HELSINGIN YLIOPISTO
% HELSINGFORS UNIVERSITET Parameter estimation
UNIVERSITY OF HELSINKI

Parameter estimation: general concepts
Hypothesis testing:

Probability

Theory | ==—=—=> | Data
Calculus

Given predictions, what _
can one say about data? Given data, what can one

say about parameters or
properties as well as about

Parameter estimation: correctness of predictions?
Statistical
Theory | r— Data
Inference

estimator = procedure giving a value for a parameter or
a property of distribution (pdf) from actual data values

notation: estimator for 6 is 6 (a hat indicates estimator)

estimate = observed value of an estimator (often 6,,5)
How does one construct an estimator 8 ()?

“ Exists no golden rule how to construct an estimator!

Examples of estimators are arithmetic mean & variance:
~ 1
aiay) =125 V(ix})= _z( %

N.B. 4(x) function of random variables & random variable
itself, characterized by a pdf g(8; 8, n), which depends on
(true value of) @ & has expectation value, variance, etc...
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Often start by requiring consistency: 1im O=4 ie.as
1—>0

sample size increases, estimate converges to true value:
foranye >0, 1lm P(|@—-80|>¢&)=0
n—»o0

NB! convergence in sense of probability, i.e. no guaranty

that any particular 8,5 will be within given distance of 6.
(G. Cowan)

0.6

g (6; 6,n) is the pdf of §
for a fixed sample size n.

~~

Cn

@

<3 0‘5 £
o

Expectation value of 6:

0:3::F

E[6] = [0g(6;0,n)dd ...

j I 6(7) £(x:0)..f(x:0)ds .dx. , |

og = “statistical” uncertainty
b = "systematic” uncertainty

bias b — E[é] _9 (due to construction of 9)

-2 0 2 4

variance V[é] = 052

For most estimators: 05 « 1/+/n, b < 1/n

Good estimator: consistent, unbiased (E[8] = 6) and
efficient (i.e. has minimal possible variance = "RCF bound”)

2 2
RCF bound: V[0]2 (Hab) / E[— 0"Inl } (b = bias)

00 00’

Also "CR (Cramér-Rao) bound” or "information inequality
L = likelihood function (defined on slide 5), F = Fréchet.
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Consider n measurements of random variable x, x;,..., x
Arithmetic mean a natural choice as estimator of 1 = E [x]:

N

_ 1 n _
L=X= ;Z __, X; (= the sample mean)
If V'[x] finite, then X is a consistent estimator for 4, i.e.
for any & > 0, 11mP(|—Z u|>e)=0

n—>00 lll

n

i.e. the weak law of large numbers. Expection value of x:

n n 1 n
E[)_C]:E{lzz‘lxi} :%Zi:lE[xi]:;Zizl’u:’u

n
— X is an unbiased estimator for 4. The variance of x is
2
— 2 O
VIx]= E[x*]-(E[X ZZ,JI =

= variance of x, E [xx J] = py?fori#jand E [xlz] = u’+o?

Example of estimator for mean: take samples of » = 100
values from a Gaussian MC generator with =1 & o2 =1
Calculate sample mean & repeat procedure many times.
(G. Cowan) Enter values into a histogram.

| | 1=09981 (f unbiased)
Sample standard deviation of

- | Zivalues =0.0995 ~ -2

Jn

. , , NB! pdf of &z ~ Gaussian
0 05 1 15 > (result of central limit theorem)
i
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Suppose mean  and variance V [x] = o2 both unknown.
Then estimate o2 using sample variance
1 n n 5
2 —\2 2 =2
st=——>  (x-X)=—(x"-X
n—1 Z = n—1

Factor 1/(n —1) introduced to have E [s?] = o2 (unbiased).
If mean ,u = F [x] known then estimate o2 using statistic S2

2 also E [S?] = o4 (i.e.
Zz 1()C —,u) unbiased estimator).

Varlance of s2(S?) calculated with £t central moments ;.
u,;'s estimated from corresponding estimator m; or M,.

