisfying

(1) dof = df for every f € QO(U),

(2) djsq o dy, =0,

(8) dipyo(wAT) = dpw AT+ (—1)Fw A dyr for w e Q¥(U) and T € QL(U).
Then dj, = d for every k > 0.
Proof. See [7, Theorem 3.7]. O

2.2 Pull-back of forms

We begin with an observation, which we record as a lemma.

Lemma 2.2.1. Let f: U — U’ be a C*®-smooth map. Then f*: QF(U") —
QF(U) defined by formula

(2.2.1) (ffw)e(vi, s vk) = W) (Df)ve, .., (D f)og)
is a well-defined linear operator.
Remark 2.2.2. Note that (2.2.1) is equivalent to
(ffw)e = ((Df)2) wi(a)
for every x € U.

Definition 2.2.3. Let f: U — U’ be a C*°-smooth map. The mapping
5 QF (U — QF(U) is the pull-back (of differential forms) defined by f.

Having Lemma 1.3.30 at our disposal, we immediately obtain the fact
that pull-back and the wedge product commute.

Lemma 2.2.4. Let U C R™ and U’ C R"™ be open sets, and let f: U — U’
be a C™-smooth map. Then, for w € Q¥(U’) and T € QY(U’), we have

frlwnr) = (ffw) A(f7T).
In particular, for u € QO(U) = C*>(U),
Frw) = o f

We also have the following observation.
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Lemma 2.2.5. Let U C R" and U’ C R™ be open sets, and let f =
(fiy.ooy fn): U= U be a C*°-smooth map. Then

fH(d;) = df;
for everyi=1,...,n.
Proof. Exercise. O

The exterior derivative and the pull-back commute.

Lemma 2.2.6. Let U C R™ and U’ C R™ be open sets, and let f: U — U’
be a C*°-smooth map. Then

df*w = f*dw
for every w € QF(U").

Proof. By linearity, it suffices to consider w = udx;; A --- A dx;,. By the
chain rule,

f*(du) = <Z (%Zd:cl) = i <§; o f) f*(dxy)

=1

< Ofi o O fi
- Z(@xl > Z dx] :Z (6:172 >6%de

i=1 j=1 7j=11i=1

= Z a(uof)da:j =d(uo f).

o0x;
j=1 J

The second observation is that

d(dfil/\--~/\dfz-k):0

for all I = (i1,...,4x). Indeed, this follows from the Leibniz rule by indeuc-
tion in k as follows:

d(dfiy N Ndfy,) = d(dfi-1) Ndfi, N+ Ndfi, + (=1)dfi; Ad(dfi, A Adfiy,)
= 0,
where we used the induction assumption on df;, A- - - Adf;, and the fact that
d? =0.
Having both of these observation at our disposal, we get
df*'w = d((uo f)dfi, N+ Ndfi,)
d(uo f) Adfiy A+ Ndfi,) + (wo f) Ad(dfiy A--- Adfyy,)
[rdu N frdxi, N A frda,
[Fdundziy A--- Ndzy,)
= f*(dw).
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Chapter 3

De Rham cohomology

Let U C R™ be an open set. Since d> = dod: Q¥1(U) — QF1(U) is zero
opeator for every k > 1, we have

(3.0.1)  im (d: OF-LU) Q’f(U)) C ker (d; O (U) Qk+1(U)) :

Thus Imd is a subspace of ker d for all £ > 1.
For convenience, we set QF(U) = {0} forall k < 0 and set d = 0: Q*(U) —
QFFL(U) for all k < 0. Then (3.0.1) holds for all k € Z.

Definition 3.0.7. Let U C R™ be an open set. The quotient vector space

_ ker(d: QF(U) = Q*1(U))  {w € QF(U): dw = 0}
Cim(d: QFYU) — QFU))  {dr: T € Q1(U)}

H*(U)

is the kth de Rham cohomology (group) of U.

Recall that elemtents of the quotient space H*(U) are equivalence classes
of k-forms. Given w € ker(d: QF(U) — QFF1(U)), we denote the equivalence
class by

W] = {w+dr e Q*U): 7 € QF1(U)).

Definition 3.0.8. Let U C R” be an open set. A form w € QF(U) is closed
if dw = 0 and ezact if there exists a (k — 1)-form 7 € Q=1 (U) for which
dr = w.

Thus
_ {closed k—forms in U}

HYU) =
) {exact k—forms in U}

and de Rham cohomology H*(U) is a vector space which classifies the closed
k-forms in U upto exact forms.

The Oth cohomology H®(U) counts the number of components of the set
U. This is typically formalized as follows.
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Lemma 3.0.9. Let U be an open set. Then H°(U). is the vector space of
maps U — R which are locally constant.

Proof. By definition

~ ker(d: Q°(U) — QY(U))
~ Im(d: Q" HU) — QOQU))

HO(U)

Since d: Q7 Y(U) — Q°(U) is the zero map, we have
H(U) 2 ker(d: Q°(U) — QYU))

On the other hand, given f € C*°(U), df = 0 if and only if f is locally
constant. The claim follows. O

Again there is a natural pull-back.

Lemma 3.0.10. Let U C R™ and U’ C R™ be open sets, and let f: U — U’
be a smooth mapping. Then the mapping H*(f): H*(U") — H*(U) defined
by the formula

[w] = [f*w]
is well-defined and linear.

Proof. To show that the formula is well-defined, we have to show that it
is independent on the representative. Let w,w’ € QF(U’) be closed forms
so that [w] = [w']. Then, by definition of the quotient, w — w’ = dr where
T € QF1(U"). Since

fro=f(W'+dr) = f'' +dfr,

we have f*w — f*w’ = df*r. Thus [f*w] = [f*w] and H*(f) is well-defined.

To show the linearity, let again w,w’ € Q¥(U’) and a € R. Then f*(w +
aw') = ffw+af*w'. Since [f*w + af*W'] = [f*w] + a[f*w'] by the definition
of operations in the quotient space, linearity of H*(f) follows. O

Remark 3.0.11. It is typical to denote the mapping H*(f) by f*. Thus,
on the cohomological level, the pull-back is defined by

el = [f7wl.

Lemma 3.0.12. Let U,V,W be open sets in R™, R™, and RY, respectively,
and let f: U =V and g: V = W be C*®°-smooth maps. Then

frogt=(go f)*: H¥(W)— H*U)

and

id* = id: H*(U) — H*(U)

for each k. In paricular, f*: H*(V) — HFU) if f is a diffeomorphism
(i.e. f is a homeomorphism so that f and f~1 are C*-smooth,).
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Proof. Given w € Q¥(W) and = € U, we have by the chain rule

(ffogt)ew = (fM)2lg'w) = (Dfe)"(9"wW) @) = (Df)a(Dg)})Wo(s ()
= ((D9)s@)(Df)2) wigo)a) = D(g° faWigos)(a)
= (gof)yw.

Thus (f* o g")[w] = [(f* o g")w] = [(g© f)"(w)] = (g © f)"[w].
Since id*w = w, the second claim follows immediately.
If f is a diffeomorphism, we observe that

fro(fH*=id*=id and (f H*of*=id
Thus f* is an isomorphism. O
The exterior product is naturally defined on the cohomological level.

Lemma 3.0.13. Let U C R"™ be an open set. Then the mapping H*(U) x
HY(U) — HFY(U) defined by

NI =1EAd]
is well-defined and bilinear.

Proof. Let &, € QF(U) and ¢, ¢’ € QF(U) be closed forms for which £ —¢" =
do and ¢ — ¢’ = dp for some o € Q¥~1(U) and B € QF1(U). Since ( is
closed,

dlan¢)=danC+ (1) rande =daA.

Similarly,
d(ENB) =dENB+ (—1)FENdB = (—1)"¢ N dp.
Thus
ENC = (E4da)N(C+dpB)
= ENCHENAB+daANC+dandB
= EACH (=DRdENB) +d(a )+ d(andB)
§/\C+d<(—1)k§/\ﬁ+a/\§’+a/\ﬂ>.

Thus

AT =16 (]
and the mapping is well-defined. Cheking the bilinearity is left to the inter-
ested reader. O
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3.1 Poincaré lemma

A fundamental fact in de Rham theory is that

R, k=0

k ny ~v
H(B)_{O, k> 0.

We obtain this fact from slightly more general result.

Recall that a set U C R" is star-like if there exists g € U so that,
{1 —=t)zg+te e R": 0 <t <1} C U for every x € U. The point zg is a
center of U.

Theorem 3.1.1 (Poincaré lemma). Let U C R™ be an open star-like set.

Then
1, k=0
0, k>0.

Proof. Every star-like set is connected. Thus every locally constant function
on U is constant. Hence H°(U) = R by Lemma 3.0.9.
Let &k > 0. We need to show that

ker(d: QF(U) — QFL(U)) = Im(d: QF1(U) — QF(U)).

dim H*(U) = {

Idea: Suppose we find, for every k > 0, a linear map Sj: QF(U) —
QF1(U) satisfying
w = dSkw + Sk4+1dw

for every w € Qk(U ). Then every closed k-form is exact. Indeed, suppose w
is a closed k-form. Then

w = dSkw + Sk4+1dw = dSkw.

(This operator Sy is a “chain homotopy operator”.)
Ezecution of the idea.

We abuse the notation and denote by t: U x R — R the projection
(z,s) — s. We also denote by x: UxR — R the projection zx(y1, ..., Yn,s) =
yr (as usual). Given w € QF(U x R), we have

(3.1.1)
w = Z wrdwi, N -+ Ndjy, + Z wydt Ndxj, N---Ndj,
I=(i1,...,ik) J=(j15e2Jk—1)
1<iy1<<ip<n 1<ji<<jg-1<n
= Zwldiﬂj =+ ZWJdt A dI'J,
I J

where functions wy € C*(U) and w; € C*(U) are uniquely determined.
Thus the linear map Sy : QF(U x R) — QF1(U), defined by formula

Sn= X ([ et as) s

J=(15-2Jk—1)
1< 1< <y <
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for y € U, is well-defined; here we use the notation in (3.1.1).
Let w as in (3.1.1). Then

Sk+1dw = Sk—i—l <Zdw1/\d:E[+ZdWJ/\dt/\d$J>
I J

= Sk—i—l <Za Idt/\d [—l-zz%dl‘g/\dl’] Z l’g/\dt/\dﬂy)

I (=1 J (=

. dwr Aw
= Spi1 Za—dt/\dxf—za—‘]dt/\dw/\de
Jl

Thus

(dgk + Sk+]_d)w

dZ(/ ds>daw+5’k+1 (Zdw;/\d:r[—l—Zde/\dt/\d:nJ>
_ Z 1ﬂ(- s) ds | dzy A da

&uf 6WJ
—|—Z<O ds>d:c[—§;<0 aw( )ds)dxg/\dmj
= > (wr(1) = wi(-,0)) day

I

Use of star-likeness. Since U is star-like, we may fix a center o € U of U.
Define F': U x R — U by

(z,t) = zo + \(t)(x — x0),

where A € C*°(R) is a function so that A\(¢) = 0 for ¢t < 0,0 < A(t) <1
for 0 <t <1, and A(t) =1 for t > 1. (Existence: exercise.) Then F is a
smooth map satisfying F'(z,0) = x, and F(z,1) = xq for every € U. Note
that F*: QF(U) — QF(U x R).

For every w € QF(U), we have (Exercise!)

(Frw)(1)y =w and (F*w).g) =0.
Let S = Sy, o F*: Q¥(U) — QF~1(U). Then
doSy+ Sgi1od = doSyoF*+ Sy 10F* od
— doSyoF* + 8, 0doF* = (do§k+§k+1od) o F*.

Thus R R
((Sk:-i-ld +dSk) o F*) w= (F'w)(1) — (F'w)(0) = w.

The proof is complete. O
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3.2 Chain complexes

Let U C R™ open. Then (Qk(U))keZ

derivatives (d: QF(U) — Q¥1(U) give a sequence of linear maps with the
property that the composition

is a sequence of vector spaces. Exterior

OFU) —L= QFL(U) 1> QF2(U)

is always a zero map. Thus the sequence of pairs ((Qk(U),d)) is a chain
complex. In this section we consider abstract chain complexes and then
apply the algebraic observations to de Rham cohomology.

Definition 3.2.1 (Chain complex). The sequence A, = (A, d)rez vector
spaces and linear maps di: Ap — Ag41 is a chain complex if dy1q o d = 0.

Remark 3.2.2. Note that we have chosen here so-called +1-grading (i.e.
dy. increases the index by 1). It would be also possible to choose —1-grading,
which is used e.g. in singular homology (or in homological algebra in gen-
eral). Both gradings lead to the same theory.

Definition 3.2.3. The kth homology the chain complex A, = (Ag,dy) is

ker dy,
HA(A,) = :
(4.) Imdg_q
The elements of kerd; are called k-cycles and the elements of Imdg_1
k-boundaries. The elements of H*(A,) are homology classes.

Example 3.2.4. Let U C R"™ open. Denote by QF(U) the compactly sup-
ported k-forms in R™, that is, forms w € QF(U) for which the closure of
{r € U: w,; # 0} is compact.

Since dw € QFL(U) for every w € QF(U), we obtain a chain complex
Q:(U) = ((U), d)rez. Its homology

_ ker(d: Q5(U) — QFFL(U))
C Im(d: QFN(U) = QFU))

HYNQ(U))
is called the compactly supported cohomology H(U) of U

3.2.1 Exact sequences of vector spaces

Definition 3.2.5. Let A, B, C be vector spaces and f: A — Band g: B —
C linear maps. The sequence

Al.pt.c
is exact if ker g = Imf.
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Similarly, a sequence

fr—2 fr—1 i frt1

of vector spaces and linear maps is exact if

Ap—1 e Ay, e, Ap1

is exact whenever defined.
Exactness of a sequence encodes familiar properties of linear maps.

Lemma 3.2.6. (1) If the sequence

B-Y-Cc—50

is exact, then g s surjective.
(2) If the sequence
0—=A—1-B
is exact, then f is injective.
Proof. Exercise. O

Definition 3.2.7. An exact sequence

f g

0 A B c 0

is called a short exact sequence.

Example 3.2.8. Let f: A — B be an injective linear map. Then

f

0 A B—Z=B/ker f ——=0

is an exact sequence; here m is the (canonical) linear map v — v + ker f.

A fundamental observation on short exact sequences of vector spaces is
the following lemma on splitting.
Lemma 3.2.9. Let 0 A ! B—1-¢C 0 be a short exact se-
quence. Then B = A@C. In particularly, if A and C are finite dimensional
then so is B.
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Proof. (We give a (slightly) abstract proof which does not refer to a basis.
See [7, Lemma 4.1] for another proof.)
Since g is surjective, we have the diagram

B/kerg

where 7 is the (canonical) quotient map and § a linear isomorphism. Let
V C B be a subspace so that V @ kerg = B (i.e V +kerg = B and
V Nnkerg = {0}). Since Im(n|V) = B/kerg and ker(n|V) = {0}, we have
that 7|V: V — B/ker g is an isomorphism.

Since f is injective, we have that f: A — Imf is an isomorphism. Since
Imf = ker g, we conclude that

B=kerg®V =ZImf @ (B/kerg) =2 Ad C.

(Note that first @ is understood in the sense of subspaces and the latter
abstractly.) O

3.2.2 Exact sequences of chain complexes

Definition 3.2.10. Let A, = (Ag,d{}) and B, = (By,d?) be chain com-
plexes. A chain map f: A, — B, is a sequence (fi: Ax — By) of linear
maps satisfying
dA
Ay —= Ay

fkl lfkﬂ
dp
By, —— Bj11
for each k.

Lemma 3.2.11. Let f: A. — B, be a chain map. Then f. = Hi(f): Hp(Ax) —
Hy(By), [c] = [f(c)], is well-defined and linear.

Proof. To show that f, is well-defined, let ¢ and ¢’ be k-cycles so that c—¢ =
dc” for ' € Ap_q, i.e. [c] =[¢]. Then

fle) = f(d) = f(dc") = d'f(c").

Thus [f(c)] = [f(¢/)] and f. is well-defined. Linearity is left to the interested
reader. ]

Definition 3.2.12. Let A, = (A, ds) and B, = (By,dP) are chain com-
plexes. Chain maps f: A, — B, and g: A, — B, are chain homotopic if
there exists a linear maps s;: A — Bj_1 for which

f—g=di sk — spdy-
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Lemma 3.2.13. For chain homotopic maps f,g: Ax — By, [* = g¢*: Hp(A*) —

Hy,(BY).

Proof. Exercise. (Compare to the operator Sy in the proof of Poincaré
lemma.) O

Exercise 3.2.14. Let A, = (Ay,d3) and B, = (By, dP) be chain complezes.
Define Ay ® B, = (A, ® By, dit ®d5); here d} ®dP: Ay, ® By, — Ap1® By
is the map (c,c’) w (die,dBc’). Show that

H*(A, ® B,) = H*(A,) ® H*(B,).

Terminology introduced for vector spaces can easily be extended to chain
complexes.

A sequence A, I B, —2~C, of chain complexes and chain maps

is exact if A LN By, i>C/rc is exact for each k. Similarly, an exact
f

sequence 0 A, B, g C. 0 (of chain complexes) is called
a short exact sequence (of chain complexes).

A non-trivial example

Let U; and Us be open sets in R™. We have four inclusions:

Ui NUy

e

U Uy

Q/\

—

It is clear that
Li: Q" (UL UUs) = QF(Uh) @ Q*(U2), w = (ifw,isw),
and
Je: QF(Uy) @ QF(U2) — QUL NT,),  (wi,w2) = jiwr — jawe,
are chain maps.
Theorem 3.2.15. The sequence
0 —— QF(U; U Us) — & QF(U7) @ QF (Us) 2= Q¥ (U1 N Us) —— 0

is a short exact sequence of chain complexes.
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We use the following version on the partition of unity in the proof.

