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The Monte Carlo method
A numerical technique for calculating probabilities &
related things using sequences of random numbers.

The usual steps:

* generate sequence ry, r», ..., I, uniform in ]JO,1[.

* use them to produce another sequence x, x,, ..., x

distributed according to pdf f(x) of interrest

 use obtained x values to estimate some prczperty of

f(x), e.g. fraction of x values within [a,b] = j f(x)dx
a

= MC calculation sort of integration (at least formally)
b
Trivial for 1D:j f(x)dx obtainable by other methods,

but MC more powerful for multi-dimensional problems.

n

MC x values = ”"simulated data”
— used for testing statistical procedures

MC methods a wide field, actually own field in itself —
here focus on the usage of MC for data analysis e.g.
determining the statistical (& systematic) uncertainties.
In such cases, MCs are used to generate different
data distributions. So, let’s try to answer the question
"how can | generate the type of distribution | need?”.

more complete & deeper discussion found in e.g.
 MATR323 “Basics of Monte Carlo simulation”-course
by Prof. Flyura Djurabekova in spring 2026 (period lII)
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goal: to get uniformly distributed values in ]0,1[ interval.
= "random number generator”

= computer algorithm to generate r4, ro, ..., 7.

e.g. multiplicative linear congruential generator (MLCG)

niyq = (an;) mod m, where

n; = integer, a = multiplier, m = modulus & n, = seed.
(NB! mod = modulus (remainder), e.g. 27 mod 5 = 2)

n; follow periodic sequence in[1,m-1] =

r, = n; Im distributed in ]0,1].

Choose a & m so that r/'s pass various tests of random-
ness: ri's uniform in ]0,1[, succeeding r;'s uncorrelated
& "period” for r;'s long (maximum = m —1) e.g. L'Ecuyer,
Comm. ACM 31(1988)742: a = 40692, m = 2147483399
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Much better algorithms exist e.g. Mersenne twister,
with period ~ 109990, Many good algorithms
implemented in freely available program libraries

NB! 7i's like above in reality pseudorandom numbers
See e.g. F.James, Comput. Phys. Commun. 60 (1990) 111
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given ry, 7y, ..., ry uniformin 10,1[, find x4, x5,...,x,, which
follow f(x) by finding a suitable transformation x(r).

P(r<v) = P(x <x(r')) i.e. »

Jgydr =r'= [ f(x)dx'= F(x(r")

A method that always works when inverse function of

cumulative distribution function F(x) can be calculated
or put in a table. Then inverse transform method:

« sample r from a uniform distribution ]0,1]
« calculate x = F~1(r)
then generated random numbers x that obey pdf f(x).

From following graph it is easy to see that it works

uniform /i (X ) } f(x ) (V.Karimaki)

: 1
density f---o---o-o--- ,
tiheys | |
tasainen = - [T A

f f
dense tihei harva ScCarce
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Discrete distributions

Inverse transform method for discrete distributions.

p; = probability for integer i. First one has to put in table
cumulative distribution function Fi=X_¢/p;,j=0, ...,N.
If infinite number of possible outcomes i, N to be set so
large that F\ =1. Generation algorithm for discrete pdf:

(i) sample r from a uniform distribution ]0,1][.

(ii) find k so that F,_4 < r < F|.

(iii) accept integer k—1

Resulting distribution proportional to probabilities p,.

Example of inverse transform method:
exponential pdf: f(x;&) = f‘le_’”‘f (x> 0)
cumulative distribution function:

F(x)= joxf_le_x'/‘fdx' —]-e*

assume r € ]0,1[, now set » = F(x) & solve for x(r) =
x(r) =—=¢In(1 —r) (NB!'x(r) = —&Inr works also)

250 E e E (G. Cowan)
200 1JmmjﬂHiU%k%ﬂﬂ“ 800
150 600
jlelatd o 400

BOHE 200" |

0 ' 0 ’

0 0.5 1 0 2 4
r x(r)
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Acceptance-rejection method (von Neumann)
(G. Cowan)

05 @ T T T

Often analytic solution <
impossible or very 04 F
impractical =
acceptance-rejection
method (or hit-or- Oer
miss): enclose pdfin o
a box Jfmin= min(f(x)),

Jmax = max(f(x))[ o

(i) generate a random number x, uniform in Xmins Xmaxls
.. X = Xpin t 71(Xmax — Xmin) Where r; uniform in ]0,1][

(i) generate 2" random number u uniformly distributed
betweenfmin &fmaxa l.e. u =fmin + VZ(fmax_fmin)-

(iii) if u < f{x), then accept x. If not, reject x & repeat.

-~

;| Sl o ~
.

