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Parameter estimation

Parameter estimation: general concepts

estimator = procedure giving a value for a parameter or
a property of distribution (pdf) from actual data values
notation: estimator for 𝜃 is "𝜃 (a hat indicates estimator)
estimate = observed value of an estimator (often "𝜃!"#) 
How does one construct an estimator "𝜃(𝑥̅)?

Exists no golden rule how to construct an estimator!

Examples of estimators are arithmetic mean & variance:

Theory Data
Probability

Calculus
Given predictions, what 
can one say about data?

Theory Data

Given data, what can one 
say about parameters or 
properties as well as about 
correctness of predictions? 

Statistical
Inference
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N.B. !𝜃(𝑥̅) function of random variables & random variable
itself, characterized by a pdf 𝑔( !𝜃; 𝜃, 𝑛), which depends on 
(true value of) q & has expectation value, variance, etc...

Hypothesis testing:

Parameter estimation:



Statistical Methods 2025
Parameter estimation & Fitting methods Kenneth Österberg III/2

Properties of estimators

Often start by requiring consistency:                      i.e. as
sample size increases, estimate converges to true value:

NB! convergence in sense of probability, i.e. no guaranty
that any particular !𝜃!"# will be within given distance of 𝜃.

For most estimators:  𝜎!" ∝ ⁄1 𝑛,  𝑏 ∝ ⁄1 𝑛
Good estimator: consistent, unbiased (𝐸 "𝜃 = 𝜃) and
efficient (i.e. has minimal possible variance = ”RCF bound”). 

RCF bound:

Also ”CR (Cramér-Rao) bound” or ”information inequality”. 
L = likelihood function (defined on slide 5), F = Fréchet.
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(G. Cowan)
𝑔 !𝜃; 𝜃, 𝑛 is the pdf of !𝜃
for a fixed sample size n.

Expectation value of "𝜃:

𝐸 "𝜃 = ∫ "𝜃 𝑔 "𝜃; 𝜃, 𝑛 𝑑 "𝜃

variance 𝑉 "𝜃 = 𝜎$%
&

bias 𝑏 = 𝐸 "𝜃 − 𝜃

𝜎$% = ”statistical” uncertainty
b = ”systematic” uncertainty
(due to construction of '𝜃)
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Estimator for the mean

Consider n measurements of random variable x, x1,..., xn. 
Arithmetic mean a natural choice as estimator of µ = E [x]:

If V [x] finite, then 𝑥̅ is a consistent estimator for µ, i.e. 

i.e. the weak law of large numbers. Expection value of 𝑥̅:

® 𝑥̅ is an unbiased estimator for µ. The variance of 𝑥̅ is

s 2 = variance of x, E [xixj] = µ2 for i ¹ j and E [xi2] = µ 2 +s 2.
Example of estimator for mean: take samples of n = 100 
values from a Gaussian MC generator with µ = 1 & s 2 = 1.
Calculate sample mean & repeat procedure many times.
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(G. Cowan) Enter values into a histogram.

Sample standard deviation of
!"#$%&'()*+,,-./0* µµ =

!
σµ ≈= !"!##$%&'()*+

NB! pdf of     » Gaussian
(result of central limit theorem).

µ!
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Estimators for the variance

Suppose mean µ and variance V [x] = s 2 both unknown. 
Then estimate s 2 using sample variance

Factor 1/(n -1) introduced to have E [s2] = s 2 (unbiased).
If mean µ = E [x] known then estimate s 2 using statistic S2

also E [S2] = s 2 (i.e. 
unbiased estimator).

Variance of s2(S2) calculated with k th central moments µ k.  
µ k’s estimated from corresponding estimator mkor Mk.

A natural estimator for standard deviation, s , then

For variance of estimator for standard deviation:

For a Gaussian pdf

Another quality measure of estimator: mean square error
(used as measure in                        
e.g. unfolding methods)

!"
#

!"
#
# $$

#
$$ !!
"
"!!

"
# "

$ $ −
−

=−
−

= ∑ =

!!
"

!! #$" µµ −=−= ∑ =
!!

"
# "

$ $

( )!!"
!!

!"
! #$%

#
&#$% µµµµ −=








−
−

−=
!

"#
!
!