Lemma 3.2.16. Let U and V be open sets in R™. Then there exist C'°°-
smooth functions A\: UUV : [0,1] and p: UUV — [0, 1] for which spt A C U,
sptu CV, and A+ p=1; here spt f = clyuy{z €e UUV: f(z) # 0}.

Proof. Exercise. O

Proof of Theorem 3.2.15. We begin with a general remark. Let V C W C
R™ be open sets and let t: V — W be the inclusion. Then, for all w =
Zﬂﬂ]d%[ € Qk(W),

(w) = Z(wl o) (dxyr) = Z(wI\V)d:UI.

I 1

We begin now the actual proof. Let ¢: UyNUs — U;UU; be the inclusion.
Then ¢ = i; 0 j; = i3 0 ja. In particular, 57 = (i1 0 j1)* = (i2 0 j2)* = j3i5.
We have to show the exactness at three places.
Case I: To show that Ij, is injective, suppose w = ) ; wrdxs € QF (UL U o)
is in the kernel of I. Then ijw = 0 and 5w = 0. Thus w;|U; = 0 and
wr|Uy = 0 for each I. Hence wy = 0 for every I. Hence w = 0 and I} is
injective.

Case II: Let w = Y, wrdzy € QF(U; UUs). Then
Ji 0o Iy (w) = Jk(ijw, i5w) = jiijw — jaisw = 0.

Thus ImI; C kerJ;. To show the converse, let (wi,ws) € kerJy, where
w1 = Y ywirdrr and we = ) wo rdxr. Then

0= jiwi — jaowa = Z (wi,7|lU1 N Uz — wa 1|Uy N Us) dy
7

and, in particular, wy ;|U; N Uz = wo 1|U; N Uz. We extend wy r and wo 1 by
zero to functions of Uy U Us.

Let (A1, A2) be a smooth partition of unity for (Uy, Us) so that A\i|Up \
Us = 1. Then

wl,f(x), xGUl\UQ
(3.2.1) X(x)wir(z) + M (2w (z) = ¢ wir(z) =wr(x), €U NU;
w2,1(33)v ze U\ U

Let
w = Z ()\QOJL[ + )\1(4)2,[) dry € Qk(Ul U Us).
I
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By (3.2.1),

Iy(w) = (fjw,i5w)
= (Z ((Aawr,r + Mws 1)|Uy) dz, Z ((Agwr,r + Mwz 1)|U2) diL“I)
7 7

= (Zw1,ld$bzw2,1d$l> = (w1, wo).
7 7

Case III: Finally, we have show the surjectivity of J,. Let w € QF(U; NUs).
Let again (A1, A2) be a partition of unity for (U;,Us). Let w; = lw €
QF(Uy) and wy = —\w € QF(Us). Then
Je(wi,wa) = jiwr — jawz = (A|Ur NU2)w — (=M|Ur N Uz)w
= (()\1 + )\2)|U1 N UQ)w = w.

3.3 Long exact sequence

A beautiful algebraic fact is that a short exact sequence of chain complexes
gives rise to a long exact sequence of the homological level.

Theorem 3.3.1 (Long exact sequence). Let

f

0 A, B, —1-C, 0

be a short exact sequence of chain complexes. Then there exist linear maps

Op: H¥(C,) — H*Y(A,) (k € Z) for which the sequence

Ok—1

e HR B T HR(CL) 2 HE LA
18 exact.

An particular example of a long exact sequence is the Meyer—Vietoris
sequence for de Rham cohomology. We state it as a theorem for importance,
but, in fact, is an immediate corollary of Theorems 3.2.15 and 3.3.1.

Theorem 3.3.2. Let Uy and Us be open sets in R™, U = Uy U Us, and let
im: Up = U UUs and ju,: Uy NUs — Uy, be inclusions. Let
(3.3.1)

0 —— QF (U U Up) — & QR (U) @ QF (Us) = QF (U N U) —— 0

be a short exact sequence as in Theorem 3.2.15; I(w) = (i} (w),i5(w)) and
J (w1, w2) = jjwr — j3(w2).
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Then the sequence

e HRU) —SLHE(U) @ HE(Us) L BN U N Uy) 2 A (U)

where O is the boundary operator for the short exact sequence (3.3.1), is a
long exact sequence.

Example 3.3.3. Using this sequence we show that

CEERNOIES i

Let Ly = {(x,0) € R?®: 2z > 0} and L_ = {(x,0) € R?:
set Uy = R2\ Ly and U_ =
UyNnU-=(R\{0}) xR.

Since HX(W) = 0 for k > 2 and k < 0 all open sets W in R?, the
Meyer—Vietoris theorem implies that the sequence
(3.3.2)

0—— HO®2\ {0}) — L' HOU,) & HOWU_)

z < 0}, and
R2\ L_. Then Uy UU_ = R?\ {0} and

P pow, U f—s

(Jl)*

—H w2 foy) 0y @ BV UL 2 B U U ——

—H2(R2\ {0})

18 exact.
Since Uy and U_ are starlike,

R, k=0,

H(U,) = HA(U-) g{ 0, k>0.

On the other hand, Uy NU_ 1is a pair-wise disjoint union of two star-like
sets. Thus

R?, k=0,

H*UnU-)=H*U,) e HYU-) = { 0. k>O0.

Furthermore, R?\ {0} is clearly connected and hence H°(R?\ {0}) = R.
Thus the Meyer-Vietoris sequence (3.3.2) actually takes the form

0 R fo ,ReRZL-R22,
—"H (R {0}) 0 0
= H2(R?\ {0}) ——0
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where fo, g0 are the linear maps obtained from maps (Ip)« and (Jo).« after
identifications observed above, e.g. fy is the map

HOR2\ {0}) — " HY(U}) © HL(U_)

N

R RoR

Since the sequence is exact, we see that fo is injective and dim(ker gg) =
1. Thus dimker 9y = 1. Since H*(R?\ {0}) = ker f; = Imdy, we have that
H'(R%\ {0}) 2 R. On the other hand, H*(R?\ {0}) = 0. Thus

e op={ 5 LSt

3.3.1 Proof of Theorem 3.3.1

The proof of Theorem 3.3.1 consists of four parts: definition of 0y and three
verifications of exactness. We begin with the definition of Jy rising from the
following diagram:

0 Ap—1 By —Cy—1 —0
0 Ap By —2% -~ ¢, 0
dg
0 A1 L By+1 — Cg41 —>0
0 Apyo Bjyo — Cig2 —=0
Lemma 3.3.4. Let 0 A, / B, g C, 0 be a short exact

sequence of chain complezes.

(1) Letc € Cy, be a cycle. Then (fr1) " (dP (g ' (c))) # 0 and all elements
in (fre1) 1 (d2 (g, (c))) are cycles.

(2) Suppose k-cycles c,c’ € Cy are in the same cohomology class. Then

a € (fre1) " (di (951 (c)) and " € (furr) T (dg (g5 (<))

are in the same cohomology class in HFT1(A,).
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Proof. To show (1), we observe first that g is surjective. Let b € g,;l(c).
Since ¢ is a cycle, we have by

B, —% -,

B C
9k+1

Bk+1 - Ck+1

that gg+1(dg+1(c)) = 0. Since ker gx+1 = Imf11, there exists a € Ap41 so
that fxi1(a) = d2(b). Furthermore, since

frr1
Ak:+1 - Bk?+1

A B
ldk-}—l \Ldk-kl
Tr+

2
A2 —> Bp12

we have that fk+2(d?+1(a)) = dP (frr1(a)) = dP,d2(b) = 0. Since
ker fr1o = 0 we have that b is a cycle.

To show (2), let ¢’ € Ci_1 be such that ¢ — ¢/ = d{'¢”. We have to show
that there exists a” € Ay, for which a — o’ = di(a”).

Let b,V € By, be elements as in the proof of (1) for ¢ and ¢, respectively.
Then

Fres1(a) = frpr(a') = dif (b) — dF (V) = d7 (b= V).
On the other hand,
ge(b—b)=c—c =dfc".

By surjectivity of gr_1, there exists b” € By_y for which gg.1(") = .
Then gi(di}_,(0")) = dj_ 1 (ge—1 (V")) = df_(¢") = ¢ — ¢ and

ge((b— ) — dB (")) = 0.

Thus there exists a” € Ay so that fx(a”) = (b—b') —dP (V). Since

fri(a—d = dii(a") = i (a —d') = df fr(a") = dif i, (") = 0
and fry1 is injective, the claim follows. O

By Lemma 3.3.4, the following operator is well-defined; linearity we leave
to the interested reader.

Definition 3.3.5. Let 0 A, f B, g C, 0 be a short ex-

act sequence of chain complexes. The linear operator dy,: H*(C,) — H*1(A,)
given by formula

Okle] = [(for) ™ (R (g ()]

is called the boundary operator (for this short exact sequence).
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To prove Theorem 3.3.1 it suffices now to verify the following lemma.

Lemma 3.3.6. Let 0 A, f B, 9 C, 0 be a short exact
sequence of chain complexes. Then sequences

(3.3.3) H*(B,) 2~ H*(0,) — 2% HF1(A,),

(3.3.4) HE(C) — 2 R (A, L 1R (A))

and

(3.3.5) HRA) L g By 9 kB,

are exact for every k € Z.

Proof. We consider first (3.3.3). Let [b] € H*(B,). Thus
Ok © ga([t]) = Oklon ()] = [fi A (B)] = 0.

and Img, C ker 9y for every k.

To show the converse, let [c] € kerdg, i.e. [fri1) ' (dP(g;"(c)))] = 0.
Fix b € By and ag41 € Agyq so that gx(b) = ¢ and fry1(a) = dkB(b). Since
[a] = 0, there exists a’ € Ay, for which a = dila’. Since dZ(b— fix(a’)) =0
and g (b — fr(d')) = ¢ — gr(fr(a')) = ¢, we have that [¢] € Im(g.). This
proves the exactness of (3.3.3).

We consider now (3.3.4). Let [c] € H*(C.). Then

fe 0 Okld = [di (g7 ()] = 0

and Imdy C ker f, for every k.

To show the converse, let [a] € ker f,. Then there exists b € By for
which fri1(a) = dP(b). Let ¢ = gi(b). Since df(c) = grr1(df (b)) =
Jk+1 © fre1(a)) = 0, ¢ is a cycle. Thus, by definition of dk, dx[c] = [a] and
ker f. C ImOk.

Finally, we consider the exactness of (3.3.4). Let [a] € H*(A,). Then
g« fxla] = [gk(fx(a))] = 0. Thus imf, C kerg.. Suppose now that [b] €
ker g.. Then gx(b) = dkCH(c’) for some ¢ € Cy_1. Thus, by surjectivity
of gx_1, there exists V' € By_1 so that gx_1(V/) = ¢/. Thus b — dkB_lb’ S
ker g, = Imf;. Hence there exists a € Ay so that fi(a) =b— dkalb’. Thus
f«la] = [fr(a)] = [b]. Hence ker g, C Imf,. O
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3.4 Homotopy

The kth de Rham cohomology H*(U) is defined using smooth forms in
QF(U). Furtheremore, we know that smooth mappings f: U — V induce
linear mappings f*: H¥(V) — H¥(U). These linear maps are isomorphisms
if f is a diffeomorphism. It is an interesing fact that it is possible to define
the pull-back f*: H¥(V) — HF(U) also when f is merely a continuous
map. This leads to a fundamental observation that de Rham cohomology is
actually a topological invariant and not only a smooth invariant. We discuss
these (and other) questions in this section.

Convention 3.4.1. In this section, we assume that all mappings we con-
sider are (at least!) continuous.

Definition 3.4.2. Let X and Y be topological spaces. Mappings f;: X — Y
(for i = 0,1) are homotopic if there exists a map F': X x [0,1] — Y so that
F(-,0) = fo and F(-,1) = fi1. We denote fp ~ f.

We list two fundamental facts on homotopy. Proofs are left to interested
readers.

Lemma 3.4.3. The relation ~ is an equivalence relation.

Lemma 3.4.4. Let f;: X — Y and g;: Y — Z be mappings between topo-
logical spaces for i =0,1. If fo ~ f1 and go =~ g1 then g1 0 f1 >~ go o fo.

Definition 3.4.5. A mapping f: X — Y is a homotopy equivalence if there
exists a mapping ¢g: Y — X for which go f ~ idx and f o g ~ idy; here g
is called a homotopy inverse of f.

If there exists a homotopy equivalence X — Y then X and Y are said
to be homotopy equivalent and we denote X ~ Y. The space X is said to
be contractible if it is homotopy equivalent to a point.

Example 3.4.6. (i) Star-like sets are contractible. In particular, R™ is
contractible for all n > 1.

(i) R2\ {0} ~ S
(iii) R?\ ([-1,1] x {0}) ~ R?\ {0}.

Theorem 3.4.7. Let U C R™ and V C R™ be open sets and let fo, f1: U —
V' be C*®-smooth maps. Suppose fo and fi are smoothly homotopic, that
is, there exists a C°°-smooth map F: U x R — V so that F(-,0) = fo
and F(-,1) = fi. Then f&, fi: Q¥(V) — QF(U) are chain homotopic. In
particularly,

fo = fi: HY(V) = HM(U).
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Proof. Let ¢;: U — U x R be the inclusion maps x — (z,i) for i = 0, 1.
Then

Fo¢i=f;

for i = 0,1.
Let Sp.: QF(U x R) — QF~1(U) be the operators in the proof of Poincaré
lemma. Then (Problem # 4 in Exercise set 3.)

dSk(w) = Spp1(dw) = ¢} (w) — G5 (w)

for every w € QF(U x R).
We define Sy,: QF(V) — QF1(U) by

N

S =S, o F*
Then
dSy — Spy1d = doSyoF* — S 10F* od

= (dogk—§k+10d)OF*

= (P1—p)oF" =10 F" —goo F”

= (Fo¢1)" = (Fogo) =f—fs-
Thus linear maps f;: Q*(V) — QF(U) are chain homotopic. We conclude
that f; = f3: H*(V) — H*(U) by Lemma 3.2.13. O
3.4.1 Topological invariance of de Rham cohomology

In this subsection we prove (among other things) the following theorem.

Theorem 3.4.8 (Topological invariance of de Rham cohomology). Let f: U —
V be a homeomorphism. Then H*(U) = H¥(V) for each k > 0.

We begin with the following approximation theorem.

Theorem 3.4.9. Let U C R™ and V C R™ be open sets and f: U — V a
continuous map. Then there exists a C°°-smooth map g: U — V homotopic
to f. Furthermore, if C'°°-smooth maps go,g1: U — V are homotopic then
there exists a smooth homotopy G: U x R — V so that G(-,0) ~ go and
G(', 1) ~Jg1.-

The proof of Theorem 3.4.9 is based on partition of unity.

Theorem 3.4.10. Let U C R" be an open set and V = (V;)ier a cover
of U by open sets. Then there exists C°°-smooth functions ¢;: U — [0,1]
satisfying

(1) sptp; C 'V for eachi € I,
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(2) (local finiteness) every x € U has a neighborhood W so that #{i €
I: :|W # 0} < oo,
(3) Zie[ ¢i = 1.
Proof. See [7, Theorem A.1]. O

As an application of the partition of unity, we have the following approx-
imation result.

Lemma 3.4.11. Suppose A C U’ C U C R™ where U' and U are open sets
and A is closed in U. Suppose W C R™ is an open set and f: U — W be a
continuous map so that f|U" is C*°-smooth. Given a function e: U — (0, 00)
there exists a C°°-smooth map g: U — W so that

(1) |f(z) — g(x)| < e(x) for all x € U and

(2) f(z) = g(x) forz € A.
Proof. See [7, Lemma A.9]. O

Proof of Theorem 3.4.9. We begin by fixing a function e: U — (0, 00) satis-
fying B"(f(z),e(x)) C V forevery x € U. Then, by Lemma 3.4.11 (A=U =
(), there exists a C*°-smooth map ¢g: U — V satisfying | f(z) — g(z)| < €(x)
for every x € U. Then f ~ g by homotopy (x,t) — (1 —t)f(z) + tg(x).
Suppose now that gg,g1: U — V are C"*°-smooth functions and F': U x
[0,1] — V a homotopy satisfying F'(-,0) = go and F(-,1) = ¢g1. Let ¢: R —
[0,1] be a continuous function satisfying 1(t) = 0 for t < 1/3 and ¢(t) = 1
for t > 2/3. Define H: U x R — V by H = F o (id x ¥). Now, by
Lemma 3.4.11, there exists a C*°-smooth map G: U x R — V satisfying
G|U x {0,1} = H|U x {0,1}. O

Combining Theorems 3.4.7 and 3.4.9, we obtain the following corollary.

Lemma 3.4.12. Let f: U — V be a continuous map. Then there exists
a C®-smooth map g: U — V homotopic to f. Furthermore, if h: U — V
another C°°-smooth map homotopic to f, then

g*=h*: H*(V) — H*U)
for every k > 0.

Definition 3.4.13. Let f: U — V be a continuous map between open sets
UCR"”and V C R™. We define

fr=Hf): H*(V) - H"U)

by f* = g*, where g: U — V is any C*°-smooth map homotopic to f.
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Corollary 3.4.14. Let f: U — V be a homotopy equivalence. Then the
induced map f*: H*(V) — H*(U) is an isomorphism for each k > 0.

Sketch of a proof. Let g: V. — U be the homotopy inverse of f. Then f* o
g =(go f)*=id;; =id and ¢g* o f* = (f 0o g)* = id}, = id. (Why this is
only a sketch?) O

Theorem 3.4.8 is now a corollary of this corollary.

3.4.2 First applications

We combine now methods of calculation to obtain the following result.

Theorem 3.4.15. Forn > 2,

R, E=0,n—-1
kmpn o ’ ’ ’
H"(R™\ {0}) _{ 0, otherwise.

Combining Theorems 3.4.8 and 3.4.15, we have the following corollary
which we state as a theorem (for its importance).