Example: generate a polar os s £ 5t
angle distribution 1 +cos@? ,, [ i o L s
(-1 <cosf@ <1).x=cosb R

f(x)=2(1+x") (-1<x<1)

e

mo
0.75

fmin = O:fmax = %; x of pairs
of random numbers lying
below the curve accepted. oz |
The distribution of the o | . . ,
accepted x shown below. =~ 7

05 |
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Acceptance—rejection
method simple to  fmax
apply but efficiency of [ I
algorithm depends on |

area ratio of pdfto LX) Rty
enclosing box. Inefficient li 1
for "peaky” distributions. e
Fraction of trial points accepted: iy

__ Areaunder curve _ fxmin f(x)dx

Area of box (fmax—Fmin) Xmax—Xmin)
Importance sampling:
To improve acceptance-rejection method efficiency, use
importance sampling method. First random numbers gene-
rated according to g(x) satisfying g(x) > f(x) all over whole
x-interval. x’s generated according to g(x)/[ g(x) (with e.g.
inverse transform method), and x accepted if u < f(x), where
u random number ]0, g(x)[, or weighted with a factor f{x)/g(x)
P(Y > 3) if Y Gaussian N(u = 0,0 = 1): truth =
e.g. to estimate the 0.00135. h(Y;) = 1if¥; > 3; h(Y;) = 0if ¥; < 3
integral of the tail of o Draw an iid sample Y1,..., Y10 from a N(0,1), then the
Gaussian distribution. =™ W (J. Cisewski)
Instead of using thV' integral / = m;”(m

original Gaussian,”™ 5 praw an iid sample Y1, ..., Yioo from a N(4,1), then the

i timator i z

use an equalent ST 119y, importance
Gaussian with larger > T 1002 g(v) sampling
acceptance rat.e to where f is the density of a N(0,1) and g is the density of N(4,1)
reduce uncertainty N = 10° Expected Value  Variance
of the estimate and Uil (NI .

Monte Carlo 0.00136 1.3x107°
coverge much faster. Importance Sampling 0.00135 115 5 I
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MC methods often used to "mimic” data in e.g. particle
physics, a two-step process: simulation of physics,
"event generator” & simulation of response of
experimental apparatus,”’detector simulation”.

MC event generator: '
simple example: A \
ete” - utu & S
generate 4 and ¢: 8]
f(cos8; A oc (1+2 4, cos O +cos” 9) \<
¢(§)=1/27 ;

In reality implemented into program packages that

accounts for all (known) effects (hadronisation, initial
and final state radiation, longlived particles etc...)

MC detector simulation (built on e.g. GEANT4):
Input: particle list & momenta from event generator

simulate particle interactions with detector material &
detector response: multiple Coulomb scattering (generate
particle scattering angle), ionization energy loss (generate
energy loss dE/dx), electromagnetic & hadronic showers,
produce detector signals, electronics response ...

Output: simulated "raw” data — input to reconstruction

Usage:
Predict what should be seen at "detector level” given a

hypothesis at "generator level”. Compare with real data
- optimize measurement & experiment sensitivity.

- estimate efficiency & purity (expected signal & background)
- simulate measurement many times ("gedanken” experiment)
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Standard Gaussian distributed random numbers

1 px _.
_J‘ e /zdx'
N2 Y™
Square evaluation method: Generate numbers in polar
coordinates & afterwards transform them to cartesian

£ f)ddy = re” dr ;Z ? _ o(Hh(p)drds

r & ¢ generated according to g(r) & i(¢) =
x & y independent Gaussian distributed random numbers,

Marsaglia polar method: very efficient algorithm for
generating Gaussian random numbers

uq & uo uniform in J0,1[
construct v = 2u4—1 & vo = 2u>—1 (uniform in J-1,1]),
if 2 = v42 + v,2 > 1 start over again, otherwise
4 :vl\/—Zlnr2/r2 and z, :1/2\/—21n1f2/r2
z4 & zo independent Gaussian numbers with #1=0 & o= 1
= 1+ o z; Gaussian numbers with mean u & variance o2
Poisson random numbers: efficient algorithm for small v

Set k=1 & 4 =1 at start, then iterate until successful choiceg

(i) generate u (uniform in ]0,1[), replace A with uA4

(i) if 4 <exp(—v), where v mean of Poisson distribution,
accept n, = k—1 & stop.

(iii) replace k by k+1 and repeat (i).

for large v (> ~10), faster & easier to generate Gaussian

random numbers since Poisson distribution ~ Gaussian.

cumulative distribution function F'(x) =

Statistical Methods 2025 .. II/8
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y2 random numbers: for even n, generate n/2 uniform
n/2

random numbers u;; then y = -2 ln(Hu,}follows ()

i=1

for odd n, generate (n—1)/2 uniform numbers u; & one
(n-1)/2

Gaussian z; then y=-2 ln( Huj +z° follows y2(n).

i=1
Binomial random numbers: principle same as for
any discrete distribution. Use inverse transform
method and tabulate cumulative distribution F(x)
Most computer libraries include generators for most
common distributions like Gaussian, Poisson, y? etc...