!
$#

( )!! "#$%&$''()*+,$'%-'" !!!"" ==== σσ

( ) !!!!!! "#$#%$#%$"#%$#$ σσσσσσσ !""""##!" !! =⇒==

∑∑ ==
−==−

−
==

!
"

#
"##

!
"

#
"## $

!
%$$

!
& !! "#!$%%%%"#

!
!$ µµµ

!"#$"$%&'%(& $)$)
) −=⇒−=⇒= !!"#$ " σσσσµ

!! "#$"%#$& !"#$%# +=−= θθθ

𝑠̂&(𝜎) = 𝜎& ⟹ ⁄𝑑𝑠̂& 𝑑𝜎 = 2𝜎

(       )



Statistical Methods 2025
Parameter estimation & Fitting methods Kenneth Österberg III/5

Maximum likelihood method

Random variable x distributed according to pdf  f (x,q ).
Assume functional form of f known but not parameter q.  
maximum likelihood method (suurimman uskottavuuden 
menetelmä) technique for estimatingq from a data sample.
If f (x,q ) correct pdf hypothesis, then

P(xi found in [xi,xi+dxi] for all i) =
If hypothesis (including value of q ) correct (= true)

® expect higher probability for the data
If hypothesized functional form wrong or q value far away

® expect lower probability for the data
Þ higher value of likelihood function close to true q

NB! 𝐿 𝜃 = 𝑓&'()*+ (𝑥̅; 𝜃), but L(q ) regarded only a function
of q , measurements xi’s constants, ”experiment” finished.
Define ML estimator !𝜃 as value of q that maximizes L(q ).
For m parameters, usually find solution !𝜃,, … , !𝜃( by solving

In practice maximize ln L(q ) instead,
Can then add individual ln P(xi)’s.
ln L(q ) might have more than one
local maximum ® take highest one.
N.B. No binning of data (”all information” used).
N.B. Definition of ML estimators don’t guarantee optimality
® investigate properties such as bias, variance ...
In most cases, especially for sufficient large data samples, 
ML estimators generally most optimal estimator choice.
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Example of ML estimator

Suppose proper decay times of a certain type of unstable
states measured for n decays, t1, ..., tn. Choose as hypo-
thesis for t distribution an exponential pdf with mean t .

Task to estimate value of t. Use log-likelihood function
instead to find parameter value giving maximum value for 
function. Equivalent since logarithm a monotonic function
(® maximum at same value). In addition, products in L
becomes sums in ln L and exponentials becomes factors.

How find out whether 𝜏̂ is an unbiased estimator for t ?
i) Find pdf

ii) Compute

iii) Could make same conclusion without any calculation
based on the fact that the sample mean an unbiased
estimator for E[t] and for exponential pdf E[t] = t.
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Suppose that one is interested in decay constant l = ln2 
/t instead of mean lifetime t.  ML estimator for l?             
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Example of ML estimators (cont.)

(G. Cowan) A sample of 50 observations of 
proper time, t, (”ticks” on x-axis), 
generated using MC assuming 
exponential distribution with      
mean t = 1.0. Curve result of           
a maximum likelihood fit to 
observations, giving !"#$!%& =τ

Given a function a(q ) of some parameter q, one has

So a maximizing La(a) is 𝑎( !𝜃), where !𝜃 maximizes Lq (q ).

® ML estimator of function a(q ) is 4𝑎 = 𝑎( !𝜃)
This is called invariance. ML estimators are invariant.

So for decay constant, one gets
Is !𝜆 an unbiased estimator for l ?
For !𝜆 one can show that

® !𝜆 has a bias that goes to zero for n ® ¥.
Above true for ML estimators (b ® 0, when n ® ¥). 
Example where ML fails: assume taxis numbered 1 to Ntaxi, 
ML estimator for Ntaxi from m taxi number observations?

Ansatz: 6𝑁-./0 = 29𝑛 − 1, where 9𝑛 = mean; 𝐸 6𝑁-./0 = 𝑁-./0.  
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so 6𝑁-./0 undefined.
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Example of ML estimators (cont.)

50 observations of gaussian variable x; µx = 0.2 & sx = 0.1. 
(a) pdf of parameters maximizing ln L & true parameters.         
(b) pdf of parameters far from true ones ® low ln L values.