Theorem 3.4.16. FEuclidean spaces R™ and R™ are homeomorphic if and
only if n =m.

Proof. Suppose R"™ and R™ are homeomorphic. Then R™\ {0} and R™\ {0}
are homeomorphic. Thus m = n by Theorem 3.4.15. The other direction
(really) is trivial. O

Theorem 3.4.15 is a consequence of following theorem which is based on
homotopy invariance and the Meyer—Vietoris sequence. Recall that we may
identify H°(U) with the space of locally constant functions, and that this
space contains a 1-dimensional space R -1 spanned by the constant function
1.

Theorem 3.4.17. Let A C R" = R" x {0} C R""! be a closed set such that
A #R" Then

HF1(R™\ A), k>1
HFRI\ A)={ HYR"\ A)/R-1, k=1
R, k=0.

Proof. Let Uy =R"™ x (0,00) UR™\ A x (—=1,00) and Uy = R" x (—00,0) U
R™\ A x (—o0,1). Then

U1UU2:Rn\A

and
UinUs = (R"1\ A) x (—1,1).
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The sets Uy and U; are contractible. (Exercise!) Furthermore, the projection
pr: (R"1\ A) x (=1,1) — R* '\ 4, (z,t) — =, is a homotopy equivalence.
Indeed, the inclusion R*™ 1\ A — (R* 1\ A) x (—1,1),  — (z,0), is the
homotopy inverse. (Exercise!)

We conclude that pr*: H¥(R™\ A) — H*(U; N Us) is an isomorphism
for every k > 0.

On the other hand, by Meyer—Vietoris, we have an exact sequence

Ok

--HHk(Ul)@Hk(UQ) Hk(UlﬁUQ)

— PHEU U Uy) —— HEY(U)) @ HY 4+ 1(Uy) — -

For k > 1, we have

0 — = H*U N Us) — 2 BN (U, UUs) ——> 0

Thus 0 is an isomorphism for k > 1.
Since Uy U Uy is connected (Exercise!), we have HO(U; UUs) = R. Thus,
we have an exact sequence

0—>R—>ROR— HO(U, N Us) — 2> HY (U, UUs) — =0 —> -

We conclude that dim H'(U; U Us) = dim H°(U; N Us) — 1. (Exercise!) O
Proof of Theorem 3.4.15. We know that

R, £=0,1
k(2 ~ 9 s Ly
AP (R A{0}) = { 0, otherwise.

Thus, by Theorem 3.4.17, we have, for k > 1,

R, Ek=0n—-1
0, otherwise

AR (0)) 2 R (o) = {

Similarly, HY(R"\ {0}) = HY(R"1\ {0})/(R-1) = 0 and H°(R"\ {0}) = R,
since R*~1\ {0} and R™\ {0} are connected for n > 2. O

As an another application of Theorem 3.4.17 we prove the following result
which statates that the cohomology of the complement does not depend on
the embedding of the set.

Theorem 3.4.18. Let A and B be homeomorphic closed sets in R™ so that
A#R"# B. Then
H*¥R"\ A) = H¥(R™\ B)

for all k > 0.
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Corollary 3.4.19. Suppose A and B are closed homoeomorphic subsets R™.
Then R™\ A and R™\ B have the same number of components.

The proof is based on so-called Klee trick, which is based on the Urysohn-
Tietze extension theorem (see e.g. [7, Lemma 7.4].

Lemma 3.4.20. Let A C R™ and B C R™ be homeomorphic closed sets
and f: A — B a homeomorphism. Then there exists a homeomorphism
¢: RMT™M — R"™™ g0 that ¢(x,0) = (0, f(z)) for every x € A.

Proof. Let f1: R® — R™ be a continuous extension of f and define h;: R™ x
R™ — R"™ x R™ by

Then h; is a homeomorphism with the inverse (z,y) — (z,y — fi(x)).
Let fo: R™ — R™ be a continuous extension of f~! and define a home-
omorphism hg X R” x R™ — R" x R™ by

Now the mapping ¢ = hy Lo hy is the required homeomorphism.(Check!) [

Corollary 3.4.21 (Corollary of the Klee trick). Ewvery homeomorphism
¢: A — B of closed sets in R™ can be extended to a homeomorphism R?" —
R2". (Here R® = R™ x {0} C R"® x R* = R?".)

Proof of Theorem 8.4.18. For k > 1, we have by Theorem 3.4.17 and Corol-
lary 3.4.21, we have

HY(R™\ A) = HER?\ (Ax{0})) = H " (R*"\ (B x{0})) = H*(R"\ B).

Similarly,
HO(R™\ A)/(R-1) = H'(R"\ B)/(R-1).

The claim is proven. O
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Chapter 4

Applications

In this chapter we list some classical applications of the de Rham cohomol-
ogy. In this section we use the notations B" = {x € R": |z| < 1} and
st =oB".

4.0.3 Brower’s fixed point theorem

Theorem 4.0.22 (Brower’s fixed point theorem). Let f: B" — Bﬁ be a
continuous map. Then f has a fixed point, that is, there exists x € B™ for
which f(z) = x.

The proof is an easy application of the following lemma. (We leave the
actual details to the interested reader; or see [7, Theorem 7.1].)

Lemma 4.0.23. There is no continuous map f: B — S*"~ ! extending the
identity, that is, satisfying f|0B™ = id.

Proof. Suppose such map f exists. Let F: S""! x [0,1] — S*! be the
map F(z,t) = f(tx). Then F is a homotopy from the constant map = —
f(0) to the identity idgn—1 = f|S"~1. Thus S"~! is contractible. This is a
contradiction, since S"~! is not contractible (Exercise!). O

4.0.4 Hairy ball theorem

For the purposes of the next statement, recall from Multivariable calculus
the notion of a tangent space. For simplicity, we say that the tangent space
of the sphere S™ at point & € S™ is the linear subspace T,S™ ¢ R"*! which
is orthogonal to z, that is, v € T, S™ satisfy (v, z) = 0. Furthermore, we say
that a vector field X : S* — R"*! is tangential if X (z) € T,S™ for every z.

Theorem 4.0.24. The sphere S"™ has a tangent vector field X with X (z) # 0
for all x € S™ if and only if n is odd.
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Proof. For n =2m — 1 define
X(21,. .., 2om) = (22,21, —23, T4, . . ., —T2m, T2m—1)-

Then | X (x)| = |z| = 1 for every z.

Suppose now that X: S — R"*! is a tangent vector field which does
not vanish (X (x) # 0 for all ). We show that n is odd.

Let Y: R"™ 1\ {0} — R"™1\ {0} be the vector field Y(z) = X (z/|x]).
Then (Y (z),z) = 0 for all x € R"*1\ {0}. Let F: (R"*1\ {0}) x [0,1] —
R™*+1\ {0} be the map

(x,t) — cos(mt)x + sin(7t)Y (z).

Then F' is a homotopy from id to —id. (Check that F' is really well-defined!
Draw a picture.)

Thus id* = (—id)* = (—1)"*lid*: H¥(R"*1\ {0}) — H¥R"+1\ {0}) for
all £ > 0. (Exercise!) Thus n + 1 is even and hence n is odd. O

4.0.5 Jordan—Brouwer separation theorem

Theorem 4.0.25. Let n > 2 and let ¥ C R™ be a subset homeomorphic to
S*1. Then

(a) R™\ ¥ has exactly two components Uy and Us, where Uy is bounded
and Uy s unbounded.

(b) the set 3 is the boundary of both Uy and Us.

Proof. To show (a), it suffices, by Corollary 3.4.19, find the number of com-
ponents of R\ ¥, it suffices to observe that R™\ S"~! has two components,
B™ and R™\ B". To check that one of the components of R" \ ¥ is bounded
and other unbounded, let » = maxex |x|. Then W = R™\ B"(0,7) is a
connected set and W N'X = (). Thus W is contained in one of components,
say Uy, of R™ \ ¥. Thus U, is unbounded. By connectedness, the other
component Uy of R™ \ ¥ is contained in R” \ W. Thus U; C B"(0,r) and
U; is bounded.

The proof of (b) is harder. Let x € 3. We need to show that z € oU;
and x € OU,. This follows if we show that W N Uy # () and W N Uy # O for
all neighborhoods W of x in R™.

Let W be a neighborhood of x in R". By passing to a smaller neighbor-
hood if necessary we may assume that ¥ ¢ W. Then A =X\ W is a closed
subset of R™. We show first that R™ \ A = (R" \ ¥) UW is connected.

Let ¢: ¥ — S ! be a homeomorphism and denote B = 1)(A). Then B
is a closed subset of S”~! in the relative topology. Since S"~! is compact,
B is a closed subset of R". By Corollary 3.4.19 (again), R™ \ A and R" \ B
have the same number of components. However, it is an easy (geometric)
exercise to show that R™ \ B is connected. Thus R™ \ A is connected.
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Let y3 € WNU; and yo € W N Usy. Since R™ \ A is connected there
exists a path v: [0,1] — R™\ A so that v(0) = y; and (1) = y2. Then, by
connectedness, [0, 1] N3 # (). Note also that 4[0,1]NX =~[0,1]NENW.

Let t; = miny~!¥ and ¢, = max~y~'¥. Then t; > 0 since 7(0) = y; and
W N U is an open neighborhood of ¢;. Now v[0,¢1) C U;. Indeed, if this is
not the case, then there exists 0 < t < ¢; so that (¢) € Us. But then there
exists 0 < ¢/ < t so that y(t) € ¥ by the connectedness argument above,
and this contradicts the minimality of ¢;. By similar arguments, t5 < 1 and
’y(tg, 1] Cc Us.

It follows now from the continuity of v that Uy N W # () and Uy N W #
0. O

Remark 4.0.26 (Warning!). It is true for n = 2 that the components of
R2\ ¥ are homeomorphic to B® and R? \ B2. This is not true for n > 2.
Google Alexander’s horned sphere.

4.0.6 Invariance of domain

Theorem 4.0.27 (Brouwer). Let U C R"™ be an open set and f: U —
R™ an injective continuous map. Then the image f(U) is open in R™ and
fIU:U — f(U) a homeomorphism.

Corollary 4.0.28. (Invariance of domain) If V- C R"™, in the topology in-

duced from R™, is homeomorphic to an open set in R™, then V is open in
R™.

As an application of invariance of domain, we have the following local
version of Theorem 3.4.16.

Corollary 4.0.29. (Dimension invariance) Let U C R™ and V. C R™ be
open sets. If U and V' are homeomorphic then n = m.

Proof. We may assume that n < m. Let ¢: R — R™ be the natural
inclusion  — (z,0). Since «(U) =~ U =~ V, «(U) is open in R™ by the
invariance of domain. This is a contradiction since 0¢(U) = ¢(U) in R™. O

Proof of Theorem 4.0.27. We need to show that g: f(U) — U is continuous,
where ¢ = f~!. We show that f(W) is open for every open set W C U.
Then g~ is continuous (by definition!).

Let W C U be an open set and let 29 € W. Let B = B"(z,9) be a ball
so that B C W and denote S = dB. We show that f(B) is open.

For n = 1, we have that f(B) is an open interval and we are done.
Suppose n > 2.

Since f is a continuous injection and S is compact, f|S: S — f(5) is a
homeomorphism. Then, by Jordan—Brouwer separation theorem (Theorem
4.0.25), R™\ f(S) has two components V7 and V5 so that V} is bounded and
V5 is unbounded, and which satisfy 0V; = dVa = f(9).
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Since f|B: B — f(B) is a homeomorphism, we have by Theorem 3.4.18
that HY(R™ \ f(B)) = H°(R"\ B) = R. Thus R"\ f(B) is connected.
Furthermore, R \ f(B) is unboudned.

Since f is injective, f(S) N f(B) = (. Thus, by connectedness, R™ \
F(B) C Us. Thus £(S)UU; C f(B). Thus Uy C f(B).

We finish by showing that U; = f(B). Since B is connected, so is
f(B). Since f(B) C Uy UU; by injectivity of f, we have f(B) C U;. Thus
Uy = f(B). Thus f(B) is open, which completes the proof. O
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Chapter 5

Manifolds and bundles

5.1 Topological manifolds and bundles

Definition 5.1.1. A topological space M is an n-manifold, for n > 0, if
(M1) M is Hausdorff,
(M2) M has countable basis,

(M3) every point in M has a (open) neighborhood which is homeomorphic
to an open set in R™.

Definition 5.1.2. Let M be an n-manifold. A pair (U, ¢), where U C M
is an open subset and p: U — V is a homeomorphism to an open subset of
R™ is a chart of M.

Since ¢: U — V carries all necessary information, also ¢ is called some-
times a chart. For z € U, we also sometimes say that (U, ) is chart of M
at x.

Remark 5.1.3. Condition (M2) is some times replaced with another condi-
tion (like paracompactness) or left out. Recall that B is a basis of topology
T if each open set (i.e. element of T ) is a union of elements of B (or empty).
Recall also that a topological space is paracompact if every open cover has
a locally finite refinement.

Remark 5.1.4. We identify R® = {0}. Thus components of 0-manifolds
are points.

By de Rham theory, we may define the dimension dim M of M uniquely
using condition (M3). Indeed, by the invariance of dimension, we have the
following corollary which we record as a lemma.

Lemma 5.1.5. Let M be a topological space which is an n-manifold and an
m-manifold. Then n =m.
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Lemma 5.1.6. Let M be an n-manifold. Then every non-empty open subset
of M is an n-manifold.

Proof. Let U be an open subset of M. Then, in the relative topology, U
is Hausdorff and has countable basis. To verify (M3), let x € U. Since
M is an n-manifold x has a neighborhood W C M which is homeomorphic
to an open set in M. Thus U N W is an open neighborhood of x which is
homeomorphic to an open subset of R™. ]

Definition 5.1.7. A topological space M satisfying (M1) and (M2) is an
n-manifold with boundary if

(M3’) every point in M has a neighborhood homeomorphic to an open set in
R"~! x [0,00) C R" (in the relative topology).

Let M be an n-manifold with boundary. We say that x € M is a manifold
point if it has a neighborhood homeomorphic to an open subset of R”. We
call

intM = {z € M: z is a manifold point}

the manifold interior of M. The set OM = M \ intM we call the manifold
boundary of M.

By (non-)contractibility results from de Rham theory, we have the fol-
lowing characterization; here and in what follows B™ = B"(0,1) = {z €
R™: |z| < 1}.

Lemma 5.1.8. Let M be an n-manifold with boundary. Then x € OM if
and only if x has a neighborhood U so that all neigborhoods of x contained
in U are homeomorphic to relatively open sets in R"~! x [0, 00) but not to
open sets in R".

Proof. Exercise. O

The interior int M of M is a non-empty n-manifold and OM is an (n—1)-
manifold. In fact both are submanifolds.

Definition 5.1.9. Let M be an n-manifold with boundary. A subset N C
M is a k-submanifold if for every x € N there exists a neighborhood U of z
and an embedding ¢: U — X, where X is R™ if # € intM and R"~! x [0, 0o)
otherwise, satisfying (U N N) = p(U) NRF c R¥ x {0}.

Lemma 5.1.10. A k-submanifold of an n-manifold with boundary is a k-
manifold. In addition, k < n.

Proof. Let N C M be a k-submanifold of an n-manifold with boundary M.
Then N is Hausdorff and has countable basis in the relative topology. Thus
it suffices to verify (M3). Let x € N.
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Suppose first that = € int M. We fix a neighborhood U and an embedding
¢: U — R™ for which (U N N) C R* x {0} € R™. Then ¢(U N N) is open
in the relative topology of R¥ x {0}. Thus U N N is a neighborhood of z in
N which is homeomorphic to an open set in R¥. The case € M is almost
verbatim.

The last claim, k& < n, follows from the invariance of domain. O

Lemma 5.1.11. Let M be an n-manifold with boundary. Then intM is an
n-submanifold and OM is an (n — 1)-submanifold.

Proof. We readily observe that int M, in the relative topology, is Hausdorff
and has countable basis. Since every point in M has a neighborhood home-
omorphic to an open set in R™ by definition, it is an n-manifold.

To show that OM is an (n — 1)-manifold it suffices to verify (M3). Let
x € OM and U a neighborhood of  in M. Then, by Lemma 5.1.8, there
exists a homeomorphism ¢: U — V, where V is an relatively open set in
R"~! x [0, 00) which is not open in R". Let W = U N OM. Since W is an
open neighborhood of z in the relative topology of OM, it suffices to show
that (W) is an open subset of R"~! x {0}.

By Lemma 5.1.8, (W) C R*! x {0}. Indeed, otherwise, a point in
W would have a neighborhood homeomorphic to an open set in R™. On
the other hand, none of the points in ¢~ 1(U NR*"! x {0}) is in intM.
Thus (W) = p(U) NR*! x {0}. Since ¢(U) is open in R*~! x [0, 00),
©(U)NR™ 1 x {0} is open in the relative topology of R"~! x {0}. Thus OU
is an (n — 1)-submanifold. O

5.1.1 Examples

First examples

We begin with concrete elementary examples. The most commonly used
concrete example is the n-sphere S™.

Example 5.1.12. The n-sphere S™ is the subset
S" = {z e R""!: |z| = 1}.

The n-sphere is a submanifold of R™, but we treat it as an n-manifold.
Since S C R", it is Hausdorff and has countable basis in the relative
topology. To wverify (M3), consider projections mi: S™ — R™ defined by
(1, Tpt1) = (X1, Ty o ypt1 ) and subsets

Six={(x1,.. ., 2n41) €S™: £ >0}
Then 7| S; 4+ Si v — B"™ and m|S; —: S;— — B" are homeomorphisms for

each i. Furthermore, S™ =, S; + U S; —. Thus S™ is an n-manifold.
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The second is perhaps the 2-torus.