Accuracy of Monte Carlo methods
MC = "integration”. o
compare to trapezoidal rule, (G. Cowan)
n = # of computing steps 015 |

for 1D integral: MC: n «
number of accepted random °' 1
values, accuracy « 1/+/n

trapezoid: n < number of

subdivisions, accuracy « 1/n?

|

1 I |
. . . 0 1 IR PN 11 Il 1
in 1D trapezoid wins!!! 0 ¥ 264105 WEnin0 125. 15

0.05 |

but in d dimensions: .
MC: accuracy « 1/+/n <« independent of d!

trapezoid: accuracy « 1/n%/@

MC wins for d > 4. Gaussian quadrature better than

trapezoid but for high enough d, MC always wins!!
(see e.qg. F. James, Rep. Prog. Phys. 43 (1980) 1145).
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A statistical test:

applied to physics mainly in two different ways

— how to distinguish events of interest, "signal”, from
(a large number of) uninteresting events, "background”
— how well a given hypothesis compatible (without any
alternative) with observed data, "goodness-of-fit” test.

Hypothesis testing:
Statistics related to questions where answers not
numerical but logical — a "yes” or "no”.

Example: ’Is this particle an electron / a signal event?”

Statistics (& science in general) can never in absolute
terms say that something is true.
Only falsify ("empirical falsification” Karl Popper 1930).

Answer generally a probability.

This probability refers to ensemble of statements.
Result of a measurement x =(x,,...,x,) follows

a pdf in n-dimensional space that depends on
variables x,,..., x,, e.g. pdf f (X) specified by some
hypotheses H, H,... each having a probability density

FGEIH,), f(F|H,) ete.

Equivalent to provide a statement & ask if true or not.

null hypothesis: H,, hypothesis whose validity tested.
alternative hypothesis: H,(, H, ...) to compare with H,.
simple hypothesis: f(x) completely specified.
composite hypothesis: f(x,#), parameter(s) dunknown.

Statistical Methods 2025 i II/I 0
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Many dimensions akward = use test statistic #(x) of
lower dimension (e.g. 1D) to compactify data, keeping
as much hypothesis discrimination power as possible.
A test statistic ¢ following pdf's g(t#(x)| H,), g(¢(x)| H,)

2

=
e))

‘w (G. Cowan)|  Often formulate
I accept Hy - reject Hy oy eye
1.5 | 1 compatibility
| between data &
various hypotheses
in terms of an
acceptence or a
rejection of null

0 : 2 ;3 s 5 hypothesis H,

t
Critical region i.e. where ¢ not likely to occur if H, true
t >t in figure (alternative define acceptance region)

g(t1Hy)

05

0

If observed value ¢, in critical region, reject H,,
otherwise "accept” (or strictly speaking, not reject I!).

Critical region chosen such that probabilitx for ¢ to be
there assuming hypothesis H, some
small value « = significance level. @ = jg(t | Ho) dt

Leut
H, rejection even if true error of 18t kind (= probability o)

H, acceptence if some other hypothesis ‘.
true error of 2" kind (probability ) IB = jg({ | [—[1) dt

Can define 1-4 as power to 0
discriminate against alternative hypothesis.

Statistical Methods 2025 . II/I 1
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n energy loss measurements for a particle in a particle
detector, ¢ = truncated mean of the measurements
& suppose all particles either electrons (¢) or pions (m).

. = 2 T T T T
H, = electron (signal) 3 t  (G.Cowan)

cut

Hy = pion (background) | = acoeptHy - refect Hy

select electrons with 7 < 7.
selection efficiencies: i

Leut
e,=[ " gltle)di=1-a o |

otHy)

g(tH,) |

Leut 0 ; :
g”:j_w g(l“ﬂ')df:ﬂ 0 1 2 3 4 5

t

Higher ¢, higher ¢ efficiency but more T background.
Lower ¢.,: lower e efficiency but better sample purity.

For observed value ¢, probability P, to have an ¢ (or «)?

P(e]f) = a,g(t|e) Pz )= a,8(t| )

ag(tle)+a.g(t|r) ag(tle)+a.g(t|r)

a.(a,) = fraction of electrons (pions) in sample; a, + a,; = 1

Bayesian: degree of belief that particle is an ¢ or a .
Frequentist: particle fraction at given ¢ which is ¢ or .

sample purity, p., fraction of actual electrons in sample:
ZLC‘ul‘ tcut
po=" agttlendt | [ agltle)+ a gt | s

= electron probability averaged over interval (—o, #].
NB! purity depend on (un)known e & = fractions a, & a,.

Statistical Methods 2025 . II/lz
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When is discriminant analysis needed?

aim of discriminant analysis: € H? Hy?, ...,H,?
distinguish between a number ...

of distinct hypotheses, H, , k ..
=1,..., n,. various hypotheses _
known a priori (Hy, H,, ..., H, ).,
problem: determine to which
hypothesis new element
(determined a posteriori by
simulation, measurement,...)
belongs. Careful hypothesis -
testing required, especially if et o L
only few elements available (low statistics). "1
Discriminant analysis techniques applied in many fields

e.g. astrophysics, particle physics, biophysics, imaging,...

A multidimensional test statistic = (Z,,...,¢, ) and
hypotheses Hy ("signal”) & H, ("background”). Optimal
choice of critical region, i.e. what selection to use ?