(G. Cowan)

n measurement of a variable x assumed to be Gaussian
distributed with unknown µ & s. Log-likelihood function:

Already known that 𝜇̂ is an unbiased estimator for µ.

What about >𝜎1 ?

So ML estimator for s 2 has a bias, but b ® 0 for n ® ¥.
Recall, however, that the sample variance

is an unbiased estimator for the variance of any pdf. 

What about statistical uncertainty of ML estimates?
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Variance of ML estimators

Variance of ML estimators: the analytic method
A direct way of estimating uncertainty of estimate is to 

compute variance of estimator, e.g. when
i.e. width of the pdf 𝑔(𝜏̂; 𝜏, 𝑛):

(in fact this result was obvious, since here 𝜏̂ = ̅𝑡 )
N.B. 𝑉[𝜏̂] & 𝜎23 are functions of true (& unknown!) t. 

Estimate standard deviation using C𝜎23 = ⁄𝜏̂ 𝑛
Estimated standard deviation often quoted as ”statistical

error” of a measurement e.g. 𝜏̂ ± C𝜎23 = 1.062 ± 0.150

should be interpreted as: ML estimate for t is 1.062.
ML estimate for s of 𝑔(𝜏̂; 𝜏, 𝑛) is 0.150.

If pdf 𝑔(𝜏̂; 𝜏, 𝑛) Gaussian, then 𝜏̂ − C𝜎23, 𝜏̂ + C𝜎23 equivalent  
to ”68.3 % confidence interval” for 𝜏̂, generally accepted
way to quote uncertainty even when errors non-Gaussian.

NB! very seldom variance explicitly computable as above!!
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Variance of ML estimators

(G. Cowan) A histogram with ML estimates 
from 1000 MC experiments with 
50 observations each time. MC 
used t = 1.062 as true lifetime. 
Calculated standard deviation     
of histogram entries, s, is 0.151.

!"#$#"##%&$!' ==!τ

Variance of ML estimators: the RCF bound
A lower bound on variance of any estimator (not just ML)

Rao-Cramer-Frechet bound (or ”information inequality”).
If equality true, then corresponding estimator efficient.
ML estimators efficient in large sample limit. So, assume
estimator efficient & use RCF bound to estimate .       !"#θ!

Variance of ML estimators: the Monte Carlo method
Cases too difficult to solve analytically (or 𝑔(𝜏̂; 𝜏, 𝑛) not 
known), ML estimator distribution investigated with MC. 
Simulate large number of pseudoexperiments, compute
ML estimates each time, resulting distribution » 𝑔(𝜏̂; 𝜏, 𝑛)
Use experimental µ as ”true” value & MC to get distribution
of sample means, width = unbiased variance estimator. 
E.g. for exponential pdf 𝜏̂ = 1.062, used as ”true” MC value.

Similar to analytical estimate
NB! 𝑔(𝜏̂; 𝜏, 𝑛) approx. Gaussian (Û central limit theorem)
® true in general for ML estimators in large sample limit.
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Variance of ML estimators

For the example with exponential pdf, one obtains

same variance as obtained from analytical calculation
® ML 𝜏̂ an efficient estimator for parameter t for any n.
For                           with efficient estimators and zero bias,

Impractical to compute RCF bound analytically. In case of 
sufficiently large data sample, estimate V -1 by evaluating
2nd derivate at the ML estimates with the measured data.
Procedure: 1st numerically maximize ln L, then determine
matrix of 2nd derivates using finite differences evaluated at 
ML estimates, finally invert result to find covariance matrix.
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Variance of ML estimators: the graphical method
Extension of RCF bound technique leads to a graphical
technique for obtaining the variance of ML estimators. 
Expand ln L(q ) around ML estimate !𝜃 of parameter q :
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Variance of ML estimators
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(G. Cowan) The exponential distribution
example !"#$%& =τ

!"#$%&'!()$%& =∆=∆ +− ττ
Usually set 𝜏̂ = 1.06245.,7895.,:;

Interval 𝜏̂ − Δ𝜏̂9, 𝜏̂ + Δ𝜏̂4
interpreted as estimate for 
”68.3 % confidence interval”

ML estimators cannot
tell the difference !!