Vis']= I(M n_? sz V[52]=%(ﬂ4—ﬂ22)

:‘A‘k:mk:ﬂz;(xi_ﬂk ﬁk:Mk:%Z?_l(xi_“)k
A natural estimator for standard deviation, o, then
G=s5=ns* (orincase,uknown 6'=S=\/§)
For variance of estimator for standard deviation:
V[s°)=do? /do ) V[6]=407V[6] = V[6]=V[5"]/40
For a Gaussian pdf §2(a) =0’ = dsz/da = 20

El,]=3c"= Vs 1=20" 0 - =0, = 6/1/2(72 )

Another quality measure of estimator: mean square error

MSE = E[(@ 9)] V[Q] bz (used as measure in

e.g. unfolding methodsr
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Random variable x distributed according to pdf f(x,&).
Assume functional form of f known but not parameter 6.
maximum likelihood method (suurimman uskottavuuden
menetelma) technique for estimating & from a data sample|

If /(x,0) correct pdf hypothesis, then .
P(x; found in [x,x+dx] for all i) = | | ., f(x;,0) dx,

If hypothesis (including value of @) correct (= true)
— expect higher probability for the data
If hypothesized functional form wrong or & value far away
— expect lower probability for the data
= higher value of likelihood function close to true ¢

LO) =[], f(x.0)

NB! L(6) = fsampie (%;0), but L(&) regarded only a function
of &, measurements x;’s constants, "experiment” finished.

Define ML estimator 6 as value of § that maximizes L(8).

For m parameters, usually find solution 8y, ..., 6,,, by solving

8—L:O, i=1,...m In L
00,
In practice maximize In L(#) instead,
Can then add individual In P(x;)’s.

In L(&) might have more than one 4

local maximum — take highest one. ; 0

N.B. No binning of data ("all information” used).e

N.B. Definition of ML estimators don’t guarantee optimality
— investigate properties such as bias, variance ...

In most cases, especially for sufficient large data samples,
ML estimators generally most optimal estimator choice.

Statistical Methods 2025 III/S

Parameter estimation & Fitting methods Kenneth Osterberg



HELSINGIN YLIOPISTO
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Suppose proper decay times of a certain type of unstable
states measured for n decays, 7, ..., t,. Choose as hypo-
thesis for ¢ distribution an exponential pdf with mean r.

fwry=et [z
Task to estimate value of = Use log-likelihood function
instead to find parameter value giving maximum value for
function. Equivalent since logarithm a monotonic function
(— maximum at same value). In addition, products in L
becomes sums in In L and exponentials becomes factors.

InL(r)=) " Inf(t;7) = Z ~Int—t,/7)

81nL_O andsolveforr — rzlz;ti

ot n

set

How find out whether 7 is an unbiased estimator for ¢ ?
i) Find pdf g(7;7,n) and compute b = E[7]—7

ii) Compute E[TA(tlr”tn)]:J""J‘TA(Z)fjoint(E;T)dt Ldt, =

—tl/r -, /T

”(ztj ety LS ot ]S

J#I

fdt

n n ) .
= Z,-_lf/n =7 — 7 unbiased estimator for !

iii) Could make same conclusion without any calculation
based on the fact that the sample mean an unbiased
estimator for E[¢] and for exponential pdf £[f] = =

Suppose that one is interested in decay constant 1 = In2
/7 instead of mean lifetime z. ML estimator for A7

Statistical Methods 2025 .. III/6
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@

(G. Cowan) | A sample of 50 observations of
1 proper time, ¢, ("ticks” on x-axis),
generated using MC assuming
1 exponential distribution with
mean r = 1.0. Curve result of
1 a maximum likelihood fit to

0.75.F

05 r

025 |

1 T observations, giving 7 =1.062.
Given a function a(@) of some parameter 6, one has
oL OL Oa oL oa
= =0 — = unless — =0

= = =
060 Oa 00 oa |,—q0)
So a maximizing L,(a) is a(8), where 6 maximizes L,(0).

— ML estimator of function a(8) is @ = a(0)
This is called invariance. ML estimators are invariant.