0.41

0.3

Neyman-Pearson lemma: acceptance region giving
highest power (& also highest signal g(f | Ho)
purity) for a given significance level — > C
a (or selection efficiency e=1-a) : g(t|H,)

_ _ o ¢ = constant, fixed by
equivalently, optimal test statistic  sjgnificance level (or

I.e. the likelihood ratio for simple selection purity)

h.ypothese.s H, & _H1 .. Requiring r>c - g(t | H,)
gives maximum significance level F=—= )
(efficiency) for a given power (purity). g(t|H,)

Statistical Methods 2025 . II/I 3
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(00, = ., t(x) > t., Avectorx = (X1, ey Xy)
\ measured for each event.
N construct 1D test statistic
i 1 t(x) to distinguish between
A "”@“ . two hypothelses H, & H,.
7 g - 1 most optima v
SRR o choice: the  £(X) = f(x|HO),

likelihood ratio ~ f(X[H))
but need pdfs analytically

J(x[Hy) & f(x|H))

(in most cases not possible).

In pr1actice calculated, from MC simulations,
where pdf's approximated by multidimensional

histograms filled with x of each generate event.

method impractical if number of M bins
input variables too large since . \
available MC statistics finite. R

compromise: make Ansatz
for functional form of t(x)
with a fewer number of input
variables; choose variables I
(e.g. based on MC) that give best ™ = ™ " x, = " "~
discrimination between Hy & H,. Number of parameters to
be determined by MC: M?

f(X) < tcut

+ M bing

linear test statistic: e.g. Fisher

discriminant — straight "line” cut nonlinear test statistic:
in X-space: e.g. neural networks —

n
H(X) = Z a,x, =g’ x more complicated cut
= function in x-space.

Statistical Methods 2025 . 11/14
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| |
n
— _T_
(x)=t,, Ansatz: {(x)=a, +Zal.xl. =a,+ta x
0.9 . L . . . . . l:1
l - ssignal | #(x) aFisher linear
- wivarea” | discriminant see e.g.
. ‘_..;..- y';* : : .
eorcmmanee. | RUALFisher, Annals of
e i ‘53"3' . :
S PP IR g XL > Sl | Eugenics 7 (1936) 179; R.A.
< iR Fisher: Contributions to
L | mathematical statistics, 1950.
. |hackground -} | Achoice of @ gives certain
e e pds gt Hy) & glt| H))
0.1 0.2 0.3 0.4 *5 0.6 0.7 0.8 0.9 , ] ]
1) < 1y, / 1 1) > 1., ’(’:hoose aj s”to maximize
separation” between

n=2, a@an be interpreted g(t | HO) & g(t | Hl)

a straight ine in the x;—x, plane. — must define
"separation” more exactly !!

Data x =(x,,...,x,) have mean values & covariance matrix

(u,), = .xl.f()ﬂHk)dxl...dxn i,j=1,...,n

Vg = | =) (x =), f (X | H e, ...dx,  k=0,1
Each hypothesis has certain mean & variance of #(X)

r, = [H®)g(t(x) | H)dt=a" 1,
5= (@) -7,) g®| H)dt =a'V,a

To optimize separation: large |7, —7, |, small 2(2) & 212
(pdf’s tightly concentrated about well separated means).

Statistical Methods 2025 . II/I 5
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Fisher discriminant

0.8

MAX

distance
between

Ho & 1y

<

MIN

©
. Il
spread i.e.

concentrate

08

nN ]

the elements
of Hy& H, .

0.4 0.5 0.6 0.7 0.8 0.9 0.1 02 03 04 5 0.6 07 08
X 1= a X

Fisher defined as a measure of separation (taking both
into account): J(7)=(r,-1,) /(22 +37)
Numerator & denominator can be written as

n

(70_71)222”1 (o = ) (o — 1) Zl] la,a]B =a' Ba
2 2 n — —
2o +2 :Zi’jzlaaj(Vo+Vl)ij:a Wa

_T — .
a" Ba  separation between classes
a'Wa sum of variances within classes

set &J(a)/0a,=0, foralli = aocW'(z,-1)

Above Fisher’s linear discriminant function &
corresponding test statistic a Fisher discriminant.

This gives J(a) =

Statistical Methods 2025
MC methods & statistical tests

11/16

Kenneth Osterberg




HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI FISher dlscrlmlnant

Note coefficients a; only

determined up to arbitrary ., ", fou INCTEASES
scale factor. Use scale (t.y) o ™. /’ ,_)B -
& (?ffset a, to fix purity and . | ?j::g 4.,“5 ..
efficiency. Larger ., can o, .  -irotsiEegis
improv . _ SRR+ .s1g2al
- D . 3 area
efficiency 10sSS8
rejected:bad ] :,:: - - 0000.
: - “I' “background area” R
To determine coefficients a;, s

0.2 0.3 0.4 05 06 07 08 6.9

need matrix W & expectation X,

values p 4y Usually estimated from a set of training data
e.g. from a MC simulation. Important point being that one
doesn’t need to determine joint pdf's f(x|H,) & f(x|H,)
as n-dimensional histograms, only means & covariances.
Instead of determining M™ parameters now only n(n+1)/2.