Example 5.1.13. Let Q = [0,1]? and let ~ be the minimal equivalence
relation @ which satisfies (0,t) ~ (1,t) and (t,0) ~ (t,1) for each t € [0, 1].
Then the quotient space Q] ~ (with quotient topology) is the called the 2-
torus.

The 2-torus has two (nice) geometric realizations. First is S' x S' c R*
and the other

T={f(0) + % (cos ¢ f(0) +sin(0,0,1)) : 0, ¢ € [0,27]} C R,

where f: [0,27] — R3, () = (cosf,sind,0).

Perhaps not the second, but third, most common example is the M&bius
strip.

Example 5.1.14. Let Q = [-1,1]? and ~ the minimal equivalence relation
in @ satisfying (t,0) ~ (1 —t,1) fort € [0,1]. Then Q/ ~ is a 2-manifold
with boundary. It has a nice realization in R3 as

> = {f(8) + Z (cos(8/2) £(0) +sin(6/2)(0,0,1)) : 0 € [0,2x],s € [1,1]}.

Products

Almost trivial, but essential, observation is that product of manifolds is a
manifold.

Lemma 5.1.15. Let M and N be m- and n-manifolds, respectively. Then
M x N is an (m + n)-manifold. Furthermore, if M and N are manifolds
with boundary, then M x N is a manifold with boundary.

Proof. Exercise. O

Example 5.1.16. Since S! is a manifold, so is the 2-torus S' x S'.

Covering maps

Definition 5.1.17. A continuous mapping f: X — Y between topological
spaces is a covering map if f is surjective and for each x € X there exists a
neighborhood V' of f(x) so that components of f~!(V) are homeomorphic
to V.

Since the basis of the product topology is given by products of open sets
in the factors, we readily obtain the following result which we record as a
lemma.

Lemma 5.1.18. Let fi1: X1 = Y7 and fo: Xo — Y be covering maps. Then
f1 X fo: X1 X Xo — Y1 XYs is a covering map.
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Example 5.1.19. Let ¢: R — S! be the map t +— (cos 2nt, sin 2rt), i.e. t
e?mt. Let tg € R and set Qo = (to — 1/2,t0 + 1/2). Then ¢~ (#(Qo)) =
U.ez(z + Qo), where z + Qo = {z +w € R: w € Qo}. Furthermore, ¢|(z +
Qo): 2+ Qo — #(Qo) is a homeomorphism for each z. Thus ¢ is a covering
map.

Lemma 5.1.20. Let M be an manifold and let ¢: X — M and: M —Y
be covering maps. Then 'Y is an n-manifold. Moreover, X is an n-manifold
if it has a countable basis.

Proof. Exercise. O

Example 5.1.21. The two torus S' x S! is a 2-manifold, since ¢ x ¢: R? —
S! x St is a covering map.

Quotients and orbit maps

Suppose ¢: M — N is a covering map between two n-manifolds. Then N
is homeomorphic to M/ ~ where ~ is the equivalence relation on M given
by x ~ y if and only if ¢(x) = ¢(y). Thus N is a quotient manifold of M.

A particular class of quotient manifolds is obtained by group actions.

Let M be an n-manifold and Homeo(M ) the set of all homeomorphisms
of M. Then Homeo(M) is a groups where the group law is given by compo-
sition.

Let I' € Homeo(M) be a subgroup. Given = € M, we denote by 'z =
{7v(x) € M: v €T} the orbit of x with respect toI'. Then M/T' = {T'z: x €
M} is a partition of M. Let mp: M — M/T be the canonical map z — 'z,
called orbit map.

Theorem 5.1.22. Let M be an n-manifold and let ' C Homeo(M) be a
subgroup. Suppose I' satisfies the conditions

(T 1) v(x) # x for each x € M and v #id € T and

(T' 2) every point x € M has a neighborhood U so that

H{yeT: UN~U) # 0} < oo.

Then M/T is an n-manifold and the orbit map mp: M — M/I" a covering
map.

Proof. Exercise. O

Remark 5.1.23. The subgroup I' C Homeo(M ) is said to act on M freely
if it satisfies condition (T 1). Similarly, T is said to act discontinously if
it satisfies (I' 2). Note that this terminology sligly varies in the literature
depending on the underlying setting. We work on manifold which are locally
compact (o-compact) spaces.
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Remark 5.1.24. The notion of ’action’ comes from a more general frame-
work, where I' is an abstract group and there exists a homomorphism A: I' —
Homeo(M). Then T is said to act on M (via A).

Example 5.1.25. The 2-torus S' x S! is homeomorphic to R?/Z?, where
72 is identified with the group of translations x — = + z, z € Z?, in R2.

Example 5.1.26. Let M = S™ and I' = {id, —id}. Then M/T is a real
projective space RP™ which is an n-manifold.

Amalgamations

Let A C X and B C Y be homeomorphic subsets and ¢: A — B a homeo-
morphism. Let ~ be the minimal equivalence relation so that ¢(z) ~ = for
every x € A. We denote by X [[,Y the quotient space (X [[Y)/ ~ and
call it amalgamation of X and Y along ¢.

Lemma 5.1.27. Let M be an n-manifold with boundary and let 1p: B"~1(0,2)x
{0,1} = OM be an embedding. Let C = B" ! x [0,1], and ¢ = |B""1 x
[0,1]. Then M ][, C is an n-manifold with boundary.

Proof. Exercise. O

The operation in Lemma 5.1.27 is called an attachment of a (1-)handle.

Example 5.1.28. Consider a closed 3-ball B3> = {x € R3: |z| < 1} and
attach a handle to it, for example, as follows. Let Dy and D1 be closed disks
0B% =$2, e.g. Dy = {x € S?: 13 < —1/2} and Dy = {x € S*: z3 > 1/2}.
Let ¢: Do U Dy — B2 x {0,1} be the homeomorphism

2(1‘1,1‘2,0), x3 <0

(1‘17]3‘2,333) = { 2($1,$2, 1)’ T3 > 0

Then B3 ]_[¢C is homeomorphic to B?> x S', i.e. it is a solid 3-torus. In
particularly, it is a 3-manifold with boundary homeomorphic to 0B* x S! =
St x St.

Lemma 5.1.29. Let M and N be n-manifolds with boundary, and suppose
Y and X' N are homeomorphic open and closed sets in OM and ON, respec-
tively, and ¢: X — X' a homeomorphism. Then MH¢N s an n-manifold
with boundary. Moreover, if ¥ = OM and ¥’ = ON, then MH¢N is an
n-manifold.

Proof. Exercise. O
Example 5.1.30. Let ¢: S! x St — S x S, (z,w) = (w,2). Then ¢ is a
self homeomorphism on the boundary of a solid 3-torus B> xS'. By Lemma
5.1.29, (B* x S) H¢(B2 x S1) is a 3-manifold. Infact, it is homeomorphic
to S3(!).
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Example 5.1.31. Let M be an n-manifold with boundary. Then M [[,4 M,
where id: OM — OM, is called the double of M. By Lemma 5.1.29, it is an
n-manifold.

As a final example of this type we introduce connected sums.

Theorem 5.1.32. Let My and My be n-manifolds and v;: B"(0,2) — M;
be embeddings. Let ¥; = ¢;(S"™1), B; = ;(B"), and ¢: £1 — Yo the
homeomorphism ¢ = g 0 97 %y, Then (M; \ By) [14(M2\ B) is an n-
manifold.

Proof. Exercise. O

The n-manifold (M; \ B1) [[,(M2\ Bs) is called a connected sum of M
and Ms and usually denoted simply as M;# M, with data ¢ and 19 being
understood from the context.

5.1.2 Bundles

Definition 5.1.33. Let I be a topological space. A fiber bundle with a fiber
F over manifold B is a triple £ = (F, B, 7), where E and B are manifolds
and 7: £ — B is a continuous map, so that

(B1) 7~ !(x) ~ F is homeomorphic with F for every z € B and,
(B2) for every x € B there exists a neighborhood U of = and a homomeo-

morphism ¢: 771U — U x F satisfying

UxF

where pr;: U — F — U is the projection (y,v) — y.

The manifolds F and B are called a total and bases spaces of the bundle
€. The preimages 7~ !(z) is called fibers. Since the map m: E — B contains
all the essential information, it is also typical to say for short that 7: £ — B
is a bundle. When the map 7 is understood from the context, it is typical
to refer to F as a bundle over the base B.

Example 5.1.34. Both S' x (—1,1) and the Mébius strip are fiber bundles
with fiber R over S'. In fact, all products M x N are fiber bundles over M
(with fiber N ) and over N (with fiber M ).
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Definition 5.1.35. Let (E, M, 7) be a fiber bundle. A map s: M — E'is
a section if mo s =1idyy;
Sziﬂ'

M

Definition 5.1.36. Let (Ey, M;,m1) and (Ea, My, m2) be bundles. A map
F: Ey — Es is a bundle map if there exists a map f: M7 — Ms so that

B "> By
o
f
M1 e MQ
(i.e. F' maps fibers into fibers).

For the definition of a vector bundle, we make a simple observation. Let
V be a vector space and U an open set on a manifold. Then pry: UxV — U
is a product bundle and the projection pry: U xV — V., (z,v) — v, restricts
to a homeomorphism {z} x V — V for each fiber pr;*(z) = {z} x V. Thus
{z} x V has a strucuture of a vector space with

(2,v) + a(z,w) = (2,0 + aw)
forv,weV,aeR, and z € U.

Definition 5.1.37. Let V be a vector space. A fiber bundle £ = (E, B, 7)
with fiber V' is a vector bundle if

(VB1) each 7~ () is a vector space isomophic to V,

(VB2) each x € B has a neighborhood U and a homeomorphism ¢: 7=%(U) —
U x V as in (B2) so that ¢|7~1(y): 7~ 1(z) — {y} x V is a linear iso-
morphism for each y € U.

Definition 5.1.38. Sections of a vector bundle are called vector fields.

Interesting examples of vector bundles are tangent and exterior bundles.
For these, we need the notion of smoothness on a manifold.

5.2 Smooth manifolds

Topological manifolds have topology, and hence the continuity of maps be-
tween manifolds (and other topological spaces) is understood. We introduce
now C'*°-smooth manifolds.
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Definition 5.2.1. Let M be an n-manifold and suppose (U, 1) and (V, ¢)
are charts on M so that U NV # (). Homeomorphism

Unv
l o
YUV SUNV)

is called a transition map from (U,v) to (V, ).

Definition 5.2.2. Let M be an n-manifold. A collection A = {(Uq, ¥a) }aer
of charts of M is an atlas if | J, Uy = M.

Definition 5.2.3. An atlas A of an n-manifold M is a smooth atlas if all
transition maps between charts in A are C*°-smooth. A chart (U,) on M
is compatible with a smooth atlas A if all transition maps between (U, 1))
and charts in A are C*°-smooth.

Example 5.2.4 (Canonical first example). Let (S; +,m;|Si+) be as in Ez-
ample 5.1.12. Then {(S;+,mi|Si+): i =1,....,n+ 1} is a smooth atlas on
S™. (Ezercise to check the smoothness.)

Example 5.2.5 (Cautionary second example). Let X = 9[—1,1]> C R?
(i.e. the topological boundary of the square [—1,1]2) and let h: S* — X be
the homeomorphism x +— x/|x|s. Clearly, X is a 1-manifold. Moreover,
A={(hS; s, m|Sitoh™):i=1,...,n+1} is an atlas on X. It is, in fact,
a smooth atlas.

Definition 5.2.6. A smooth atlas A on an n-manifold is a smooth structure
if it contains all compatible smooth charts.

Since all charts on a fixed manifold form a set, we have the following
existence result.

Lemma 5.2.7. If an n-manifold M admits a smooth atlas, it admits a
smooth structure.

Definition 5.2.8. A smooth manifold is a pair (M, .A), where A is a smooth
structure on manifold M.

Definition 5.2.9. A map f: M — N between smooth manifolds (M, Ayy)
and (N, Ay) is smooth if for every x € M there exists charts (U,¢) € A
and (V,¢) € Ay so that fU C V and ¢po foyp~t: p(U) — ¢(V) is C>°-
smooth map;




A simple application of the chain rule shows that the smooth does not
depend on a chosen charts.

Lemma 5.2.10. Let f: M — N be a smooth map between smooth man-
ifolds. Suppose (U,) and (V,$) are smooth charts on M and on N, re-
spectively so that fUNV # 0. Then ¢o foy=t:p(UN f~YV)) = ¢V is

C*°-smooth map.

Proof. Let z € UN f~1(V). We need to show that 1(z) has a neighborhood
where ¢ o f o ¢! is C®-smooth. Since f is smooth, there exists charts
(Uo, o) and (Vy, ¢po) so that x € Uy, fUy C Vo, and ¢g o f o¢61 is C°°-
smooth. Let Wy = Uy NU. By compatibility of the charts, 1y o 1~ tw(Wp)
is C°*°-smooth. Thus

g0 o f o (W) = (doo fowy")o (oo™ i(Wp))

is C*°-smooth. Since fWy C VoMV, we observe that a similar argument for
¢ o ¢o|do(fWpy) concludes now the proof. O

Definition 5.2.11. A homeomorphism f: M — N between smooth man-
ifolds (M, Ay) and (N, Ay) is a diffeomorphism if f and f~! are smooth
maps.

Convention 5.2.12. [t is typical, at this point, to stop paying attention to
the chosen smooth structure. From mow on we will assume that a smooth
manifold has a fized smooth structure (which we won’t give a name) and
that charts have C°°-smooth transition mappings. These charts are called
smooth charts from now on.

Remark 5.2.13 (Warning!). Dispite our relaxed attitude towards smooth
structures, it is a surprising (and extremely difficult!) result of Donaldson
that there are manifolds which do not admit smooth atlases. There is no
uniqueness either, even R* has infinitely many different (non-diffeomorphic)
smooth atlases.

5.3 Tangent bundle

5.3.1 Tangent space

Let M be a smooth manifold and x € M. Let P(x) be the set of all smooth
paths v: (=h, h) — M satisfying v(0) = pg, where h > 0; note that (—h,h)
is a smooth 1-manifold and thus +y is smooth if and only if for each t € (—h, h)
there exist a smooth chart (U, ¢) for whic ¢ ov|(t —d,t + ) is C*°-smooth,
where ¢ > 0 satisfies v(t — 0,t + ) C U.

Let ~, be the equivalence relation on P(z) so that v ~, o if and only
if (po07)(0) = (¢ o0)(0) for all chart (U, @) of M at z; note that it suffices
to check with one chart.
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Definition 5.3.1. Let M be a smooth manifold and z € M. The tangent
space of M at x is the space T, M = P(x)/ ~.

The tangent space has a natural linear structure.

Lemma 5.3.2. Let M be a smooth manifold and x € M. The operators
+: T .M xXT,M — T, M and -: R x T, M — T, M given by formulas

] + [l = [0 o (poy + ¢ o)l

and
aly] = [¢7" o (a(p07))],

where a € R, v,v1,72 € P(x), and (U, $) is a chart at x satisfying ¢(x) =0,
are well-defined.

Proof. We show first that the right hand sides does not depend on the choice
of the chart (U, ¢) at x.

Let 71,72 € P(z) and let (U, ¢) and (V, ) be charts of M at z € M. By
restricting the domain intervals of v; and 79 if necessary, we may assume
that the images of 1 and 2 are contained in U N'V. By restricting further,
we may assume that ¢goy;+@oyy C H(UNV) and Yoy +1poyy C L(UNV).

Since ¥ (x) = ¢(z) = 0, we have, by the chain rule,

(o (L o@om+1vom)) (0) = ((pov™)o@omn +1vor)) (0)
= D(¢pov (¥ oy + o) (0)

On the other hand,

(o) (0) = ((op™")o(po))(0)
= D(pog¢ o(¢ o) (0).
and
Do oD(Wog o= D(poy™ ohod )y =id.
Thus, by linearity,

(po (¥ ooy +1vom)) (0)=(poy+dor2)(0)

Thus
W ooy +yoy)=I[""o(pon + o)

and the addition is well-defined. It is similar to show that the scalar multi-
plication is well-defined.

To show that the right hand sides do not depend on the choice of rep-
resentatives, let 41 ~ 71 and 42 ~ 79 and let (U, ¢) be a chart. Since
(¢ 04;)'(0) = (¢ o) (0) by definition, the claim clearly follows. O
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Corollary 5.3.3. Let M be a smooth n-manifold, x € M, and (U,) a
chart of M at x. Then Dy¢: T,M — R"™, [y] — (¢ ov)'(0) is a linear
isomorphism. In particular, dim T, M = n.

Proof. Since Dy is linear, it suffices to show that it has an inverse. Define
®: R" — T, M by v+ [¢p~Loay], where a,: t — ¢(z) +tv. We observe first
that .

Dy o®(v) = Dyl o] = )(0) = v

for all v € R™.
Let v € P(x) and set v = (¢ o )’(0). Then

® o Dy¢[] = D((¢07)(0) = ®(v) = [p7" 0] = [].
Thus @ is an inverse of D, ¢. O

Remark 5.3.4. Note that there is no “canonical” identification of Ty M
with R™ but there are isomorphisms D, ¢ induced by charts ¢: U — ¢U. We
stress that the linear structure, however, is independent on the choice of the
chart.

Remark 5.3.5. There are several different ways to construct the tangent
space of a smooth manifold. This is just one of them.

Definition 5.3.6. Let M and N be smooth manifold and f: M — N a
smooth map. Given x € M, we denote by Dy f: T M — T} )N the map
[v] = [f ov]. We call D, f the tangent map (or differential) of f at x.

Remark 5.3.7. Dispite Remark 5.5.4, we may canonically identify T,R"
with R™ by D,id: T,R™ — R", [y] — (id 0 v)'(0), where id: R™ — R™.

Remark 5.3.7 yields the following observation.

Remark 5.3.8. (a) Let (U,¢) be a chart on a smooth manifold. Then
Dd)(z)id oD,¢p=D,¢ forx eU.