~ In2 n
So for decay constant, one gets A =——=1In2- n/Z:l_:1 t;

A

Is 1 an unbiased estimator for A ?

. A A In2
For A one can show that E[A]= e "

) n-1 7 n-1
— A has a bias that goes to zero for n — .
Above true for ML estimators (b — 0, when n — «).

Example where ML fails: assume taxis numbered 1 to N,
ML estimator for N,,,; from m taxi number observations?

1 1 olnL no local maxima

=—— == = - .
f(n) (N_.—1) (N —1)"  8N_. SO Niayi undefined

taxi taxi taxi

Ansatz: Ny, = 271 — 1, where 71 = mean; E|Neyi| = Neayi-
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% HELSINGFORs UNIVERSITHxample of ML estimators (cont.)
UNIVERSITY OF HELSINKI

n measurement of a variable x assumed to be Gaussian
distributed with unknown x & o. Log-likelihood function:

2
InL(p,0)=Y " Inf(x;u,0)= Z;(—%(mzmlngz)_(’ﬁz‘_ﬁ;)j

o

set OolnL _0& OolnL
ou oo

A 1 n /\2 1 n AND
ﬂ:;zi:ﬂ‘i o :;zz':l(xi_'u)
Already known that /i is an unbiased estimator for ..

=( andsolve for ;; & 6* —

n—l o)
O

What about 02 ?  E[c2]=

n
So ML estimator for o2 has a bias, but » — 0 for n — oo.
Recall, however, that the sample variance

2 1 n AN n ) A2
S = Zi:l(xi_ﬂ) _ (x _/Ll )
n—1 n—1
is an unbiased estimator for the variance of any pdf.
R 6 T T T T T -y 6 g T ¥ T T
& — log L=41.2 (ML fit) (@) = — logL=139 (b) (G. Cowan)
s !ogeL:41.0 (true parameters) . sal IogeL=18.9 :

02 0 0.2 0.4 0.6

50 observations of gaussian variable x; 1, = 0.2 & o, = 0.1
(a) pdf of parameters maximizing In L & true parameters.
(b) pdf of parameters far from true ones — low In L values.

What about statistical uncertainty of ML estimates?

Statistical Methods 2025
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Variance of ML estimators: the analytic method
A direct way of estimating uncertainty of estimate is to

compute variance of estimator, e.g. when 7 =— Z
i.e. width of the pdf g(7; t,n):

n \2 tl/r —t /T ,
V[f]= E[#*]- (E[f] j j(iztj o dt,...dt, —(E[7])

zll

i=l 4
| & —tl./r t/T —tk/z'
—222 @+t dt, dtjl—” dr, |- (E[F])?
i=l j#i k#i,j
*Qn+nn-1)) , 1 ) n times smaller
-t"=— = V[r
3 ; [7] than V7]

(in fact this result was obvious, since here 7 = t )
N.B. V[?] & o; are functions of true (& unknown!) .
Estimate standard deviation using &; = ©/+/n
Estimated standard deviation often quoted as "statistical
error’ of a measuremente.g. 7 + & = 1.062 + 0.150

should be interpreted as: ML estimate for ¢ is 1.062.
ML estimate for o of g(7; 7,n) is 0.150.

If pdf g(7; 7,n) Gaussian, then [T — &3, T + &3] equivalent
to "68.3 % confidence interval” for 7, generally accepted
way to quote uncertainty even when errors non-Gaussian.

NB! very seldom variance explicitly computable as above!!

Statistical Methods 2025 III/9
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Variance of ML estimators: the Monte Carlo method

Cases too difficult to solve analytically (or g(t; t,n) not
known), ML estimator distribution investigated with MC.
Simulate large number of pseudoexperiments, compute
ML estimates each time, resulting distribution ~ g(7; 7,n)

Use experimental u as "true” value & MC to get distributior

of sample means, width = unbiased variance estimator.

E.g. for exponentlal pdfr = 1.062, used as "true” MC value
S (G. Cowan!

A histogram with ML estimates

e | from 1000 MC experiments with
50 observations each time. MC
used t = 1.062 as true lifetime.