(7 — 71)2
(Zy+3))
minimizing Zé +212 = Eq[(#(x) —To)z] +E[(#(x) - T1)2]
(E, denotes expectation value under hypothesis Hy)

— maximizing Fisher’s J(a) kind of least square problem.
(more about parameter determination using least squares later)

Maximizing J(a) = with fixed 7, & 7; same as

Special Fisher discriminants: f(i|H;) multidimensional
Gaussians with same covariance matrix Vo=V, =V

f(;|Hk): eXp[_%()—C_ﬁk)TV_l()—C_ﬁk)]a k:()al

Q)" |V "
—_ —_ —_ 11—
and the Fisher discriminant:  1(X) =y + (1 — ﬂ1)TV X

Statistical Methods 2025 . II/I 7
MC methods & statistical tests Kenneth Osterberg




HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI FISher dlscrlmlnant

Recall likelihood ratio (maximum efficiency at given purity)

f(x|H,) | Q= =y P
== =exp[y (X - :ul) V(x-m)-7(x- :uo) V(- 14)]

S(x|H,)) 2 2

— —\T —TIyr-1— —Ty7-1—

r=expl(ty— 1) VX =5 i,V fy+51 V'] ce
i.e. {(X)ocInr+const. £ given by monotonic function of r
= Fisher discriminant = likelihood ratio i.e. most optimal.
NB! for non-equal V; or non-Gaussian pdfs, no longer true

Multidimensional Gaussian with equal covariance
matrices also gives simple expressions for posterior
hypotheses probabilities I H )\ 1
e.g. P(H,|X)=— f(x]#,) - =

(Bayes' theorem) (X | Hy)my+ f(X| H))7, L+ (m,7y1)
where my & 74 prior probabilities for Hy & H,.

Combining this with above expression for r, one gets
_ | the logistic sigmoid
P(H, | x)= - =su ion (see figure below)

1.00

Logistic sigmoid a Fathi & Maleki Shoja
very common neural |
network activation

function (= giving the
weight of the node in ;|
the network). Another 5, |
common one isthe |
hyperbolic tangent: -1

0.50 1 Sigmoid(x)

0.25 1

tanh(x)

T L) T 1 T T Ll
-8 -6 -4 =2 0 2 4 6 8

P(Hy|x) = tanh(t) = (et — e b)) /(e + e7h)

Statistical Methods 2025 . II/I 8
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| |
Optimal decision boundary mostly not “straight line” (due to
non-equal V; or non-Gaussian pdfs), use instead nonlinear test

statistics: neural networks, boosted decision trees...

Artificial Neural Networks (ANN) today used in many fields
medical imaging, pattern recognition, financial forecasting
etc... but also in physics. Assume t(x) to have the form

) where s(-) activation function
1(x)= S(ao ot Z e al.xl.) (often logistic sigmoid or tanh(t}))

i (G. Cowan) single-layer perceptron a test

: statistic of this form. x input
values represented as a set

of nodes. s(-) mono-

G L) tonic = t(x) corres-
F ponds to a linear test
output node (could statistic.
*n be more than one)
il
input layer X1

Generalized to multilayer °
perceptrons (MLP) with
one or several hidden
layers. Each hidden layer
has m nodes (A4, ... h).
Usually connection are
restricted: value of a given
node only depends on X
nodes in previous layer,

a feed-forward network. hidden layer

Statistical Methods 2025 . II/I 9
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UNIVERSITY OF HELSINKI Neural networks

In a two-layer perceptron output defined by
(®) = slay+ 37 (O where (%) =slw, + 3" wx,)

t(i) non-linear test statistic, since non-linear function of
inputs x;. a; and w; connection strengths or weights

(n+1)m free parameters for n input parameters. With more
nodes, ANN closer to optimal but more parameters to fix.

Parameters determined by minimizing an error function
_ (0)\2 (1)\2
e=E\[(t—1" Y1+ E[(t-1")]
where #9 & #1) target values e.g. 0 & 1 for logistic sigmoid,
equivalent to least square method for Fisher discriminants,

To determine parameters minimizing ¢, iterative numerical
methods, network training or learning, used. In practice
expectation values replaced by means computed from
training samples, i.e. MC simulations. Learning starts with
random initial values for weights and proceed evaluating
function using training data. Weights adjusted to minimize
¢ by different methods, i.e. error-back-propagation.

Theorem: MLP with a single hidden layer having sufficient
number of nodes can approximate arbritrarily well optimal
decision boundary;Leshno et al., Neural networks 6 (1993) 861

Advantages/disadvantages of using a single hidden layer
with many nodes over many hidden layers not known
exactly but seems reasonable to assume that many layers
have better performance & more stable than a single layer
—deep learning (networks with 10’s or 100’s of hidden layers)

Statistical Methods 2025 . 11/20
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UNIVERSITY OF HELSINK| onlinear test statistics

. . . Focus here on supervised learning
Nonlinear test statistics

The optimal decision boundary may not be a hyperplane,

— nonlinear test statistic ¢(Z)

i
J o B

Multivariate statistical methods o oy dd w;’ e H,
are a Big Industry: R E‘&;Z%@%@?{&f&i b
« artificial neural networks " e ?m-?
* boosted decision trees L R TN T
* generative Al .