(b) Let U C R™ and V. C R™ be open sets and f: U — V a map. If
we consider f as a smooth maps between smooth manifolds, the map
(Dy(z)id) o Dy f o (D;id)~1: R® — R™ is the (usual) differential of f

given by partial derivatives of coordinate functions.

Convention 5.3.9. Given a map f: M — R™, where M is a smooth n-
manifold, we denote D, f: T, M — R™, where we have identified T,R™ with
R™ as in Remark 5.3.7. Note that, in particular, given a chart (U,¢) on a
smooth n-manifold M, mappings Dy¢ and Dy¢ agree.
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5.3.2 Tangent bundle

Let M be a smooth n-manifold. In this section, we show that the set

TM = U T, M
xeM

has natural structure as a smooth manifold and that (7'M, M, my), where
wa: TM — M, [y] = ~(0), is a vector bundle.
Given a chart (U, ¢) of M, let

TU = my/ (U) = | T.M.
zelU

Corollary 5.3.3 readily yields the following observation.

Lemma 5.3.10. Let (U, ¢) be chart on a smooth n-manifold M. Then the
map Dp: TU — ¢(U) x R™ defined by

s a bijection;

TU

d)oq’r% pry

o(U)
Furthermore, if smooth charts (U, ) and (V,1)) intersect, the map
D¢o (DY)~L: DY(TUNTV) — DS(TU NTV)
is diffeomorpism.

Proof. Corollary 5.3.3 readily yields the first claim. For the second claim,
we make first the following observation. Let (z,v) € (UNV) x R™ and a,
be the path ¢ — 9 (x) + tv. Then

Dy o (Dzw)_l(v) = qub[w_l oy = (¢o w_l 0ay)'(0) = Dw(z)(¢ o 1/’_1)”7
where the last step is the chain rule in the Euclidean space. Thus
D¢ o (DY) (z,0) = (o v~ (2), D(d 0™ )av)

for all (z,v) € Y(UNV) x R™. Since ¢ o ¢~ y(U NV) is C*®-smooth,
D¢ o (D)~t is C°°-smooth. O
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Topology and smooth structure on 7'M

Recall that a topology of a space X is induced a map f: X — Y if open
sets of X are of the form f~'V, where V is an open set in Y. A topology
of X is co-induced by the family {fo: Yo — X }aer of mapsifaset VC X
is open only if f; (V) is open in Y,, for each a € I.

We give now T'M a topology as follows. For every chart (U,¢), we
consider TU as a topological space with the topology 74 induced by the
map ®?: TU — U x R". Using Lemma 5.3.10, it is now easy to see that all
charts ¢: U — ¢(U), with the same domain U, induce the same topology
TTU On TU.

We give T'M the topology co-induced by all inclusion maps TU — T'M,
where (U, ¢) is a chart on M.

Remark 5.3.11. A set V. .C T'M is open in TM if and only if Dé(V NTU)
is open in U x R™ for all smooth charts (U, ¢).

Lemma 5.3.12. Let (U, ¢) be a smooth chart. The relative topology of TU
in T M is the topology Try. In particular, D¢ is a homeomorphism for every
(U, ¢) and TM is an 2n-manifold.

Proof. Let W C TU be an open set in the relative topology of TU. Then,
by definition of the relative topology, there exists an open set W’ in TM so
that W/ NTU = W. Since W' is open in TM, W/ NTU is open in topology
7ry by definition. Thus V is open in topology 7ry. On the other hand, if
W C TU is open in topology 7ry. Then, by Lemma 5.3.10, WNTU’ is open
in TV for all smooth charts (V,v). Thus V is open in TM and we shown
that the topologies coincide.

Since the relative topology of TU is 7py, which is induced by D¢, we
observe that D¢ is a homeomorphism.

To show that T'M is an 2n-manifold, we note first that T'M is clearly a
Hausdorff space. To show that T'M has a countable basis, we fix a countable
collection {(Uq, ¢a)}acr of charts of M so that |J,Us = M. Since each
TU, is an 2n-manifold, it has a countable basis. Thus, by countability of
the collection, TM has a countable basis. Finally, we observe that {TU,}q
is an open cover of T'M. Since each TU, is a 2n-manifold, every point in
TM has a neighborhood homeomorphic to an open subset of R?". This
concludes the proof. O

Convention 5.3.13. We identify TR™ with R™ x R™ via Did: TM — R™ x
R", where id: R™ — R™.

Lemma 5.3.10 shgws also that T'M has a natural smooth structure con-
taining charts (TU, D¢). We formalize this immediate consequence as fol-
lows.
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Lemma 5.3.14. Let M be a smooth manifold and A a smooth atlas of
M. Then TM has a smooth structure containing the smooth atlas T A =
{(TU,D¢): (U,¢) € A}. O

Definition 5.3.15. Let M be a smooth manifold. The triple (T'M, M, wyy)
is the tangent bundle of M.

This smooth structure is natural in the following sense.

Definition 5.3.16. Let f: M — N be a smooth map between smooth
manifolds M and N. The map Df: TM — TN, [y] — [f o~], is the tangent
map (or differential) of f.

Lemma 5.3.17. Let f: M — N be a smooth map between smooth manifolds
M and N. Then Df: TM — TN is smooth bundle map, that is,

™ -2l TN
o |
M-t N
Proof. Exercise. O

As a final remark, we note the following.

Remark 5.3.18. Given a chart (U,¢) on M but considering U as an n-
manifold, the inclusion v: U — M induces an embedding Di: TU — TM

satisfying
D

TU —=TM
ﬂM'U\L \Lﬂ-M
U—>M

Thus Du gives a natural identification of T,U and TpyM wvia [y] — [to7].

Vectorfields on T'M

Let M be a smooth n-manifold and (U,z) be a chart on M; here x =
(1,...,2p): U — V, where V C R" is an open set. Note that TU is a
smooth 2n-manifold and (TU,U, 7y |TU) is a vector bundle.

We define tangent vector fields %: U—TU for j=1,...,nonU as
follows. Let p € U and o : t — x(p) + te; be a path in 2U. We set p € U,
0 _
aT/,j(P) = [z} o ag,].
Thus, by definition of Dux,
0

%j(p) = (D)~ (p, e).
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Since Dz is a smooth map, we obtain the following corollary by combining
Lemmas 5.3.10 and 5.3.17.

Corollary 5.3.19. Given a chart (U,x) on a smooth n-manifold M. Then
% is a smooth vector field on U for each j, and (8%1(96), e %(m)) is a

basis of T,M at everyp € U.

5.4 Cotangent bundle

Let M be a smooth n-manifold. Similarly as we defined the tangent bundle
(TM,M,r) of M, we may define the cotangent bundle (T*M, M, ), where

"M = | J (T3 M)
zeM

and m: T*M — M is the map satisfying 7 (TxM) = {z}; here ThyM =
(T, M)*.

Given a chart (U, ¢) on M, we define T*U = |J,r; TxU. Corresponding
to Lemma 5.3.10, we begin with the following observation

Lemma 5.4.1. Let M be a smooth n-manifold and (U, ¢) a chart on M.
The mapping T*(¢): T*U — ¢(U) x (R™)*,

T(9)(f) = (pom(f), f o Da(py¢™")
is a bijection. Furthermore, if (U, ) and (V,1) are overlapping charts then
T*(¢) o T*(DY) " W(T*U NT*V): (U NV) x (R")* = ¢(UNV) x (R™)*
is given by formula
T*(¢) o T*(Dp) ! (x, L) = (po ™" (z), Lo Dy(poyp™"))
forz e p(UNV) and L € (R")*. O

Remark 5.4.2. We make the following observation. Let 6: R™ — (R™)* be
the isomorphism v — (-,v). We give (R™)* the topology induced by 0. Then
(R™)* is an n-manifold and, in fact, a smooth n-manifold.

The transition map T*(¢) o T*(¢) " Y(T*U NT*V) in Lemma 5.4.1 is
then a smooth map between manifolds. (Ezercise)

5.4.1 Topology and smooth structure on 7*M

Similarly, as for the tangent bundle, we now use maps 7*(¢): T*U — ¢(U) x
(R™)* to induce T*M a topology so that the inclusion T*U — T*M is an
embedding for every chart (U,¢). Then T*M is an 2n-manifold and, by
Remark 5.4.2, {(T*U,T*(¢)): (U,¢) € A} is a smooth atlas on T*M, where
A is a smooth atlas on M.
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Definition 5.4.3. The bundle (T*M, M, r) is called the cotangent bun-
dle of M. The smooth structure is the one containing the smooth atlas
{(T*U,T%(¢)): U, ¢) € cA}.

5.4.2 1-forms

Definition 5.4.4. A smooth section M — T*M is called a smooth (differ-
ential) 1-form.

Remark 5.4.5. Since we identify T*Q = Q x (R™)* for open sets Q C R",
we have that the 1-form w: Q — T*Q corresponds to a unique (Euclidean)

1-form proow: Q — (R™)* as defined in Chapter 2. From now on we identify
1-forms Q — T*Q with (Euclidean) 1-forms  — (R™)*.

Definition 5.4.6. Let f: M — N to be a smooth map between smooth
manifolds. Let w: N — T*N be a smooth 1-form on N. We define the
pull-back f*w: M — T*M by

(fw)p(v) = i) (Dpf(v) = (Dpf) wyp)
for all pe M and v € T,M.

Note that this pull-back agrees with the pull-back introduced in Chapter
2 for smooth maps between open sets in Euclidean spaces.
We have now the following characterization.

Lemma 5.4.7. A section w: M — T*M is smooth if and only if for each
chart (U, ¢), (¢71)*w: ¢U — (R™)* is C>®-smooth.

Proof. We observe first that the map 7% (¢) ow o ¢~ ! satisfies

T*(6)(Wp-1() = (2, 0p-1() © (Da¢ ™)) = (2, ((671)"w),)

for € ¢U. Thus w is smooth if and only if T(¢) o w o ¢~ if and only if
(¢~ 1)*w is C*°-smooth. O

Lemma 5.4.8. . Let f: M — N be a smooth map between manifolds and
w: N = T*N a smooth 1-form on N. Then f*w is a smooth 1-form on M.

Proof. Let x € M. Since f is smooth, there exists charts (U, ¢) and (V, )
sothat fU CV and h=1o foo~t: ¢U — ¥V is C®-smooth.
Since w is C*°-smooth, we have that (¢ ~!)*w is C*°-smooth. Since

(@) frw=@ofop ) () w)

the claim follows from the Euclidean theory and Lemma 5.4.7. 0
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5.4.3 Exterior derivative of functions

Definition 5.4.9. Let f: M — R be a smooth function. We definedf: M —
T*M by formula

df([7]) = (f o 7)'(0).
for [y] € TM.

We record two observations.

Lemma 5.4.10. Let f: M — R be a smooth function. Then df is a smooth
1-form. O

Lemma 5.4.11. Let (U,z) be a chart on a smooth n-manifold M. Then
((dx1)p, - .., (dxn)p) is a basis of Ty M for eachpe M. [

5.5 Exterior bundles

We consider T*M as the first exterior bundle Alt'(TM) of M. The other
exterior bundles Alt¥(T'M) for k > 1 are defined similarly as follows.
Given k > 1, let

AlF(TM) = ] AF(T, ).
zeM

Denote by
T ALt (TM) - M

the map satisfying 7(w) = z for w € Alt*(T,M).

5.5.1 Topology, smoothness, and charts

To show that Alt*(TM) has a natural structure as a smooth manifold, we
make the following observation. We do not discuss all the details, just merely
indicate the ideas (as in the case of T*M).

Let (U, ¢) be a chart on M. Denote

AIH(TU) = ] Al (T, M);
zeU

recall that we may naturally identify T, U = T, M.
Let Alt*(¢): AltF(TU) — ¢(U) x Alt*(R™) be the map

A (9)(w) = ((r(w)), (Do(rad™)w)

Note that here D¢(ﬂ(w))¢71: R"™ — Tr)M is a linear map and the map
(Dg(r(w)®~")* in the definition is a linear map Altk(T,r(w)M) — AItF(R™).
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Lemma 5.5.1. The map Alt¥(¢): Alt*(TU) — ¢U x AltF(R") is bijection.
Furthermore, if (U, ¢) and (V,1) are overlapping charts, then

AltF () o ALt () “Hp(UNV) x ALK (R™): (UNV) x AItF(R™) — ¢(UNV) x AltF (R™)
18 C°°-smooth.

(n
Since we may fix a linear isomorphism Altk(R”) — R(’“)), we may give
Alt*(R™) the (Euclidean) topology and the (Euclidean) smooth structure,

which makes all linear isomorphisms Alt" (R™) — R(g) diffeomorphisms.
Thus we may consider Alt*(R"™) as a Euclidean space and give Alt*(T'M) the
topology and smooth structure determined by bijections Alt (p): AltF (TU) —
U x AltF(R™), where (U, ¢) is a chart on M, similarly as we did for 7% M.
Then Alt*(TM) is a smooth (n + dim Alt*(R™))-manifold. Furthermore,
(AItF(TM), M, =) is a smooth vector bundle, where m: AltF(TM) — M
is the map w + p for w € Alt"(T,M); naturally the linear structure on
Alt*(T, M) is induced by maps Alt"(D¢) where (U, ¢) is a chart of M at .

Definition 5.5.2. The bundle (Alt"(TM), M, ) is the kth exterior bundle
of M. The smooth structure of Alt*(TM) is the one containing smooth
atlas {(Alt"(TU), Alt"(¢)): (U, ) € Apr}, where Ay is a smooth structure
of M.

5.5.2 Differential k-forms

Definition 5.5.3. A differential k-form on M is a smooth section M —
ALtF(TM).

Remark 5.5.4. Note that Alt'(TM) = T*M. We also identify Alt°(TM) =
C*®(M), i.e. with smooth functions on M.

Remark 5.5.5. Let U C R™ be an open set. Then the map Alt*(id) gives
a diffeomorphism AltF(TU) — U x AIt*(R™). Let w: U — Alt*(TU). Then
proow: U — Altk(R”) is a k-form in the sense of Chapter 2. We identify
k-forms U — AIt*(TU) with (Euclidean) 1-forms U — AltF(R") this way.

Definition 5.5.6. We denote by QF(M) the set of all smooth k-forms on a
smooth manifold M for k € Z; as usual Q¥(M) = {0} for k < 0.

Definition 5.5.7. Let f: M — N be a smooth map between smooth man-
ifolds. We define the pull-back f*: QF(N) — QF(M) by

(frw)p(vr, .y ok) = Wiy (Dpf(v1), .y Dyp(vr)) = ((Dpf) wrpy) (V1,5 vp)
for all w € Q¥(N), p € M and vy,. .., v e T,M.

Clearly, this definition extends (naturally) the Euclidean definition in
Chapter 2. In particular, we have the following familiar rules; the smooth-
ness of f*w is left to the interested reader.
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Lemma 5.5.8. Let f: M — N be a smooth map. Then f*: Q¥(N) —
QF (M), w = f*w, is a (well-defined) linear map. Furthermore, ifg: N — P
is a smooth map, then f* o gx = (go f)*: Q¥(P) — QF¥(M). O

5.6 Exterior derivative

To introduce the exterior derivative of a smooth k-form on a smooth mani-
folds, we make the following observation.

Lemma 5.6.1. Let w € QF(M) and let (U,¢) and (V,1)) be overlapping
charts on M. Then

(™)) [TV = (6 die ™ w) [U V.

Proof. The proof is a calculation using the composition and properties of
the exterior derivative:

(wrd(y~ ) 'w) [UNV
= (¢ o oo ™) d(Wos ™)) o (67w TNV
= (¢*d(¢ Hw) [UN V.
O

By Lemma 5.6.1, we have a well-defined exterior derivative for smooth
forms.

Definition 5.6.2. Let w € QF(M). The exterior derivative of w is the
unique (k + 1)-form dw € QFF1(M) satisfying

(5.6.1) (dw)|U = ¢*d(¢™)*w
in each chart (U, z) of M.

The exterior derivative satisfies the usual properties which we now re-
call. The proofs are immediate consequences of the corresponding Euclidean
claims.

Lemma 5.6.3. Let M be a smooth manifold. Then, for every k > 0,
d: QF (M) — QFL (M) is a linear operator satisfying

(a) dod =0,
(b) dwAT)=dwAT+ (—1)Fw Adr for w e Q¥(M) and T € QY (M),

(c) if f+ M — N is a smooth map then f*dw = df*w for each w € QF(N).
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Local representations of differential forms

The Euclidean results have the following consequences.

Corollary 5.6.4. Let (U, x) be a chart on a smooth n-manifold M. Then

dxj is a smooth 1-form on U for each j. Furthermore, ((dx1)p, ..., (dzy)p)
is a basis of Ty M for each M. In particular, given a k-form w € QF(U),
there exists smooth functions wy for I = (i1,... i), 1 <i3 < -+ <ix < n,
so that

w= ijdxil Ao Ndxy, .
I

Corollary 5.6.5. Let (U, x) be a chart on M and

w= g wrdx;y N -+ Ndxg,
I=(i1,...,ix)
1<i1 <..yip<n

a smooth form. Then

dw:Zde/\dwi1 A Ndzy, .
I

5.7 de Rham cohomology

Definition 5.7.1. Let M be a smooth manifold. The kth de Rham coho-
mology (group) H¥(M) is the vector space

B {we QF(M): dw =0}
HY(M) = {dr € QF(M): 7 € QF—1(M)}

As in the Euclidean case, (QF(M), d)ez is a chain complex and a smooth
mapping f: M — N between smooth manifolds induces a chain map f*: QF(N) —
QF(M).

Similarly, the map f*: H¥(N) — H¥(M), [w] — [f*w], is a well-defined
linear map for each k.