1 Calculated standard deviation

0 A of histogram entries, s, is 0.151.

50 |

Similar to analytical estimate f/\/; = 1.062/\/% =0.150

NB! g(7; t,n) approx. Gaussian (< central limit theorem)
— true in general for ML estimators in large sample limit.
Variance of ML estimators: the RCF bound

A lower bound on variance of any estimator (not just ML)

V101> [1 + @j / E[— azlnf} (b = bias)
o0 o0

Rao-Cramer-Frechet bound (or "information inequality”).
If equality true, then corresponding estimator efficient.
ML estimators efficient in large sample limit. So, assume
estimator efficient & use RCF bound to estimate J'[6].

Statistical Methods 2025
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For the example with exponential pdf, one obtains

2 n A
alnf:’é 1—32 =212 & b=0 o
ot T NT bemd i=1) T T
-1
( n[ 2E[f]]] 77
T T n

same variance as obtained from analytical calculation
— ML 7 an efficient estimator for parameter r for any .

For 0 =(6,,...,0,,) with efficient estimators and zero bias
2 2
InL N
~0'In = v, :_6 In L
i 06,00, / 86’1.819].
Impractical to compute RCF bound analytically. In case of

sufficiently large data sample, estimate ' ~! by evaluating
2"d derivate at the ML estimates with the measured data.

(V_l)ij =Fk

Procedure: 15t numerically maximize In L, then determine
matrix of 2" derivates using finite differences evaluated at
ML estimates, finally invert result to find covariance matrix|

Variance of ML estimators: the graphical method

Extension of RCF bound technique leads to a graphical
technique for obtaining the variance of ML estimators.
Expand In L(@) around ML estimate 0 of parameter 6:

2 A
nL(@) =L@+ LML (9-dy+ 1| mf (60 +..
00 |, ; 2| 06 |,
Oln L
00 lp-g

nowlnZ(f)=InL__ & =0 =

Statistical Methods 2025 . III/I 1
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0 -0)* o

n2(0) =Ly, — =2 | n1@+6,)~nL,, -

20'§

1 (2) standard deviation change of 4 from its ML estimate
leads to a In L(6’) decrease by 0.5 (2.0) from In L.

07025

log L(

(G. Cowan) The exponential distribution
'"c~§A%_ 1 T+ AT, examp|e TA — 1062
- 1A7 =0.137, A7, =0.165

Usually set £ = 1.062;91:2
{Interval [T — AT_, T + AT,]

interpreted as estimate for
"68.3 % confidence intervall

0.8 1 1:2 1.4 1.6 +

T

-53 F

-63.5 P

-54

Summary on ML estimators cannot

ML estimators: t€ll the difference '—" Jr
* consistent. \ JF

e invariant. + | e

* biased for small n.

* not "right”, just sensible.
 don’t give "most likely value of 8” but value of 4

for which the data is "most likely” (highest likelihood).

» efficient for large n (saturates the RCF bound).

» often imply the use of numerical methods. (analytical InL
maximisation for >1 free variables in practice impractical)
* the InL,,, value in itself contains no valuable information
= won't indicate if choosen function for pdf correct or not.

Statistical Methods 2025 . III/lz
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Upto now, normalisation has been fixed; can also leave
normalisation free e.g. treat n as Poisson random variable
with mean v — result of experiment: n & n x-values x; ... x,

pr e[ ]/ (x:0)

14
2 separate cases: either v independent or a function of 9

Extended likelihood function: L(v, ) =

theory/model gives v = v(8), droping constant terms —
nL@)=nlnv-v+YInf(x)2 Y (@) (x;8))-v(@)
i=1 i=l

Now more information used — smaller variances for 8
Example: particle scattering, expected number of events

V=& GIL dt, where ¢ detection efficiency, o scattering

cross section ("probability” given by theory) & £ luminosity
("flux”). Use not only event describing variables but also o.

N.B.before ‘repetition of experiment” = same number of
events. Here, meaning same v (e.g. same integrated ).