1 (2) standard deviation change of q from its ML estimate
leads to a ln L(q ) decrease by 0.5 (2.0) from ln Lmax.

Summary on
ML estimators:
• consistent.
• invariant.
• biased for small n.
• not ”right”, just sensible.
• don’t give ”most likely value of q ” but value of q
for which the data is ”most likely” (highest likelihood). 
• efficient for large n (saturates the RCF bound). 
• often imply the use of numerical methods. (analytical lnL
maximisation for >1 free variables in practice impractical)
• the lnLmax value in itself contains no valuable information
Þ won’t indicate if choosen function for pdf correct or not.
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Extended ML

Upto now, normalisation has been fixed; can also leave
normalisation free e.g. treat n as Poisson random variable
with mean n ® result of experiment: n & n x-values x1 ... xn.

Extended likelihood function:

2 separate cases: either n independent or a function of 𝜃̅
theory/model gives ν = 𝜈(𝜃̅), droping constant terms ®

Now more information used ® smaller variances for !𝜃̅
Example: particle scattering, expected number of events

where e detection efficiency, s scattering

cross section (”probability” given by theory) & L luminosity
(”flux”). Use not only event describing variables but also s.
N.B.before `repetition of experiment´ = same number of  
events. Here, meaning same n (e.g. same integrated L).
Suppose 𝜈 & 𝜃̅ are (functionally) independent: 

i.e. an additional fluctuation source. Useful sometimes
e.g. when 𝑓 𝑥; 𝜃̅ superposition of known components

Can use usual ML with constrain
but then not all 𝜃) independent &
different 𝜃) treated differently.           
With extended ML avoid all of that. 
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Extended ML (cont.)
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Same with extended ML,

define 𝜇< = 𝜈𝜃< as expected number of events of type j,

Now all parameters treated symmetrically. Often 𝜇<’s more
closely related to wanted final result e.g. production cross 
section for type j events. NB! ML fitted 𝜇<’s can be < 0 & in 
case 𝜇<< 0 unphysical, must decide how to treat that case. 
Example: 2 types of events, signal(s) & background(b).

Assume 𝑓&(𝑥) & 𝑓=(𝑥)
known,estimate 𝜇&& 𝜇=

mostly `works´ well ... but sometimes 𝜇̂& < 0

Can report negative 𝜇̂& (unphysical!) 
or take as estimator 𝜇̂!"#$% = max(0, 𝜇̂!)
(biased!). Can be a problem for large
samples. Example: 200 extended ML
fits on similar MC samples as above.
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(G. Cowan)

(G. Cowan)

extended ML fit to 
2 MC samples
generated with 𝜇&
= 6  & 𝜇= = 60. 
𝑓&(𝑥) Gaussian & 
𝑓=(𝑥) exponential.

!"#$%&''()*$+,-./-.0" 12&)
!! µµ ±=



Statistical Methods 2025
Parameter estimation & Fitting methods Kenneth Österberg III/15

Method of least squares

(G. Cowan)
Least squares problem in a  
nut shell: N values y1, ..., yN
measured with uncertainties
s1,...,   sN at x-values x1, .., xN
(known without uncertainties). 
Each value l i of yi given by
function l (xi, q ). Goal is to 
minimize c2 sum by adjusting
parameters q (i.e. to find most
optimal curve through points).
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The method of least squares (pienimmän neliösumman menetelmä)

N independent Gaussian random variables yi, i = 1,..., N  
with expectation values 𝐸 𝑦> = 𝜆> = 𝜆 𝑥>; 𝜃̅ that depend
on unknown parameters 𝜃̅. Each yi related to a known xi &       
known V [yi] = s i

2 (e.g. estimated measurement uncertainty).
E.g. temperature measurement T at positions xi.