5.7.1 Properties of de Rham cohomology

Meyer—Vietoris

Theorem 5.7.2. Let M be a smooth manifold and let Uy and Uy be open
sets in M, U =U; UUs, and let ip,: Uy, — Uy UUs and jp,: Uy NUy — Uy,
be inclusions. Let

(5.7.1)
0—— QF(U1 U U) — % Q8 (U7) @ QF (Us) 25> QF (U N Us) —— 0
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be a short exact sequence, where I(w) = (if(w),i5(w)) and J(wi,w2) =
Jiwr = j3(w2).
Then the sequence

- HH’C(U) *J*Hk(Ul) ® Hk(Ug) L> Hk(Ul a U2) LHIC—FI(U) - - ...

where Oy is the boundary operator for the short exact sequence (5.7.1), is a
long exact sequence.

Proof. The claim follows from the exactness of (5.7.1) and Theorem 3.3.1.
The exactness of (5.7.1) follows from the partition of unity as in the Eu-
clidean case. (Partition of unity is an exercise). O

Smooth homotopy theory

Definition 5.7.3. Smooth maps fo, fi: M — N are smoothly homotopic
if there exists a smooth map F': M x R — N so that F(z,0) = fo(zr) and
F(z,1) = fi(z) for all x € M.

Similarly as in the Euclidean case we obtain the following homotopy
invariance.

Theorem 5.7.4. Let fy and f1 be smoothly homotopic smooth maps M —
N. Then
fo = fi+ H*(N) — H*(M).

Proof. Exercise. (Adaptation of the Euclidean proof.) O

Non-smooth homotopy theory and topological invariance

To obtain the topological invariance of de Rham cohomology, we need the
following counterpart of the smoothening lemma. As in the Euclidean case,
the partition of unity yields the following result. We leave the details to
the interested reader (Exercise!) and refer to the book of Hirsch [6] for a
detailed exposition; see also [7] for a proof based on embedding M — RF.

Theorem 5.7.5. Let f: M — N be a continuous map between smooth
manifolds. Then there exists a smooth map g: M — N homotopic to f.
Furthermore, if go,g1: M — N smooth maps which are homotopic then they
are smoothly homotopic.

Corollary 5.7.6. Let f: M — N be a homotopy equivalence between smooth
manifolds. Then H*(N) = H*(M) for all k > 0.

77



Chapter 6

Orientable manifolds

We two related (elementary) definitions.

Definition 6.0.7. A smooth n-manifold M is orientable if there exists a
smooth n-form wy; € Q"(M) so that (wpr), # 0 for every p € M. The form
wyy is then called an orientation form of M. A pair (M,wys) is an oriented
manifold.

Convention 6.0.8. We denote volgn = dx1 A -+ - Adx, and consider R™ as
the oriented manifold (R™,volgn) unless otherwise mentioned.

Definition 6.0.9. Let M be a smooth n-manifold. A smooth atlas A =
{(Uqs Pa) tacr on M is positive if the transition functions qﬁaogbglh/)(UaﬁUﬁ)
satisfy

J%od)?(m) = det(Dg(¢q 0 qbgl)) >0
for each = € gﬁEl(Ua NUg).
We have the following characterization of orientability by charts.

Lemma 6.0.10. Let M be a smooth n-manifold. Then the following are
equivalent:

(a) M is orientable and
(b) there exists a positive atlas on M.

Proof. Suppose M is orientable and let w € Q™(M) be an orientation form
on M. Let (U, ¢) be a connected chart on M. Then ¢*(dzy A --- Adxy) is
an orientation form on U. Thus there exists a function Ag: U — R so that
©*(dxy A-- - Ndzy) = Agw|U. Since p*(dzi A---Adxzy), # 0 for every p € U,
we have \g(p) # 0 for each p € U.

Let A= {(U,¢): Ay > 0}. We show that A is a positive atlas. First, let
p € M and (V,7) a chart on M at p. If A, <0 let p: R" — R" be the map
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(1,...,2p) — (—x1,22,...,2,). Then )\1; >0fory =pro: V— gV,
Thus (V, 1) € A and A is an atlas.
Let (U, ¢) € A and (V,1) € A be overlapping charts. Then

(det D(¢p o™ 1)) volgn (U NV) = (¥~ 1) *¢*volga [(UNV)
= ()" (ew)
= ) Vol U V).
P

Thus A is a positive atlas.

Suppose now that A = {(Ua, ¢a)}acr is a positive atlas. Let {us} be a
partition of unity with respect to {U, }acr. Define wy € Q*(M) by wa(p) =
Ua(p)@rvolgn for p € U and w,(p) = 0 otherwise. Let

w:Zwa € Q" (M).

It suffices to show that w, # 0 for each p € M. Let p € M and o € I so
that uq(p) > 0. Suppose now that € I is such that ug(p) > 0. Then

us(p) (Sfvolie), = up(p) (9565 0 67" volar),
= ug(p) <¢2J¢50¢51v01w>p
- uﬁ(p)(‘]qﬁﬁmj);l © ¢a)(P)wa(p)-

Thus wg|UNV = ugpwa|UNV where uqg: UNV — Ris a positive function.
O

Definition 6.0.11. Let (M,wys) and (N,wy) be oriented manifolds of the
same dimension. Let f: M — N be a smooth map and let A\y: M — R
be the function f*wy = Arwyr. We say that f is orientation preserving if
As > 0 and orientation reversing if Ay < 0.

Remark 6.0.12. Let (M,wyr) be an oriented manifold. Then (M, —wyr) is
an oriented manifold and id: (M,wyr) — (M, —wyy) is orientation reversing.
Indeed, —wys is an orientation form on M and id*(—wyr) = —wps.

Lemma 6.0.13. Let (M,wy;) be a connected and oriented n-manifold and
A ={(Uy, o) }acr a positive atlas. Consider each (Uy,war|Uqs) and (1Yo Ugy, volgn [10aUy)
as an oriented manifold. Then either of the following is true:

(a) All maps ¢o: Uy — YU, are orientation preserving or
(b) All maps ¢o: Uy — YU, are orientation revsersing.

Proof. Exercise. O

Definition 6.0.14. Let (M, wys) be an oriented manifold. A positive atlas
A ={(Uy, o) }acr on M is compatible with wyy if each map 1, is orientation
preserving (Uy, wiar|Us) = (¢aUq, vOlgn |paUsy).
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6.0.2 Excursion: oriented vector spaces

Definition 6.0.15. Let V be an n-dimensional vector space and w € Alt" (V')
a non-zero element. The pair (V,w) is an oriented vector space. A basis
(e1,...,en) of V is positively oriented with respect to w if w(ey,...,en) >0
and negatively oriented otherwise.

Definition 6.0.16. Let L: (V,wy) — (W,ww ) be a linar map between
oriented vectorspaces of the same dimension and A € R so that L*wy =
Awy. We say that L is orientation preserving if A > 0, and orientation
reversing if A < 0.

Lemma 6.0.17. Let (V,w) be an oriented vector space and L: V — V an
isomorphism. Then L is orientation preserving if and only if det Ay > 0
where Ay, is a metriz of L with respect to any basis of V.

6.0.3 Examples

Example 6.0.18. The manifold S*~! is orientable. We construct wgn-1 di-
rectly. Let w € Q"(R™\{0}) be the form wy(v1,...,vp—1) = det(x,v1,...v5p-1).
Let v: S — R™\ {0} be the standard embedding. Then wgn—1 = t*w is an
orientation form on S"~!. (Erercise)

Example 6.0.19. Let A: S"~! — S"~! be the map x — —x and I’ = {id, A}
be a subgroup of diffeomorphisms of S*. Let RP"~! =S"~1/{A —A}. Then
RP"™ 1 is a smooth manifold and the canonical map w: S* — RP" ! is a
smooth covering map. Furthermore, RP"™! has a positive atlas for n even
(Exercise!). Thus RP"™! is orientable for n even.

On the other hand, RP™ ! is not orientable for n odd. This can be seen
as follows. Suppose RP™"! is orientable and wgpn-1 is an orientation form
on RP"™1. Then 7w is an orientation form on S"~! (Ezercise!). Thus
there exists a function A\: S""1 — R so that 7w = Avolgn—1 and \(p) # 0
for each p € S"71.

We observe that A*wgn—1 = (—1)"wgn-1. Indeed, since D,(t o A(v)) =
—Dy1(v) for all x € St and v € T,S" ! (Ezercise!), we have

(Afwgn-1), (vi,. -, vn1) = (Wen-1) a@) (DaA(v1), - - -, DeA(vn-1))
= WA (Dz(toA)vr), ..., Dy(ro A)vp_1))
= (=1)"ldet(A(z), (Dyt)v1,. .., (Dgt)vp_1)
= (=1)"det(z, (Dgt)vy, ..., (Dyt)vp—1)
= (wgn-1)a(v1, ..., vn-1),

that is,
A*anfl — (_1),”&)81171.
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On the other hand,
At wgpn-1 = (0 A)*wrpn-1 = T Wrpn-1,
Thus, by combining the indentities, we have
(=D)"(A o A)wgn-1 = A*(Awgn—1) = A" wgpn-1 = T Wrpn-1 = Awgpn-1.

Since (Ao A)/X > 0 and (=1)" = —1 for n odd, we have a contradiction.
Thus RP™! is not orientable.
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Chapter 7

Integration

We use the following notations and terminology

Definition 7.0.20. Let M be a smooth manifold. Then QF (M) is the space
of all compactly supported smooth k-forms on M, that is, forms w € QF(M)
for which spt(w) = cl{p € M: w, # 0} is compact.

Definition 7.0.21. Let M and N be manifolds. The map f: M — N is
proper if f~1E is compact for each compact set E C N.

Remark 7.0.22. Clearly, d: QF(M) — QFY(M) for each k and each proper
map f: M — N induces a chain map f*: QF(N) — QF(M).

Remark 7.0.23. Let M be a smooth manifold and U C M an open set.
Then each w € Q]g(U) extends trivially to a compectly supported form on M,
i.e. we may consider w as an element in QF(M).

7.1 Euclidean case

Definition 7.1.1. Let U C R™ be an open set and u € C°(U). We define

/ uvolpn = / udL™
U U

where L£" is the Lebesgue measure in R".

We take the change of variables formula as a fact; see e.g. [8, Theorem
7.26].

Lemma 7.1.2. Let U and V be open sets in R™ and f: U — V a smooth
proper map. Then, for each u € C§°(V),

/U(uof)|de£":/Vud£",

where Jy is the Jacobian determinant Jy(x) = det(Df).
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Lemma 7.1.3. Let f: U — V be a diffeomorphism between connected open
sets in R"™. Then Jy has constant sign, that is, either Jy > 0 in U or Jy <0
m U.

Proof. Let p € U. Since (Dpf)~! = Df(p)f_l, we have that J(p) # 0.
Since U is connected, we have either J; > 0 or Jy < 0in U. ]

Lemma 7.1.4. Let U and V be connected open sets in R™ and f: U — V
a diffeomorphism. Then, for each w € Q™(V),

fremsfe

where §y = Jy/|Jy| is the sign of the Jacobian of f.

Proof. Let w = uvolgn. Then, by linear algebra, f*w = (uo f)f*(volgn) =
(wo f)f*(dxi A---Ndxy) = (uo f)det(Df)dxy A--- Adxy = (wo f)Jsvolgn.

Thus
/f*w:/(uof)deE":(Sf/ udﬁ"zéf/w.
U U 1% v

The main result in the Euclidean case is the following theorem.

Theorem 7.1.5. The sequence

L (R~ (R R
1S exact.

Remark 7.1.6. The claim holds also for all open sets in R™. This will be
covered by a manifold version of the theorem in the next section.

We prove Theorem 7.1.5 in two parts.
Lemma 7.1.7. Let 7 € QI (R"). Then [, dr = 0.

Lemma 7.1.8. Suppose w € Q}(R™) satisfies [p,w = 0. Then there exists
7€ QYR so that w = dr.

Proof of Theorem 7.1.5. The surjectivity of the map w +> fR" w is immedi-
ate. It suffices to fix a function f € C°(R™) so that [, fdL™ = 1. Then
fR" Afvolgn = A for every \ € R.

By Lemma 7.1.7, the image of d is contained in the kernel of [, , and
by Lemma 7.1.8, the kernel of fRn is contained in the image of d. Thus the
sequence is exact. O
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Proof of Lemma 7.1.7. The proof is an application of Fubini’s theorem. Let
n —
7= gidvy Ao Adwi A+ A day.
i=1

Then

dr = Z(—l)“la—idm Ao Adzy.
i=1 ¢

Let C' > 0 be such that spt T C [-C,C]"™. Then

" . dg;
— 1)1 YI n
/ndT = g (-1) - 3xid£

=1

- i 0gi e .
= Z(_l)l 1/ 1 < g (y:l?""yi?""yn)dyi) dﬁ 1(y1""7yi7"'7yn)'

ox;
i=1 R R 2

On the other hand, for each ¢ and (y1,...,y,) € R",

dg;
R A dt
Raxi(yh s Uy 7yn)
C da;
9i
= ot dt
o 3331 (ylu ) Uy 7?/n)
=gi(y1,---,C,o.oyn) — gi(y1, -, —Cy oo yn) = 0.
The proof is complete. O

Proof of Lemma 7.1.8. It remains to show that for every w € QF(R") sat-
isfying [pn.w = 0 there exists 7 € QF(R") so that w = d7; note that w is
always exact, but we have to show that we can find 7 with compact support.
We prove the claim by induction on dimension.
Suppose n = 1. Let w = fdz € Q(R) be such that [pw = [ fdz0.
Since f has compact support, there exists M > 0 so that spt f C [-M, M].
Let F': R — R be an integral function of f, that is,

Fla) = / M F(t)dt.

Then F(z) =0 for 2 < —M and = > M. Thus F has compact support.
Moreover, dF' = w by the fundamental theorem of calculus. This complates
the case n = 1.

Suppose now that the claim holds for n — 1 for some n > 2, that is, if
¢ € QU HR") satisfies [gn—1 ¢ = 0 then there exists £ € Q2 2(R"™1) so
that ¢ = d§.
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Let w = fdzy A -+ Adzy, € QF(R™). We fix M > 0 such that sptw C
[~M, M]™ and define g: R"~! — R by

M
g(acl,...,xn_l):/ flxy, ... xp_1,t)dt.
M

Now g is C*-smooth, since f € C*-smooth. Clearly, (z1,...,2,-1) &
[-M, M"Y g(x1,...,2,_1) = 0. By Fubini’s theorem,

/]R" 1gdx1 Ao ANdrp_1 = /Rn1 </_C: f(y,t)dt> a1 (y)

= [ t@acr@ = [ w=o

n

Thus, by induction assumption, there exists a form

n—1
§= Z(_l)i_lgidiﬁ Ao Adag A Adag_y € QPR
i=1

so that gdz1 A --- Adz,_1 = d€. Note that
> 2o
ox;

We find now the form 7 € Q27 }(R") in two steps. First, let A € C°(R)
be a function with integral 1. For i =1,...,n— 1, we set f;: R — R by

filze, ... xn) = gi(z1, .oy Tn—1) A(z0).

Then, for each i, f; is a C"°°-smooth function with a compact support. Recall
that w = fdx1A- - -Adx, where f has compact support and define h: R™ — R
by

L 0,
h=171- Zamz

Then h has compact support. Let f,,: R®™ — R be a “partial integral function
of h”, that is, we set f,, by

fn(:cl,...,xn):/ nh(xl,...,xn_l,t)dt

—0o0

and obtain
o _,
ox,

Let

n

T =3 (=) fidwy A Adzg A Ada.
i=1
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Then

dT:Z

=1

— Of; df;
(zm S

= fdri A--- ANdxy = w.

-Ndz,

It remains to show that function f,, has a compact support. Since h
has compact support, there exists C' > 0 so that spth C [—C,C]™. Thus
spt f C [-C, 01" x R and f,, is zero on {z} x (—o0o, —C] and constant on
{x} x [C,0) for each z € R"~1.

On the other hand, for every (x1,...,2,_1) € R"1, we have

Fo@tse e am1,C) = /h(xl,...,xn_l,t)dt
R

afi
= /Rf(.’bl,...,$n1, Z/ 8£Z :Bl,...,xn,l,t)dt

n— 1692

= /Rf(.ﬁl,...,xn_l,t)dt 8 (1‘1, .,mn_1>AA(t)dt

09;
= /Rf(xl,...,xnl,t)dtZaii(l‘l,...,ﬂfnl)

i=1
= /f(xl,...,xn_l,t)dt—g(xl,...,a:n_l):0.
R

Thus f,, has compact support. This concludes the induction step and the
proof. O

7.2 Manifold case

Lemma 7.2.1. Let M be a smooth orientable n-manifold, (U, ¢) and (V, )
overlapping charts in a smooth positively oriented atlas A of M. Then, for
every w € QXU NV), we have

[ ehre= [ wiye
o(UNV) H(UNV)

Proof. Let f =19 o0¢ Ho(UNV): ¢(UNV) — (UNV). Then, by Lemma
7.1.4,

/ () w = / (o ¢y () w = / (6™ w.
’LZ)(UQV) (b(UﬂV) ¢(UﬂV)
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Definition 7.2.2. Let (M,wys) be a smooth oriented manifold and w €
QF(M). We define the integral of w by

/Mw B /(M,wM)w - Za:/aUa(ﬁb;l)*(Aaw),

where A = {(Uq, ¢a) }acr is a positive atlas on M compatible with wy; and
{Aa}a a partition of unity with respect to {Us }q.

Lemma 7.2.3. The integral fM w of w depends neither on the positive com-
patible atlas A nor the partition of unity {\}a -

Proof. Let B = {(V3,1¢3)}s be a positive compatible atlas and {pg}s a
partition of unity with respect to {Vz}s.
Let wo = Aaw, wg = pgw, and wag = Aqpgw. Then, for U, NV # 0, we

have
/ (@2 o = | (V") wap.
¢a(UaNVp) Yp(UanVp)
Since
Wo = Zﬂﬁwa = Zwaﬁa
B B
we have
(¢(;1)*wa — / *wa
>/ S5 [y @
- zz /
B(Uamvﬁ)
3 JsVs
The claim follows. O

Lemma 7.2.4. Let (M,wyr) and (N,wy) be oriented n-manifolds and f: M —

N a diffeomorphism. Then
/ f*wzéf/ w
M N

5 — +1, f is orientation preserving,
F= —1, f is orientation reversing.