Suppose v & 6 are (functionally) independent:

olnL . OlnL
=0 > v=un;
ov 89].

I.e. an additional fluctuation source. Useful sometimes
e.g. when f(x; 8) superposition of known components

f(x;0)= Z 0. f,(x).Can use usual ML with constrainy
but then not all 6; independent &

=1- Z Y different 6; treated differently.
With extended ML avoid all of that.

=0— usual ML 6

Statistical Methods 2025 . III/I 3
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Same with extended ML,

InZ(v,8)= )" jlln(Z ".ilvejfj(xi)j v

define u; = vO; as expected number of events of type /,

InL(u)= Z ;h{z j_l Hif; (xi)] B ’;_lﬂj

Now all parameters treated symmetrically. Often ;’s more
closely related to wanted final result e.g. production cross
section for type j events. NB! ML fitted u;’s can be <0 & in
case u;< 0 unphysical, must decide how to treat that case.
Example: 2 types of events, signal(s) & background(b).
f(x) _ Hy fs(x)_l_ Hy fb(x) Assume fg(X) & fb(x)
U+ 1 U+ Ly known,estimate u &

mostly ‘works” well ... but sometimes fi, < 0
o extended ML fit to

g Tss i e
TR s——‘1~.‘8i5.5 ® 2 MC samples
05 | 04 | generated with g
N | e} (G.Cowan) | =6 & u, =60.
02 | ] o JLLULLIL VUL 100 W00 1 fs(x) Gaussian &
oOLUlM“ nOu;JM/th|.|11m||u‘\ﬂ\uu1|| L e oo : fb (X) eXpOnentiaL
T Ry, -
Can report negative [i, (unphysical!z) 2
or take as estimator 2™ = max(0, 2,)* | Jl
(biased!). Can be a problem for large e
samples. Example: 200 extended ML | s P §
fits on similar MC samples as above. NG
Q. =6.1+04 (usingall i) / Bl e U

i, =6.4+0.4 (usingonly ")

Statistical Methods 2025 = III/ 14
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The method of least squares (pienimman neliGsumman menetelma)

N independent Gaussian random variables y;, i = 1,..., N
with expectation values E[y;] = 4; = A(x;; 8) that depend
on unknown parameters 8. Each y, related to a known x; &
known V' [y] = o (e.g. estimated measurement uncertainty).
E.g. temperature measurement T at positions x;.

2 i ] Least squares problem in a
(B Cowaly ©° nut shell: N values yy, ..., vy
' measured with uncertainties
oi,..., oy atx-values xy, .., xy
(known without uncertainties).
Each value A; of y; given by
function A (x;, 8). Goal is to
minimize y2 sum by adjusting
T o iy parameters € (i.e. to find most
o+ 2 8 4 5 6 gptimal curve through points).

1.5 r

1 =

0.5

0

Joint pdf for N independent Gaussians y, is product of N
Gaussians: (v. - 1. )
exp( (i = 4) ]

g A,0) = H \/— Sy

Then log-likelihood function (drop terms independent of )

lnL(é) = _%Zz]\jl( i _ﬂ(xiag)) /Gi2

However maximizing In L(8) equivalent to minimizing

2/n N a2/ 2
7@)=Y" (- x.0)) [o;
Basis of method of least squares: minimize quadratic

sum of difference between measured & hypothesized
values, weighted by inverse of measurement variance.

Statistical Methods 2025 . III/IS
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So ML justifies somehow method of least-squares (LS).
What "proves” validity of ML? Nothing, only an assumption
LS estimators have particularly desirable properties when

A(x; 8) linear function of @: A(x;0) = Z’; a . (x)0,,
where a;(x) are any linearly independent functions of x (i.e|
one term can’t be given as linear combination of the others) =
* LS estimators have zero bias & are efficient (i.e. have
minimal variance) for any N ("Gauss-Markov” theorem).

* LS estimators & their variances can be found analytically
although one may still prefer to estimate them numerically.
Variance (also MC method valid):

— Calculate analytically covariance matrix V;; = cov|8;, 6; |
' stimate elements numerically:
— coincides with RCF bound if 4
linear function of 6 & V[y;] known|
7-pl and Gaussian, then In L = —¢?/2.