accept .z

Physics can benefit from progress in Machine learning

Neural network example from LEP II

Signal: ete — WW~  (often 4 well separated hadron jets) yellow
Background: e'e™ — qqgg (4 less well separated hadron jets) white

0.2 0.2 0.2

ws | oo | s | «— 1nput variables based on jet
a :>Q jﬁl\ structure, event shape, ...
0 - o ‘ 0 - . : .
© e ° hew  ° wiws none by itself gives much separation.
02
- Ll‘ }5% Neural network output does better...
ux(ud')' o S::wic'vt; 3 3|5ommy' i
! | |
0.00 | 0.0% 0.05
T ¥ as ¥ 24 05 1 ° 7 ¢
Log(Aplanority) S hriat .Min(E,.) O 01 02 03 0¢ 05 08 O N::'ono(?u'.pul'

(Garrido, Juste and Martinez, ALEPH 96-144)
Machine learning in python: sklearn, https://scikit-learn.org/|

Statistical Methods 2025 . 11/2 1
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Overtraining

UNIVERSITY OF HELSINKI

Overtraining

Including more parameters in a classifier makes its decision boundary
increasingly flexible, e.g., more nodes/layers for a neural network.

A “flexible” classifier may conform too closely to the training points;
the same boundary will not perform well on an independent test

data sample (— “overtraining”).

> 4 > 4
- training sample

independent test sample

Monitoring overtraining

If we monitor the fraction of misclassified events (or similar, e.g.,
error function £(w)) for test and training samples, it will usually
decrease for both as the boundary is made more flexible:

optimum at minimum of
crror error rate for test sample
rate
increase in error rate
/ indicates overtraining
test sample
training sample
flexibility (e.g., number
of nodes/layers in MLP)
Statistical Methods 2025 )
MC methods & statistical tests Kenneth Osterberg 11/22
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‘ Boosted decision trees

UNIVERSITY OF HELSINKI

For multiclassification problems can work
Decision trees better in practice than e.g. neural networks

A training sample of signal and background data 1s repeatedly
split by successive cuts on its input variables.

Order in which variables used based on best separation between

signal and background. .
Root :
“node’
: i 5 -
Iterate until stop criterion reached, _Azal hsa
based e.g. on purity, minimum S ,
number of events in a node. S b S b
ot » al A
Resulting set of cuts 1s a “decision tree’. (B (5 — 5
e o k \4[ ’k 4 '
Tends to be sensitive to o
fluctuations in training sample. ey . S

sklearn implementation:
Randomforestregressor

Boosting combines a number classifiers into a stronger one;
improves stability with respect to fluctuations in input data.

Boosted decision trees

To use with decision trees, increase the weights of misclassified
events and reconstruct the tree.

Iterate — forest of trees (perhaps > 1000). For the mth tree,

applicatio
1 & in signal acceptance region Jan Welti. PhD
Tm(E) = ’

—1 otherwise thesis in physics,
HU-P-D23%
Define a score ¢, based on error rate of mth tree. (2017)

Boosted tree = weighted sum of the trees: T(Z) = ) amTm(Z)
m

Algorithms: AdaBoost (Freund & Schapire), e-boost (Friedman).

bagging = draw bootstraped samples from training
sample, create tree for each & finally combine them

Statistical Methods 2025 . 11/23
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‘ lHJ;L:/TR(::YR:)::'EVLET:‘LTIETQuantum machine learning?

« When data points projected in higher and higher
dimensions, becomes harder for a classical computer
to deal with it. Even if it does, it takes too much time.

« Sometimes, classical machine learning algorithms
too taxing for classical computers.

« Solution: quantum computers? They use super-

position & entanglement to solve problems (potentially)
much faster than their classical counterparts.

Machine Learning A. Musti
Classical Machine Learning - CML Quantum Machine Learning - QML
Classical data @ 1 o Quantum data 1 * ¢ é Q-
®0 ‘ QUBIT Superposition

of states

co 2o |\ 3 2@ &G

Mathematical CPU/GPU Pattern Mathematical Quantum Pattern
algonthms Processing recognmon o algonthms Processing recognition
Time O Time @
Processing methods Applications
000 000 000 000 N =3 QUBITS Face
N=3 3BITS @@® ==
I 000 000 000 000 2¥_ g POSSIBLE STATES recognition
— —
Classical L 9 GIETT Genetics Entertainment
Data CD transform to QD Data services
000 000 900 000 000
ErSrEstees \ 000 900 900 900 000
i CML @ ' T AR T ! Recommendation o0 Self driving
N : ! QML @ i systems N automation
DTV Oy el RO '
QD transform to CD
Finance
00 @<« <« @ ococoe 000 000000 e
P | ece cee cee 0ce

* Operations on qubits are unitary matrices

V. Mehtola

* One can encode classical data into the circuit
by parametrizing these unitary operations

* onecanencode up to 2" floats into the qubits

* Measurement leads to only an n-bit string (or n o — H —n
floats if running the circuit many times as one
01 % H
usually does)

Statistical Methods 2025 . 11/24
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‘ Quantum machine learning?