[PEE
(Mv_wM) (MﬂwM)
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for each w € Q*(N), where

In particular,

for each w € Q*(M).



Proof. Exercise. O
The goal for this section is to show the following theorem.

Theorem 7.2.5. Let (M,wyr) be an oriented n-manifold. Then the se-
quence

JL R—=0

QY (M)~ (M)

18 exact.

It has the following corollary in terms of the compactly supported coho-
mology.

Definition 7.2.6. Let M be a smooth manifold. The vector space

{we QF(M): dw=0}
{dr € Qk(M): 7 € Q1 (M)}

H (M) =

is the kth compactly supported cohomology of M.

In terms of the compactly supported cohomology Theorem 7.2.5 has the
following consequences.

Corollary 7.2.7. Let M be a connected orientable n-manifold. Then the

linear map

is a well-defined zsomorphzsm In particular, H™( ) R for a compact,
connected and orientable n-manifold M.

We split the proof of Theorem 7.2.5 into parts (as in the Euclidean case).

Lemma 7.2.8. Let (M,wy) be an oriented manifold and T € Q2~1(M).

Then
/ dr = 0.
M

Proof. Let {(Uj, ¢;)}i>0 be a countable positive atlas of M and let {\;} be
a partition of unity with respect to {U;}. Let 7; = N7 € Q?~1(U;) for each
i. Since (¢; 1)*7; € QP (¢;U;), we have, by Lemma 7.1.7, that

/dT_Z/ dr; = 25/ Vidr = 25/ d(¢; ) r = 0.
=1 ¢:Us i=1 o:U;

where 64, = 1 depending whether ¢;’s are orientable preserving or revers-
ing. [

The converse to Lemma 7.2.8 is based on two auxiliary lemmas.
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Lemma 7.2.9 (Chain Lemma). Let M be a connected manifold, (Uy)acr
an open cover of M, and p,q € M. Then there exists indiced o, ..., S0
that

(7’) peUal; qe Uak, a/nd
(”) UaimUaiJrl #@fOT’Z'Zl,...7k—1,

Proof. Let C C M x M be the set of those pairs (p, ¢) for which such chains
exist. Then C is an open set. Indeed, let (p,q) € C and U,,,...,U,,
a connecting chain. Then the same chain can be used for all (p',¢') €
Ua, X U,,. On the other hand C is closed. Indeed, let (p,q) € C. Let
ag, a1 € I so that p € Uy, and ¢ € U,,. Then there exists p € Uy, N C
and g € Uy,,, N C. Thus there exists a chain U,,,...,Uy, from p’ to ¢'.
Hence Uy, . - -, Uy, is a chain from p and g and (after reindexing the chain)

(p,q) € C. Since M x M is connected, C = M x M. d

Lemma 7.2.10 (Local concentration). Let M be a smooth n-manifold, U C
M an open set diffeomorphic to R", and W C U an open subset. Given
w € QUU) there exists T € QP (U) so that spt(w —dr) C W.

Proof. Let ¢: U — R™ be a diffeomorphism and define ¢ = (¢~ !)*w €
QF(R™). Let f € C®(¢p(W)) be a function so that

[ [

Then there exists ¢ € QP 1(R"?) so that ¢ — fvolgn = df. Then (¢ —
d€), = f(x)volgn = 0 for = & ¢(W). Thus 7 = ¢*¢ satisfies the required
conditions. O

Corollary 7.2.11 (Chain concentration). Let M be a connected smooth n-
manifold and let Uy, ..., U open subsets of M diffeomorphic to R™ so that
UNUi1 # 0 for each i = 1,...,k —1. Then, for each w € Q2(Uy) there
exists T € QY (UL U+ UUy) so that spt(w — dr) C Uy,

Proof. Exercise. O

Lemma 7.2.12. Let (M,wyr) be an oriented n-manifiold and w € QP (M)

so that
/ w=0.
M

Then there exists T € Q¥ (M) so that w = dr.

Proof. Let (again) {(U;, ¢i)}i>0 be a countable positive atlas of M so that
$iU; = R™.

Since w has compact support, there exists a finite collection {Uij }jzlj,”’g
which is an open cover of sptw. We may assume that i; = j in our indexing.
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Let {\;} be a partition of unity with respect to {U;}i=1,. ¢ and let w; =
Nw fori=1,... ¢

For each ¢, we may fix a chain U;,...,U;,, as in the chain lemma, so
that iy = 7 and i = 0. Then, by Corollary 7.2.11, there exists for each ¢
an (n — 1)-form & € QP 1(M) so that spt(w; — d&;) C Up. Let &€ = Zle &
Then, by Lemma 7.2.8,

/%Uowal)*(w—df) = /Uo(w—dg):/M(w_d§>

(/M’) B (/Md7> = —/Mdr:o.

Then, by Lemma 7.1.8, there exists & € Q7 (¢oUp) so that (¢g')*(w —dr) =
dr. Thus

w = d€ + d(¢o)* .

The claim is proven. O

Proof of Theorem 7.2.5. Since fM is clearly surjective, Theorem 7.2.5 fol-
lows from Lemmas 7.2.8 and 7.2.12. O

7.3 Integration on domains with smooth bound-
ary

Definition 7.3.1. Let M be a smooth n-manifold. A subset N C M is a
domain with smooth boundary if for every p € N there exists a chart (U, ¢)
of M at p so that

(7.3.1) d(UNN)=9¢(U)NRE.
where R" = (—o00,0] x R*"1.

Remark 7.3.2. In particular, a domain with smooth boundary in a smooth
n-manifold is an n-manifold with boundary and ON (the topological boundary
of N in M ) is a smooth (n — 1)-manifold with smooth atlas {(U NN, ¢|(UN
N)): (U, ¢) € Ay, UNN # 0}, where Ayr is a smooth structure of M.

Definition 7.3.3. Let M be a smooth n-manifold and N C M a domain
with smooth (non-empty) boundary. A tangent vector w € T,M at p € ON
is outward directed if there exists a chart (U, ¢) of M at p satisfying (7.3.1)
so that pr;(D¢(w)) > 0, where pr;: R” = R, (z1,...,z,) — x1.

Lemma 7.3.4. Let M be an orientable n-manifold for n > 2, N C M
a domain with smooth boundary, and w € T,M an outward directed tan-
gent vector at p € ON. Then, for each chart (U,¢) satisfying (7.3.1),

pri(Dpp(w)) > 0.
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Proof. Exercise. O

Definition 7.3.5. Let M be a smooth n-manifold and N C M a domain
with smooth boundary. A smooth map X: ON — T'M is a vector field (with
values in TM ) if X (p) € T,M for each p € ON.

Lemma 7.3.6. Let M be an orientable n-manifold forn > 2 and N C M a
domain with smooth boundary. Then there exists a vector fieldvy: N — TM
with values in TM so that vy(p) € T,M is an outward directed vector at
each p € N.

Proof. Let {(Ua, ¢a)}acr be a (countable) collection of charts of M covering
N so that U, N N # 0 and satisfying (7.3.1) for each «. Let {uq}acr be a
partition of unity with respect to {Uq }aer-

For each «, let X,: U, — TM be the smooth map, p — (D¢s) (e1).
Then X, (p) is outward directed at each p € U,. Let vo: N — T'M be the
map, Vo(p) = ua(p)Xa(p) for every p € U, and v4(p) = 0, otherwise. We
define vx: N — TM by vy = ), Vo. By Lemma 7.3.4, vy(p) is outward
directed for each p € N. The smoothness is left as an exercise for the
reader. O

Definition 7.3.7. Let M be a smooth n-manifold and N C M a domain
with smooth boundary. The contraction of w € Q" (M) by a vector field
X: N — TM is the (n — 1)-form (XLw) € Q" 1(N) defined by

(XLw)p(v1, ..oy vp—1) = wp(X,v1,. .., Up—1).

Theorem 7.3.8. Let (M,wyr) be an oriented n-manifold for n > 2 and
N C M a domain with smooth boundary. Let vy: N — TM be outward
directed vector field. Then wy = vyLwis € Q”fl(N) is an orientation form
of N. In particular, ON is orientable.

Proof. Let p € N. Since vn(p) # 0, we find vectors va,...,v, € T,M so
that (vn(p),ve,...,vy) is a basis of T,M. Since (wpr), # 0, we have

(WN)P(U% cee ,Un) = (wM)p(VN(p)a U2y ..., UTL) 7é 0.
We leave it to the reader to check that wy is smooth. ]

Definition 7.3.9. Let (M,w)s) is be an oriented n-manifold and N C M
a domain with smooth boundar, and vy: N — TM an outward directed

vector field. The form wy = vyiwyr € Q" H(N) is an induced orientation
on ON.

Lemma 7.3.10. Let (M,wys) be an oriented n-manifold, (N,wy) a domain
with smooth boudnary and induced orientation. Let (U, ¢) be a chart on M
satisfying (7.3.1) which is orientation preserving map from (U,wp|U) to
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(R™, dx1 A---Adxy). Then ¢|(UNON): (UNON) — ¢(U)N{0} x R*71) s
a orientation preserving map from (U N N,wn|(UNN)) to (¢(U) N ({0} x
R dxg A -+ Adxy,).

Proof. Since ¢: U — ¢U is orientation preserving, there exists positive A €
C>(U) so that ¢*(dx1 A- - -Adxy) = Awpr|U. Let vy be the outward directed
vector field on N so that wy = vyLwys.

Let X: ¢(U) N ({0} x R*~1) — R™ the vector field, X = Dpovyopt.
Then X = Y, u;e;, where uy € C®(p(U) N ({0} x R™71)) is a positive
function, since vy is outward directed. Thus

wy = vyiwy = (P|(ONNU))" (Xidzy A -+ Adxy,)
= Muj o) (A|(ONNU))* (dxa A -+ ANdxy,).

Hence ¢|(ON NU) is orientation preserving. O

Theorem 7.3.11 (Stokes’ theorem). Let (M,wyr) be an oriented n-manifold,
n > 2, and (N,wyn) a domain with smooth boundary in M with an in-
duced orientation. Let v: partial N — M be the inclusion. Then, for each
w € Q" Y(M) having N Nspt(w) compact,

/ L*w:/ dw.
AN N

The proof is based on a Euclidean lemma; proof is almost identical to
Lemma 7.1.7.

Lemma 7.3.12. Let 7 € Q2" Y(R"). Then

0T = dr,
Rn—1 R™

where 11: R"1 — R"™ is the inclusion.

Proof. Let f; € C°(R™) be the functions satisfying
n —_
T:Zfidzrl/\---/\dxi/\'--/\dxn.
i=1

We observe first that
4T = fidza A+ N day,

where dz; € QL(R"1).
Then, by the fundamental theorem of calculus

0
0
. 8:;2@73:27 .. ,In)dt = fl(O)
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and

> 0f;
T1yeoosly o, dt =0
for every i = 2,...,n and all x1,x9,...,2, € R.

Hence, by Fubini’s theorem,

= dfi
dr = / dcr
/]R” ; n Ox;

©oh .
s /Rnl ( _ooag}l(t7x2,,xn)dt> dﬁ

_ / Fi(@o, ... )L
Rnfl

= / LT
!

Proof. Let A be a positive atlas on M so that (U, ¢) € A satisfies (7.3.1),
let Ay = {(U,¢) € A: UNN # 0} = {(Un, ¢a) tacr and Agy = {(U, ¢) €
A: UNIN # 0} = {(Uq, ) tacs, where J C I. Let {uq taer be a partition
of unity with respect to {Uq }aer-

For each o € I, let w, = usw. Then

dw = Z dwy

a€cl

Cw = E wy.

a€eJ

O

and

Thus it suffices to show that

(7.3.2) / L*wa:/ dwq
ON N

for each a € 1.
Suppose o € I\ J. Then dw, € Q7 (U,). Then

/dwa:/ dwy =0
N o

by Lemma 7.2.8. Thus (7.3.2) holds in this case
Suppose a € J. Let t1: R"~! — R" be the inclusion. Then ¢1 0 ¢ |(ON N
Ua) = ¢a 0 t|(ON NU,,).
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Thus, by Lemma 7.3.12 and Lemma 7.3.10, we have

/ dwy = / due = / (621) wa
N NNUg, R™ NpaUa

- / (651 wa
R~ 1N¢p, U,

_ / (6al (AN N Ua))* (621 wa
ONNUg,

_ / WI(ON N UL we
ONNU,

= / e
ON

The proof is complete.
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Chapter 8

Poincaré duality

Lemma 8.0.13. Let M be an oriented n-manifold and 0 < k < n. Suppose
£ € QF(M) and ¢ € QVF(M) are both closed. Then for all o € QF~1(M)
and 3 € QP 1 (M),

[ € +daync+an = [ enc

Proof. Since £ A B and a A (¢ + df) have compact support, we have, by
Lemma 7.2.8,

/M(§+da)/\(g+d5) /M§A§+/M§Ad6+/MdaA(g+dﬁ)

_ /g/\g+(—1)k/d(£/\6)+ d(a A (¢ + dB))
M M

Thus the values of I: QF(M) x QF7F(M) — R, defined by

(&cm/M&Ac,

depend only on the cohomology classes of £ and (. Thus the (bilinear map)
I: HF(M) x H *(M) — R,

([5],[CJ)H/M€AC

is well-defined. It is an interesting fact that I is a non-degenerate pairing.

Theorem 8.0.14. Let M be a connected orientable n-manifold. Let [£] €
H*(M) be non-zero. Then there exists [(] € HF*(M) so that I([xi],[(]) #
0. Similarly, given [¢] € HP¥(M) non-zero, there exist [¢] € H*(M) so
that 1([¢], [¢]) # 0.
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This fact is better formulated as follows. Let H? *(M)* be the dual
(vector) space of H?*(M) and let Py;: H*(M) — H?¥(M)* be the map

Da(EDIC] = (€], [c]) = /Ma AC.

Theorem 8.0.15 (Poincaré duality). Let M be a connected orientable n-
manifold. Then
Dyr: HF(M) — HY*(M)*

18 an isomorphism.

Corollary 8.0.16. Let M be a compact connected orientable n-manifold.
Then
H*(M) = H"*(M)

for each 0 < k <n.

Proof. Since H?~*(M) = H"*(M), it suffices to observe that dim H*(M) <
oo for each k; for a proof using tubular neighborhoods, see [7, Proposition
9.25]. Then

HH(M) = HP7H(M) = H7F(M)" = B (M),
O

Corollary 8.0.17. Let M be an open connected orientable n-manifold.
Then H™(M) = 0.

Proof. Since M is open, H)(M) = 0 (Exercise). Thus H"(M) = H?(M) =
0. O

We dedicate the rest of this section for the proof of Theorem 8.0.15. The
proof consists of three parts which are discussed in separate sections and
the proof is then completed in a separate section.

8.1 Special case

Lemma 8.1.1. Let M be a smooth connected and orientable n-manifold.
Then Dyr: HY(M) — (H(M))* is an isomorphism.

Proof. Since dim H(M)* = 1 and [,,: H*(M) — R is non-trivial, [},
spans H!'(M). On the other hand, [xas] spans H°(M) and Dg=[xn] = [;-
The claim follows. O

Lemma 8.1.2. For each n > 1,
R, k=n
k n\ ~ Y
H:(RY) _{ 0, otherwise.
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Proof. Exercise. O

Corollary 8.1.3. Let M be a smooth orientable n-manifold and U C M
diffeomorphic to R™. Then Dyr: H*(U) — (HZ}_’“(U))* is an isomorphism
for every k=0,...,n.

8.2 Exact sequence for compactly supported co-
homology

Definition 8.2.1. Let M be a smooth manifold, U C M an open set, and
v: U — M the inclusion. The map v,: QF(U) — QF(M) defined by

_Jowp, peU
(L*W>P - { 07 D Q/ U
is called a push-forward. The map t,: HF(U) — HF(M), [w] — [t.w] is
called the direct tmage homomorphism.

Theorem 8.2.2. Let M be a smooth n-manifold and let Uy and Us be open

sets in M. Leti,: U, — Uy UUy and j,: Uy N Us — U, be inclusions,

and define Jy: Q?(UlﬁUQ) — ng(Ul)@Q]é(Ug) and Ik : ng(Ul)@Q’g(Uz) —

QE(ULUUR) by Ji(w) = ((51)sw, —(J2)sw) and Ix(w1,wa) = (i1)sw1 + (i2)xw2.
Then the sequence

(8.2.1)

00— QUL N Uy) — QK (UL) @ QF (Un) > QF(UL U Ty) — 0
1S exact.

Proof. Exercise. O

We define now the connecting homomorphism

O,: HY (U U L) — HH L (U N 1y)

for the short exact sequence (8.2.1) in the usual manner as follows. Let
w € QICC(Ul UUQ). Let (Tl,TQ) € Q?(Ul) EDQ?(UQ) be such that Ik-(Tl,TQ) = w.
Let also x € Q¥(U; NUs) be such that Jy1(x) = (d71,drs). Then & is closed
and the cohomology class of x in H¥*1(U;NUs) depends only the cohomology
class of w in H¥(U; UUy). (The general proof for chain complexes applies.)
We define 0, [w] = [K].

By the theorem on Long Exact Sequence (Theorem 3.3.1), we have the

following corollary.

Corollary 8.2.3. Using the notation of Theorem 8.2.2, there is an exact
sequence

* * 8*
— HNUL N Us) — L HYUY) @ HYUs) T HY U, UUy) — % HY U N Uy) ——
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8.2.1 Duality of connecting homomorphisms

We need an observation which we formalize as a lemma.