Joint pdf for N independent Gaussians yi is product of N
Gaussians:

Then log-likelihood function (drop terms independent of 𝜃̅):

However maximizing ln 𝐿(𝜃̅) equivalent to minimizing

Basis of method of least squares: minimize quadratic
sum of difference between measured & hypothesized
values, weighted by inverse of measurement variance. 
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Linear LS estimators & their variances

So ML justifies somehow method of least-squares (LS). 
What ”proves” validity of ML? Nothing, only an assumption
LS estimators have particularly desirable properties when

linear function of
where 𝑎<(𝑥) are any linearly independent functions of 𝑥 (i.e.   
one term can’t be given as linear combination of the others) Þ
• LS estimators have zero bias & are efficient (i.e. have
minimal variance) for any N (”Gauss-Markov” theorem). 
• LS estimators & their variances can be found analytically
although one may still prefer to estimate them numerically. 
Variance (also MC method valid):
− Calculate analytically covariance matrix 𝑉>< = cov !𝜃> , !𝜃<
− Alternatively one can estimate elements numerically:

- Since 𝜆(𝑥; 𝜃̅) linear in parameters 𝜃̅, 𝜒1 quadratic in

(an expansion of the 𝜒1 function around its minima)
® 1 standard deviation contour in parameter space given
by curve whose tangents are !𝜃> ± 4𝜎$%! that corresponds to

Even when 𝜆 𝑥; 𝜃̅ not linear in 𝜃̅ & formula not really valid, 
region can still be interpreted as a ”confi-
dence region” with a given probability of containing true 𝜃̅. 
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and Gaussian, then ln L = -c2/2.
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LS fits of polynomials
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(G. Cowan)

A usual application of LS method is a polynomial fit. 
Independent data y±Dy measured at different x-values:

(special case of linear LS fits with aj (x) = xj )

Uncertainties & covariances
estimated using any of the 4 methods,  
all related to c2 change when para-
meters changed from those giving c2

min.

(G. Cowan)

(G. Cowan)

!"#!$%&"'((")*+,-./-'01 )
234' =±= χθ
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θθ

LS polynomial fit to 5 data 
points (with c2min indicated)
- 0th order (1 parameter)               
- 1st order (2 parameters)               
- 4th order (5 parameters)
NB! last case meaningless 
since number of parameters = 
number of data points

1st order: 
"𝜃* = 0.93 ± 0.30, 
"𝜃+ = 0.68 ± 0.10, 
𝜒,-.& = 3.99, 
cov "𝜃*, "𝜃+ = −0.028, 𝜌 =

5cov "𝜃*, "𝜃+ 𝜎$%&𝜎$%'=−0.93
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Deriving LS estimators

Let’s examine our 1st order polynomial fit in more detail.
How would one determine the LS estimators for the 0th & 1st
order terms in this case. The expression to minimize is

To get the LS estimators one has to look for a local minima:
let’s further make the simplification that all si’s are equal (= s).

Combining the two equations, one obtains for the LS estimators:

These are standard equations to get the slope q1 & the intercept
with the y-axis q0 for a straight line fit. With different si’s for each
point, the formula should only be modified such that each point
is given a weight 1/si2 & normalisation = the total weight S1/si2.
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Obtained 𝜒?0@1 value used to estimate probability of hypo-
thesis, if true, would give observed data. (yi-l(xi;q))/si - a 
measure of agreement btwn observed data & hypothesis.
𝜒?0@1 obtained from a LS fit follows the standard chi-
square distribution with the degrees-of-freedom = N-m if:
• yi, i = 1, ... , N Gaussian random variables with known
covariance matrix Vij or independent yi’s with known si’s.
• hypothesis 𝜆(𝑥; 𝜃̅) is linear in parameters qi, i = 1, ..., m.
• functional form of the hypothesis 𝜆(𝑥; 𝜃̅) is correct. 
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Goodness-of-fit tests with LS

If all previous satisfied, one can calculate the P-value:

Example: consider our 1st order polynomial fit (m = 2)

i.e. if it is true that l(x) would be a straight line and if the
experiment would be repeated many times, then in 26.3 %   
of the cases, one would obtain a worse (i.e. higher) 𝜒?0@1 .
NB! E[𝜒?0@1 ] = nd (number degrees-of-freedom) ®
each data point should contribute » 1 to the c2

𝝌𝐦𝐢𝐧𝟐 /nd »1 (or a very small P-value):
• hypothesis (”= function”) wrong
• or measurement wrong/bad
• or uncertainties underestimated
• or extremely bad luck (unlikely!)

𝝌𝐦𝐢𝐧𝟐 /nd «1 (or a large P-value):
• the uncertainties overestimated
• or correlations of uncertainties ignored
• or extremely good luck (unlikely!)