UNIVERSITY OF HELSINKI

]
Need Both Quality and Quantity

10 2 @

% wemmm—p |uaNtity hype §

= 102 = = = = —— e e e e e e e e e = = -~ Q

o Error correction threshold (@)

= ® =

o ()

o A 2 . o

£ 103 3 4 ° g-

€ Useful error =

T Classically Near-term
= 104 simulatable applications corrected QC 3 8
s o
1 1 I i 1 1 [ [ 1 =
100 101 102 108 104 105 106 107 108
Number of Qubits 1: Quantum Supremacy

we are somewhere here today 2: Look for near-term apps

3: Error correction
Google strategy 4: Full QC

First trial in particle physics in Finland:

V. Mehtola MSc
thesis 2025

quantum kernel
for selecting
Vector Boson
Scattering events
from background
—_—
Need sufficient
number of qubits
to remove "noise”
(= limit error rate)
to be competitive
with classical
machine learning.

. oo e ° (o) Decision surface
e .l =a : °
o0 E H.mm =
[<] ° .I mm ©
oo Bgm m" ©
o ‘o .: mg® %o
°® oo 0 20392 > .
o® = °i,\°
10y — H
o4 H-
U(x) U'(x)
oM H
10y — —
10y — ] A
[0) — — —i
10y — — —A
[0) — — —A
[0y | U(x) H UT(x) —i
[0) — — —A
10) — — —A
10) — — —A
10) — — —A

Figure 3: A figure for visualizing the general phenomenon of concentration (expo-
nential or not). On the left, there are two quantum kernel circuits with same feature
map scaled to four and nine qubits, respectively. To their right is their respective Gram
matrix. For the nine-qubit version, off-diagonal variance is visibly lower. In the case
that this scaling is exponential in the number of qubits, the feature map U(x) does not
scale well at least for the given data and pre-processing.

Statistical Methods 2025
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‘ 2D example (G. Cowan)
UNIVERSITY OF HELSINKI

A simple example (2D)
Consider two variables, x, and x,, and suppose we have formulas

for the joint pdfs for both signal (s) and background (b) events (in
real problems the formulas are usually not available).

fx,|x,) ~ Gaussian, different means for s/b,
Gaussians have same o, which depends on x,,
fx,) ~ exponential, same for both s and b,

Sy, xp) = floxxy) fxy):

1 2 76,2 j 8
— = s (z1—ps)? 20%(z2) = ,—T2/A
B Fnll] — e 5
fl,z2ls) \/%0'(232) A
f(Il, :L‘le) = ;e—(ml_”b)2/202(22) le—m2/,\
V2o (xg) 2\
0'(:132) = a’oe_m/f

Joint and marginal distributions of x,, x,

2 W o5 1
x et i
z signal

-~ background

o

+ background”

6 8
X5
G 9
& — signal
----- background
0.75 ] . . .
Distribution f{x,) same for s, b.
= So does x, help discriminate
between the two event types?
0.25 -
0—4 4
Xy
Statistical Methods 2025 11/26
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‘ 2D example (G. Cowan)
UNIVERSITY OF HELSINKI

Likelihood ratio for 2D example

Neyman-Pearson lemma says best critical region is determined
by the likelihood ratio:

f('rls :I?ng)
f(z1,22|b)

t(ﬂ.’:l,il?g) —

Equivalently we can use any monotonic function of this as
a test statistic, e.g.,

(g — pn2) + (us — o)1

lnt - 0'33‘2-"32/5

Boundary of optimal critical region will be curve of constant In ¢,
and this depends on x,!

Contours of constant MV A output

.

‘P
o

@

% L
Q

R BT
S
S

$
B® ©
E-N
T T 1] | T T T | T T T | T T T

=

—~

»

"

o]
200 ~
e

4 2 2 4
;s : : X4
Exact likelihood ratio Fisher discriminant
Statistical Methods 2025 11/27
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‘ 2D example (G. Cowan)
UNIVERSITY OF HELSINKI

Contours of constant MV A output

o 8 SN 8
6 sk )
A
il
0 B o]
-4 4
. X
Multilayer Perceptron 1 Boosted Decision Tree
1 hidden layer with 2 nodes 200 iterations (AdaBoost)

Training samples: 10° signal and 10° background events

ROC curve
o 1= A\ : :
°.° ROC = “receiver operating
- - characteristic” (term from
' Region > signal processing).
I typicall
s uyspe d y Shows (usually) background
rejection (1-¢,) versus
04f — LR : :
signal efficiency e..
-------- Fisher
L e MLP 3 ; ;
0.2 el i|  Higher curve is better;
{ usually analysis focused on
00 02 04 08 08 1 asmall part of the curve.
85
Statistical Methods 2025
NECt ntlethods ;L statistical tests Kenneth Osterberg 11/28



HELSINGIN YLIOPISTO

HELSINGFORS UNIVERSITET . . .
Selection of input variables

UNIVERSITY OF HELSINKI

Multivariate analysis discussion

First clean the input of faulty, problematic or inadequate data
For all methods, need to check:

Sensitivity to statistically unimportant variables
(best to drop those that don’t provide discrimination);

Level of smoothness in decision boundary (sensitivity
to over-training)

Given the test variable, next step is e.g., select » events and
estimate a cross section of signal: 65 = (n —b)/esL

Now need to estimate systematic error...