Lemma 8.2.4. Let M be a smooth manifold, U C M an open set, and
t: U — M the inclusion. Then

(FwAT)p = (WA LT)p

for all w € QF(M) and 7 € QP F(U) and p € U. In particular,

/L*w/\T:/ WA LT
U M

Proof. The first claim follows from observation that D)t = id and the second
claim from the observation that w A 1,7 =0 for p € U. O

Lemma 8.2.5. Let M be an oriented and Uy C M and Uy C M be
open sets. Let 0*: H¥(Uy N Uy) — H*Y (U, U Uy) and 0,: HY F(Uy U
Us) — ch_(kﬂ)(Ul NUs) be connecting homomorphisms for the correspond-
ing Meyer—Vietoris sequences. Then

Wl A ] = (=1)F! w] A Oi[T
/Umamu (-1) /W2[]Aa[1

for [w] € H¥(Uy NUs) and [7] € Hg_(kH)(Ul UUs).

Proof. Let w € Q¥(U; NUs) and 7 € Q?_(kﬂ)(Ul U Us) be closed forms.

By definition of 0%, 9*[w] = [k] where x € QF1(U; U Uy) is defined
by (k) = dw,, where forms w, € QF(U,) satisfy w = j3(w2) — 7} (w1).
Here 7,: U, — Uy UUy and j,: Uy N Us — U, are the inclusions in the
Mayer—Vietoris theorem.

Similarly, by definition of 0y, 0i[7] = [o], where o € Q?f(kfl)(Ul U Us)
satisfies —(j1)«0 = (j2)«0 = dr,, where 7, € QP F(U,) satisfy (iz)«m2 +
(il)*Tl =T.

We need to show that

/ H/\T:(—l)k+1/ wAo.
U1UU- UrNU2

We observe first that

/ Ii/\T:/ KA71+/ H/\TQZ/ dwl/\7'1+/ dwa A To.
U1UU2 Uy Us Ui Uz

Since

k

d(wy A1) = dwy A1y + (1) w, Adry,
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for v =1,2 and (j2).0 = —d72, we have, by Lemma 8.2.4,

/ KAT dwi AN T11 + dwso N T
U1UU2 Ui Uz

= —(—1)k/ wl/\dﬁ—(—l)k/ wo A dTy
U1

Uz

- em“Agmuma44ﬁ“AfMUﬁo
- vn“{ém%mron—vﬂmﬂém%mrmAa

- @DH{LHU«ﬁmu—oamgAa

= (—1)k+1/ wAo.
UiNUy

This completes the proof. O

8.3 Exact sequence for dual spaces

We use the following notation. Let ¢: U — M be an inclusion of an open
set U C M to an n-manifold M. We denote by ¢': QF(M)* — QF(U)* the
dual map of t,: QF(U) — QF(M), that is, /' = (1,)* and more precisely, for
L € QF(M)* and w € QF(U), we have

(4 (L) (w) = L{taw).

Theorem 8.3.1. Let M be a smooth n-manifold, and let Uy C M and
Us C M be open sets. Let J: HF(UiNUy) — HE(Uy )@ HE(Us), I: HE(UY) @
HNUy) — HF(UL UU,), and 0,: H¥(U, UUy) — HFY (UL N L) be as in
Theorem 8.2.2. Then the sequence

e MU N o)t 2L HE U, UL — L BN UL @ HYUs)* L HY (U, N Us)* —— -

is exact, where I!(a) = (ill(a),ig(a)), J!<Oé1,0z2) = j!l(al) —jé(ag), and

' = (9,)*.

This theorem is an immediate corollary of the following algebraic lemma.

Lemma 8.3.2. Let A—"~ B v C' be an exact sequence of vector spaces.

Then C* A B* 2> A* s an ezact sequence of dual spaces.

Recall that if ¢: A — B is a linear map between vector spaces, then
@*: B* — A* is the map f+— fo .
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Proof of Lemma 8.3.2. Since ¢* o p* = (1) o ¢)* = 0, the image of ¥* is
contained in the kernel of ¢*. Suppose now that f € ker ¢*, that is, f: B —
R a linear map so that fop = 0. Thus imege of ¢ is contained in ker f. Let
Y: B/ kert — Imap be isomorphism

B i Tma
N A

B/ ker

Since kert = Im¢p C ker f, there exists a linear map f: B/ker¢p — R so

that
B ! R
o

B/ker

anddeﬁnef Irmb—)Rbyf fow L Thenfow f.

Extend f to a linear map f: C' — R so that f [Imy) = f (Extend the
basis of Im to a basis of C' and the map f.) Now 1/;*(f) foth = forp = f.
Thus f € Imy* and the sequence is exact. O

8.4 Main steps

8.4.1 From intersections to unions

In this section, we prove that if open sets Uy, Us and Uy N Uy satisfy the
Poincaré duality, the so does Uy U Us. We formalize this as follows.

Proposition 8.4.1. Let M be an orientable n-manifold. Let Uy and Us be
open sets in M so that Dy, : H*(U,) — H*»*(U,)* and Dy,nu,: H*(Uy N
Us) — HPF(UNUs)* are isomorphisms for each k. Then Dy, u,: H*(U1U
Us) — HPF(Uy UUs)* is an isomorphism for each k.

We show that the diagram

1. Jx

HE (U, U Uy) HRUY) @ HY(U,) HE U, NUy) HFY (UL UU,)
\LDUluUz \LDUl@DUQ iDUlﬁUé lDUlng
! k+149!
HYH (U, UTs) —L H R (U0)* @ HP R (Uy) L—s B (U, 0 U)o 1 ) (1 U 1)

commutes. The claim follows then from the 5-lemma. We begin with an
auxiliary result.
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Lemma 8.4.2. Let M be an oriented n-manifold, V. C U C M open sets
and v: V — U the inclusion. Then the diagram

H*(U) —"— H*(V)

o
HE M (U) = B2 R (V)

commutes.

Proof. Let w € QF(U) and 7 € Q?~*(V). Then

«DVMUWDWD—DVWEMVLiAfwAT—AyAur

by Lemma 8.2.4. On the other hand,

@oDdMNﬂ:DﬂM@hD:/wAur

U

The claim follows. O

Lemma 8.4.3. Let M be an oriented n-manifold. Then, for open sets U;
and Us in M, the diagram

o*

HM(U; N Uy) HM1L (U, U Uy)

iDUmUQ lDUluUQ

_1\k+14!
H R0, 0 Up)* e ) (1, U 1)
s commutes.

Proof. We need to show that
Dy, )([7]) = (=1 (&' Doy [w]) 7]

for [w] € H*(Uy NUs) and [7] € H (U, u ).

Since
(8.4.1) Do)l = [ ol nr
and
342 O Ousle) b = D)@l = [ i)
the claim follows from Lemma 8.2.5. ]
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Proof of Proposition 8.4.1. To show the commutativity of (8.4.1), it suffises
to apply Lemma 8.4.2 to diagrams

sk
1y

Hk(Ul U UQ)

iDUl uU, \LDUV

Hrk (U UT)* s HO R (U,)

H*(U,)

and '
HY(U,)) — 2= H*(U; U Uy)

lDUV iDUI UU,

H =k (U,)* —2% H =R (U, U Us)*

for v = 1,2 and combine results.
Since Dy, @ Dy, and Dy,ny, are isomorphisms, so is Dy,ny, by the
5-lemma. ]

8.4.2 Disjoint unions

Proposition 8.4.4. Let M be an orientable n-manifold. Suppose {Uy}q is a
collection of pair-wise disjoint sets so that Dy, : H*(Uy) — H?F(Uy)* is an
isomorphism for each k. Then Dy : H*(U) — H?K(U)* is an isomorphism
for each k, where U =, Us.

Again we need a linear algebraic fact. Let I be a set and V,, be a vector
space for each a € I. For v = (va)acr € [[4es Ve denote by spt(v) = {a €
I: vy # 0} the support of v. Recall that

@Va ={(va)a € HVQ: #spt(vg)a < 00}

ael «

For each 8 € I, we have the natural inclusion ig: Vg — @ c; Va by v —
(Va)a, Where v, = v if @ = 8 and 0 otherwise. We also have the natural
projection pg: @ crVa — Va, (Va)a +— wvg. Clearly, pgoig = id and
pyoig =0 for each 8,7y € I and 3 # . Moreover,

> inopa =id: @ Va = P Va.

Note that given a L, € V; for each a € I, (La)a € [[he;(Va)*

Lemma 8.4.5. Let I be a set and V,, be a vector space for each o € I. Then

5 (@VQ> = [[Va, L (Loia)a

acl acl
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is an isomorphism with the inverse

&' HV§—>(@VQ> . (La)a= Y Laopa

acl acl a€el

Proof. We observe first that the mapping ¢’ is well-defined. Since each v =

(Va)a € Bacr Va has finite support, Lq(pa(v)) # 0 only for finitely many

a € I. Thus §'(L)(v) is well-defined for each L € [], V} and v € @, Va.
Secondly, we observe that

§od (( )=20 ZLgop/j = ZLﬁopﬁoia = (La)a
B

«

for (La)a € 1, Vi, and

§o0d(L)=08((Loiy)) ZLozaopa—L<Zzaopa>:

for L e (B, Va)"
Since § and 0’ are clearly linear, the claim follows. O

Proof of Proposition 8.4.4. Let to: Uy — U. By Lemma 8.4.2, we have for
each o € I,

(8.4.3) H*(U) H(U,)

\LDU \LDUQ
!

B

H =R (U)* —= Hy = H(Ua)*

We show that there exists a commutative diagram

H*(U) ¢ [T, H*(Ua)
DUl ‘LHDU&
HY R (U —Z (@, HY*(Ua))* == [T, H**(Ua)*

where 6 and p* are isomorphisms and § is the isomorphism in Lemma 8.4.5.
Since [[,, Du, is an isomorphism, so is then Dy;.
Since sets U, are components of U, we have that the linear map

0: H'U) = [[H"(Ua), [w] = (i),

is an isomorphism. Indeed, suppose f[w] = 0. Then ¢}w is exact, that
is, w|U, is exact for each a. But then w is exact and [w] = 0. Suppose
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(wal)a € [1, H*(U,). Define w € QF(U) so that w|U, = w,. Since sets U,
are pair-wise disjoint, w is well-defined, closed, and satisfies O[w] = ([wa])a-
Similarly, let

p: @Hk )= HEU),  (wala = Y (ta)«[wal;

note that the sum is finite by definition of the direct sum. Also p is an
isomorphism. Indeed, suppose p([wa])a = 0. Then ) (ta)+wq is exact. But
then also each w, is exact and [w,] = 0 for each a. Let [w] € H**(U).
Since w is compactly supported, the support meets only finitely many sets
Us. Thus ([wa])a, where wy = w|Ua, is in @ HF(Uy).

Furthermore, p*(L) = 3_, ¢!,(L)opa, where py : Dy He™ F(Ug) — H F(U,)
is the canonical projection. Indeed, let ([wa])a € ®oHF(U,). Then

pr(L) (wal)o = L (Z(La)*[wa]> =D L((ta)«[wa))

[0}

= Z(LL‘L)[WQ] = (Z(L;L) Opa) ([wal)a-

o «

Then, for [w] € H*(U),

(H DUQ> (O] = <H DUQ> (o)) o = (Dugtalw)),

The claim follows. O

8.4.3 Proof of the Poincaré duality

We gather first the fact we have gathered so far. Let M be a smooth oriented
n-manifold and U C M an open set. We say that U satisfies the Poincaré
duality if Dy: H*(U) — HYF(U)* is an isomorphism for each k.

Proposition 8.4.6. Let M be a smooth oriented n-manifold and U C M
an open set. Then U satisfies the Poincaré duality if

(i) U is diffeomorphic to R",
(it) U=V UV’ where V, V', and VN V' satisfy the Poincaré duality, or
(iit) U is a disjoint union |J; U;, where each U; satisfies the Poincaré du-

ality.
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Proof. This is a combination of Corollary 8.1.3 and Propositions 8.4.1 and
8.4.4. O

Let
U={U C M: U is an open set satisfying the Poincaré duality}.

It suffices now to show that M € U. This is a consequence of a general
result in topology; we apply this theorem to & above and to V = {M} to
obtain the Poincaré duality.

Theorem 8.4.7. Let M be a smooth n-dimensional manifold and V =
{Vi}icr an open cover of M. Suppose U is a collection of open sets of M
satisfying the following conditions:

(a) DU,

(b) for every i € I, any open set U C V; diffeomorphic to R™ belongs to
U,

(¢) if U,U UNU" €U then ULU' €U,
(d) if Uy €U, k>0, are disjoint sets then |J, U € U.
Then M € U.
We need a lemma.

Lemma 8.4.8. Let U be as in Theorem 8.4.7 and U1,Us, ... a sequence of
open relatively compact subsets of M with

(i) Njes Uj €U for every finite J C N, and
(11) (U;)i>1 is locally finite.

Then ;> Ui € U.

Proof. (See [7, Lemma 13.10].)

Let I; = {1} and W; = U;. For m > 1 define W,,, = UiEIm U;, where
m—1
Im={m}u{i>m: UnWy, 1 #0}\ | J I CN.
j=1

We make first some observations on sets I, and W,,:
(1) each I, is finite,
(2) Zy ={1,2,..} = _i Im,

(3) sets I, are disjoint, and
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(4) Wy, "Wy, =0 for |k —m| > 2.

Here (1) is an induction: Clearly, I; is finite. Suppose I,,_; is finite.
Then W,,_; is relatively compact. Thus by local finiteness of (U;)i>1, Win—1
intersects only finitely many set U;. Thus I, is finite.

For (2), we note that each m € Z, belongs either to I,,, or to some I,
for £k < m by construction.

Condition (3) is clearly true by construction, and, finally, for (4), we
may assume that k > m + 2. If W,,, N W}, # (), there exists i € I} so that so
that U; N W,,, # (). But then either ¢ € I,,, 11 or alredy in I; for some j <m
by construction. This is a contradiction since sets I, are disjoint.

Let V =U,,>; Wom and V' =J,,,~1 Wam—1. Note that by (4) these are
disjoint unions. B

We show first that sets Wy, belong to U for each m > 1. Then V and
V' belong to U by condition (d) in Theorem 8.4.7. We show then that
V NV’ belongs to U. Then V, V', and V NV’ belong to U. Hence also
VUV’ = ;> Ui belongs to U, which concludes the proof of this lemma.

We prove these claims with following two auxiliary statements.

Claim 1: For every finite set J C Z4, the union UjeJ U; belongs to U.

Proof: The proof is an induction on the size of J. By (i) and (c) in
Theorem 8.4.7, UjeJ U; € U for #.J < 2. Suppose now that the claim holds
for all sets J with cardianality at most m > 2. Let J = {j1, ..., jm+1} C Z+
be a set of cardinality m + 1. Define U’ = Uj, U---Uj,,. Then, by induction
assumption U’ € Y. Since U' N U1 € U by (i), we have that U'UU € U
by (c) in Theorem 8.4.7. Thus J,c,U; €. O

Thus W,,, € U.

Claim 2: Let J = {j1,...,jm} and J = {j],...,J;,} be finite sets of at
most m elements in Z,, then (U?ﬂ Uj, N UJ’;@) eu.

Proof: Again the proof is by induction on m. By (i), the claim holds for
m = 1. Suppose now that it holds for m > 1. Let J = {j1,...,jm+1} and
J =41, Jng1} besets of m+1 elements and define A = J;-, U, NUj; .
Then A € U by induction assumption. Since B = Uj, ., N Ujr.,, €U and
AN B eU by (i), we have that AU B € U by (c) in Theorem 8.4.7. [

To show that W,, N Wy, 11 € U, let p = max{#I,, #In+1}. We may
assume that #1,,11 > #I,,. Thus, by repeating the indices in I,,, Claim 2
yields Wy, N W41 € U. This concludes the proof of the lemma. ]

Proposition 8.4.9. Theorem 8.4.7 holds for manifolds M which are open
subsets of Fuclidean spaces.

Proof of Theorem 8.4.7. Let M = W C R” be an open set. We cover W
with open subsets diffeomorphic to R™ so that the finite intersections of
these sets are also diffeomorprhic to R™. The claim the follows from Lemma
8.4.8.
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(By a modification of an old HW problem) there exists a locally finite
sequence Uj, 7 > 0, of open balls, in the sup-norm of R", so that

(a) W= szo Uj = szo Uj,
(b) Each Uj is contained in at least one V3 for 5 € I.

Since Uj = H:-":l(aj,i, bjﬂ') for some aji < bj,i7 we have that Uj1 NN Ujk is
either empty or of the form [];(a;, b;). Thus, for every finite J C N, (¢, U;
is diffeomorphic to R™ (or empty). Hence, by Lemma 8.4.8, W = Uj>0 U; €
Uu. - O

Proof of Theorem 8.4.7. The idea is to show that all coordinate neighbor-
hoods belong to U. Note that intersections of coordianate neigborhoods are
also coordinate neigbhorhoods.

Let (V,h) be a chart in M and denote W = hV. Let W = {W' C
W:h 'W’' €U} and V' = {h~'V;};. Then V' is a cover of W and W € W
by the argument above. Thus V' € U, that is, each coordinate patch belongs
to U.

Suppose now that M is compact. Then M is a union of finitely many
coordinate patches Vi,..., V. But then by Lemma 8.4.8, M € U. If M is
non-compact,

Fix a countable locally finite collection Uy, Us, ... of coordinate patches
covering M (old exercise); if M is compact, we may take any finite covering
of M with coordinate patches. Let I be the index set of coordinate patches.

Let J C I be a finite subset. Then mjeJ Uj is either empty or a coordi-
nate patch. Thus (¢, U; € U.

By Lemma 8.4.8, M = J;c;U; € U. This concludes the proof. (And
this course.) O
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