Note distinction btwn small statistical
uncertainty on LS estimator & a good LS fit (i.e. small 𝜒!"#$ )
Statistical uncertainty estimated from change of 𝜒1 near its
minimum is independent of the absolute value of the 𝜒?0@1 .
Variance (statistical uncertainty) of estimator tells us: If     
experiment repeated many times, how wide is distribution
of estimates (doesn’t tell whether hypothesis correct or not).
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Very common pit fall! 
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Combining measurements with LS

Very common use of LS method is to combine a number
of measurements of the same quantity. Then one has:    

yi = result of measurement i, i = 1, ..., N;
assumed to be known;

l = true value (takes role of q, no x-dependence).

For independent yi’s, minimize:

Well-known formula for weighted average. Variance of 
average < variances of individual measurements. More 
precise measurements (i.e. having smaller variances)  
have larger weight. Generalized to non-independent
measurements yi i.e. cov[yi,yj]=Vij. Then have to minimize: 

Assumption: individual yi’s unbiased. The weights in LS 
prescription give RCF bound for variance (”Gauss-Markov”).
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Combining measurements with LS (cont.)

Averaging 2 correlated measurements: measurements y1
& y2 with covariance matrix V: 

Increase of inverse variance due to the 2nd measurement:

𝜌 ≤ 1 ⟹ 2nd measurement only beneficial for average (i.e. 
new combined variance £). No variance change whenr =
s1 /s2 (incl. r = 1 & s1= s2, i.e. same measurement twice).
If r > s2/s1 then w < 0 & weighted average not btwn y1 & 
y2, due to a large positive correlation btwn y1 & y2. Can 
happen in the case of common normalisation uncertainty. 
Usable for calibrating common variable see e.g. G.Cowan: 
Statistical Data Analysis, page 109, where temperature (T) 
estimate improved using measurements at same T with
two rulers having different thermal expansion coefficients.
Overlaping samples can be used to estimate covariance
matrix if not known. Either use MC generated samples or
use real data by dividing data sample into a large number
of subsamples & determing estimators y1, ..., yN for each
subsample & from these correlations coefficient matrix. 
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Please use method with care !
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LS fit with penalty functions (nuisance terms)

LS fit with constraints (penalty functions/nuisance terms) 
to improve data quality: Sometimes inputs (𝑥>’s) suffer
from significant uncertainties or there are some scalings
(nuisance terms) involved that directly effects our result. 
Then a possible solution can be to include additional
terms in the c2 sum and look for the global c2

min that
minimazes everything including the variation of inputs
(with respect to their uncertainties) or the scalings.  
   

Example: top mass reconstruction at CDF experiment
Proton-antiproton collisions create top-antitop pair:         
pp ® t (® W+b)t (® W-b) X
_ _ _

qq qq
__

experimental challenge: quarks (q, b) hadronize and  
make jets whose energy (& momentum) measured with 
poor resolution (10-20 %) Þ if raw energy (& momentum) 
measurement used the top mass poorly reconstructed.                        
Make use of additional constraints: two of the jets should
make a W resonance (µW = 80.42 ± 0.03 GeV for the W mass) 
with a width GW = 2.1 GeV + combined with the third jet 
should make a top quark with same µtop (= top mass) as the 
other top (= ”triplet” of jets) within a width Gtop = 1.6 GeV.
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LS fit with penalty functions (nuisance terms)

Gtop = 1.6 GeV, GW = 2.1 GeV, mWnom = 80.42 GeV 

c2 large (> 100). Cure: allow energy measurements to vary

Let each ci vary in order to minimaze whole c2
new

c2new = c2 +

precision: 
~ 20 GeV

precision:   
~11 GeV

Ebj(qj)º energy of b-jet (q-jet) j
Px(y,z),bj(qj) º x(y,z) momentum
component of b-jet (q-jet) j

(same for Px, 
Py and Pz)
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LS fit with penalty functions (nuisance terms)

Result:

precision: 
£ 1 GeV

precision: 
~10 GeV

global c2 values significantly improved (by a factor ~100!)

c2
newc2

Note: here problem a bit simplied, in reality need also to scale P’s