— Since A(x; 0) linear in parameters 8, y? quadratic in

25 2 Lam | 8%y ; )
Q)= )+— > .. 6.—0.)0.-06.
27 (0)=x"(0) ZZ,,FI 20,00, | (6,-0)(0,-0))

v

(an expansion of the y? function around its minima)
— 1 standard deviation contour in parameter space given
by curve whose tangents are 8; + 0p, that corresponds to

2.0 2.A 2 graphical method
x(0)=x(0)+1=y,, +]
Even when A(x; 8) not linear in 8 & formula not really valid,

region x> ()< y>. +1 can still be interpreted as a "confi-
dence region” with a given probability of containing true 8.

Statistical Methods 2025 . III/I 6
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% HELSINGFORS UNIVERSITET LS fits of polynomials
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A usual application of LS method is a polynomial fit.
Independent data y+Ay measured at different x-values:

Ax;6,,...,0,) = 0,x’  (m+]1free parameters)
=0
(special case of linear LS fits with a;(x) = ¥/ )
LS polynomial fitto 5 data  » S 0 4O C.?Wa”)
points (with y2.,» indicated) 6 [ — 0"order, x°=455 '
- Oth order (1 parameter) o i
- 1st order (2 parameters) 4t
- 4th order (5 parameters) ++
NB! last case meaningless il + :
since number of parameters = o
number of data points
Uncertainties & covariances L S
estimated using any of the 4 methods,
all related to y? change when para- 2" 1G5 & owan)
meters changed from those g|V|ng o min- y
Oth order : 9 2.66%0.13, 2. =455
o, from;( (:90 o, ) me +1 -
- 01 455
(G Cowan) 2 2 (b) 2I5 216 217 2I8 2.9
Gerht el PSR
08 F o / 1st order:
8, = 0.93 £ 0.30,
OB ) iy 6, = 0.68 £ 0.1,
e Xoin = 3.99,
{ LS estimate ~ A
e R cov|By, 0;| = —0.028, p =
0.4 0.6 0.8 e 1 1.2 1.4 COV[@O, él]/0900§1:_0-93
Statistical Methods 2025 III/I 7

Parameter estimation & Fitting methods Kenneth Osterberg



HELSINGIN YLIOPISTO
‘ HELSINGFORS UNIVERSITET Deriving LS estimators
UNIVERSITY OF HELSINKI

Let’'s examine our 1st order polynomial fit in more detail.
How would one determine the LS estimators for the Oth & 1st
order terms in this case. The expression to minimize is

— N
7@0)=) (n-0-0x)/o;

To get the LS estimators one has to look for a local minima:
let’s further make the simplification that all 5’s are equal (= o).

2 N " A A A
2}2 =0—> (1—6’0— 1x,)zy 6, — 0
0 i=l1
2 N n R R N —
?2 =0—>Z.lxi(yl 0, - 0,x ) -5 -0 x> =0
1 =

Comblnrng the two equatrons one obtains for the LS estimators:
= (-7 - =corx. ]V [x]

- (fo—»‘cx—w/(xz ~¥)=y-03
These are standard equations to get the slope 4, & the intercept
with the y-axis 4, for a straight line fit. With different o’s for each
point, the formula should only be modified such that each point
is given a weight 1/6:? & normalisation = the total weight 1/

Obtained 2, value used to estimate probability of hypo-
thesis, if true, would give observed data. (y,—A(x;;0))/ c; — a
measure of agreement btwn observed data & hypothesis.

x2.. obtained from a LS fit follows the standard chi-
square distribution with the degrees-of-freedom = N-m if:

*y,1=1, ..., N Gaussian random variables with known
covariance matrlx Vi; or independent y;'s with known qs
* hypothesis A(x; 9) IS linear in parameters &,1=1,

- functional form of the hypothesis A(x; 0) is correct.

Statistical Methods 2025 . III/I 8
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HELSINGIN YLIOPISTO
‘ HELSINGFORS UNIVERSITET Goodness-of-fit tests with LS
UNIVERSITY OF HELSINKI

If all previous satisfied, one can calculate the P-value:

P= j [z
Example: consider our 1st order polynomial fit (m = 2)
72 =399, N-m=3—>P=0.263
l.e. if it is true that A(x) would be a straight line and if the

experiment would be repeated many times, then in 26.3 %
of the cases, one would obtain a worse (i.e. higher) x2,.,.

NB! E[x2,:,] = nq (number degrees-of-freedom) —
each data point should contribute ~ 1 to the y?2

x2. Ing»1 (or a very small P-value):
* hypothesis ("= function”) wrong JF JF
 or measurement wrong/bad
* or uncertainties underestimated Jr
* or extremely bad luck (unlikely!)

Very common pit fall!
x2. Ing«1 (or alarge P—value).‘/
» the uncertainties overestimated

* or correlations of uncertainties ignore

« or extremely good luck (unlikely!)

d

Note distinction btwn small statistical
uncertainty on LS estimator & a good LS fit (i.e. small y2;,)
Statistical uncertainty estimated from change of y? near its
minimum is independent of the absolute value of the y2,...

Variance (statistical uncertainty) of estimator tells us: If
experiment repeated many times, how wide is distribution
of estimates (doesn’t tell whether hypothesis correct or not).
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HELSINGIN YLIOPISTO
‘ HELSINGFORS UNIVERSTHmbining measurements with LS
UNIVERSITY OF HELSINKI

Very common use of LS method is to combine a number
of measurements of the same quantity. Then one has:

y; = result of measurement i, i=1, ..., N,
gl,z =V[y,], assumed to be known;

A = true value (takes role of 6, no x-dependence).

For independent ys, minimize: x°(4) = ZN (v, =A)°
o’
oy~ _0 7 Ny, i
EY) — —> __ Zizl Giz Zi_lﬁ—iz
) 1| oy’ Y|
V =\ — :1 .
[ ] 2 |:a2i:| Zl—l 012

Well-known formula for weighted average. Variance of
average < variances of individual measurements. More
precise measurements (i.e. having smaller variances)
have larger weight. Generalized to non-independent
measurements y; i.e. cov[y,,yj]=V- Then have to minimize:

2= (5= ),0,-2)
5)(2 _ 4 —1
5—/1_0 — 211 Wibis o Wi = Zjl(V )U/Zkll(V )kl
V[i]:[;{?fft} ] =ZZN] wVw, =w' Vw

Z w =1- E[1]= Zi_wal /IZ w, = A,1.e. unbiased

i=1 !

l]l

Assumption: individual y;'s unbiased. The weights in LS
prescription give RCF bound for variance ("Gauss-Markov”).
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HELSINGIN YLIOPISTO
‘ HELSINGFORS UNCB1Bining measurements with LS (cont.)

UNIVERSITY OF HELSINKI
n

Averaging 2 correlated measurements: measurements y;,
& y, with covariance matrix V:

V:[ o ,0(71(72]_) V! = 1 [ l/o} _/0/0102]

poo, O, I-p° - pjo0, 1/(722
0, —pPO,0,

and

then ﬂt:M/yIJr(l—w)yz,w: > 5
o, +0, —2po,0,

VA= — (1,0)(710'2 U £1+1_2p]

5 =0 < 5 . 5 5

Increase of inverse variance due to the 24 measurement:

2
1_1: 1 p 1 >0
o’ o 1-p’lo o,

p < 1= 2" measurement only beneficial for average (i.e
new combined variance <). No variance change when p =
o1/o, (incl. p=1 & 64= Gy, .. sSame measurement twice).

If p> on/loy then w <0 & weighted ave?ge not btwn y; &
Vv, due to a large positive correl o®twn y; & y,. Can
happen in the case of commgﬂ\‘h rmalisation uncertainty.
Usable for calibrating ¢ on variable see e.g. G.Cowan:
Statistical Data A S, page 109, where temperature (7)
estimate im é@%@ using measurements at same 7" with
two ruIers(ﬁ ving different thermal expansion coefficients.

Overlaping samples can be used to estimate covariance
matrix if not known. Either use MC generated samples or
use real data by dividing data sample into a large number
of subsamples & determing estimators y,, ..., yy for each
subsample & from these correlations coefficient matrix.
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HELSINGIN YLIOPISTO
‘ HELSINGFORS PIgVit'With penalty functions (nuisance terms)

UNIVERSITY OF HELSINKI

LS fit with constraints (penalty functions/nuisance terms)
to improve data quality: Sometimes inputs (x;’s) suffer
from significant uncertainties or there are some scalings
(nuisance terms) involved that directly effects our result.
Then a possible solution can be to include additional
terms in the 2 sum and look for the global 2, that
minimazes everything including the variation of inputs
(with respect to their uncertainties) or the scalings.

Example: top mass reconstruction at CDF experiment

Proton-antiproton collisions create top-antitop pair:
pp — t (— W*b)t (- Wb) X
Lbaq l>qq B

experimental challenge: quarks (g, b) hadronize and
make jets whose energy (& momentum) measured with
poor resolution (10-20 %) = if raw energy (& momentum)
measurement used the top mass poorly reconstructed.
Make use of additional constraints: two of the jets should
make a W resonance (uy = 80.42 + 0.03 GeV for the W mass)
with a width Iy, = 2.1 GeV + combined with the third jet
should make a top quark with same p,, (= top mass) as the
other top (= "triplet” of jets) within a width I',,, = 1.6 GeV.
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HELSINGIN YLIOPISTO
‘ HELSINGFORS PIgVit'With penalty functions (nuisance terms)

UNIVERSITY OF HELSINKI
n

1) The masses are first determined by using the formulae given:

_ 2_p2 _p2 _ p2
771'1'—\/Ei Pm' Py.i Pz.i

The energies of the j:th (7 = 1,2) top quark and the W-boson are (from the channel given):

Eyjq= energy of b-jet (g-jet) j E,; = Ey; + Egj1 + Eyjo (same for P
PX(%Z),bf(Qj)E X(y,Z) momentum P and P ) X
component of b-jet (g-jet) j =E,. : Y z
p J q J .I Ew.] Eq11 + Eq;)?
Topi_befors it e o ]

_E precision: «E

st— ~ 20 GeV m;_

«Eprecision: s _wem

£~11 GeV

£l B

ii) Now we test the hypothesis given

o (Muopt — muop2)® | (Mw1 — Mwnom)? | (Mmw2 — Mwnom)?

2 2 2
2T top r W PW'

Iop = 1.6 GeV, I'y = 2.1 GeV, my,om, = 80.42 GeV

X

v2 large (> 100). Cure: allow energy measurements to vary

P =2+ T B E
— 3
new i=b1,b2,q11,912,921,q22 7k,

Let each c; vary in order to minimaze whole ¥?,..,,
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HELSINGFORS P8Vt ' With penalty functions (nuisance terms)

i ! HELSINGIN YLIOPISTO
UNIVERSITY OF HELSINKI

| |
Result:

Top1, fittsd Top2, fitted
”:_ L. |E :rxi !!:—
_Eprecision: N3
n§_~10 Gev wmF

_Eprecision:
<1 GeV

“..
wl
P .
: oL
h.--.,l,......;l,.--.’l...."..-..I,..._..‘L..‘Iz.....l;--..‘:.u ..,

global 2 values significantly improved (by a factor ~100!)
| Chi2, after fit | nChiz_nt

o
wE

nE

wf

uE

wE

3

€0

10 -

o e e T ".L"'—'.l.".i )

Chi2, before fit ncniz_org
Entriec 134
Meoan 2353
- RMS 278
sol
50l X2
a0
20k
20K

10

ld‘-lllllllll
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0 500 1000 1500 2000 2500 3000

Note: here problem a bit simplied, in reality need also to scale P's

Entriec 124

S0
80f-

70f

20F

10F

:lllllllll Ll lln'fllllllllll Illllll 11 lllllllllll
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