If e.g. training (MC) data # Nature, test variable is not optimal,
but not necessarily biased.

But our estimates of background 5 and efficiencies would then
be biased if based on MC. (True also for ‘simple cuts’.)

But in a cut-based analysis it may be easier to avoid regions
where untested features of MC are strongly influencing the
decision boundary.

Look at control samples to test joint distributions of inputs.

Try to estimate backgrounds directly from the data (sidebands).

The purpose of the statistical test 1s often to select objects for
further study and then measure their properties.

Need to avoid input variables that are correlated with the
properties of the selected objects that you want to study.
(Not always easy; correlations may be poorly known.)

Also decide whether "hard” classification (defining explicitly signal
& background regions) is necessary or whether "soft” classification
(that gives simply signal & background probabilities) is sufficient.

Statistical Methods 2025 . 11/29
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UNIVERSITY OF HELSINKI ultivariate methods ( )

Toolkit for Multivariate Analysis (TMVA) included in ROOT-
package enables usage of many techniques simultaneously:

| Background rejection versus Signal efficiency |
1

TMVA

0.9

0.8

0.7

Background rejection

0.6 | | VA
used for: 1 \¥
0.5 E— ............... BDT ................ anal..ySIS..

"Specificity” , _PDERS ......................... b AL
(probabilityto  f gN GA : SensmVlty \\F
redict back- R . T utsGA | - (ppobablhty to: predu;t \ 0
P 0.3 prmi Likelihood: s ¥
ground if back- [ l l I l | s1g|nal wlhen 51igna1 t1l*ue) !
ground true) %297 01 02 03 04 05.06 0.7 09 1

Slgnal efficiency
Multivariate/machine learning techniques included:
* Neural networks
* Deep networks
 Multilayer perceptron (MLP)
» Boosted/Bagged decision trees (BDT)
» Support Vector Machine (SVM)
* Fisher and Function discriminant analysis (FDA)
 Multidimensional probability density estimation (PDE)
range-search approach (PDERS)
» Multidimensional k-nearest neighbour classifier (KNN)
* Predictive learning via rule ensembles (RuleFit)
* Projective likelihood estimation (PDE approach)
* Rectangular cut optimisation

Statistical Methods 2025 . 11/30
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UNIVERSITY OF HELSINKI ultivariate methods

Resources on multivariate methods
Books:

C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006

T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical
Learning, Springer, 2001

R. Duda, P. Hart, D. Stork, Pattern Classification, 2" ed., Wiley, 2001

A. Webb, Statistical Pattern Recognition, 2™ ed., Wiley, 2002

PDG review on machine learning:
https://pdg.Ibl.gov/2025/reviews/rpp2024-rev-machine-learning.pd

Software for multivariate analysis

=R

TMVA, Hocker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039

From tmva.sourceforge.net, also distributed with ROOT

Variety o classifiers https://root.cern.ch/

Good manual

SKLEARN - Machine Learning in Python

« Simple and efficient tools for predictive data analysis
* Built on NumPy, SciPy, and matplotlib
https://scikit-learn.org/stable/

KERAS - Python interface to many different neural network
packages https://keras.io/

PyTorch — Python interface for neural networks in Torch
programme package https://pytorch.org/

Dedicated course at University of Helsinki: DATA11002
Introduction to Machine Learning 5 ECTS (period 2/2025)

Statistical Methods 2025 . 11/3 1
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UNIVERSITY OF HELSINKI Goodness-of-fit tests

Want to substanciate how well hypothesis # compatible
with observed data (without reference to an alternative).

Hypothesis H predict f (x|H) for data vector x = (x4, ... x;,)
Observe a single point in x-space: x,,s. What can be said
about validity of H in light of data? — decide what parts of
x-space less compatible with 4 than observed point x;.

Z; Z more compatible with (NBI no
! b "« the observed data, Zobs unl.qu.e.
definition)
Z less com- .
patible with A N

¢ (hyper)surface of equal com-

patibility between @ and H

—> 33]'

Construct test statistic t(x) whose value reflects level of
compatibility between x & H. e.g.

high t— data less compatible with H

low t— data more compatible with A.

Express goodness-of-fit by giving P-value:
P = probability to observe data x (or t(x)) having
equal or lesser compatibility with H than x5 (or t(Xyps))-

NB! P-value not be interpreted as probability that H true !!
P-value also observed significance level/confidence level

If H true, then (for continuous ix) P uniform in [0,1]
If 4 not true, then pdf of P (usually) peaked close to O.

Does small P-value really mean H is false? No, P-value =
probability to obtain such a result "by chance” if H is true.

Statistical Methods 2025 . 11/32
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UNIVERSITY OF HELSINKI Goodness-of-fit example

Example: fit of charged particle trajectory in magnetic field
Primary aim, obtain parameters of trajectory ("helix”).
Goodness-of-fit variables to determine compatibility of
trajectory segments/hits to charged particle trajectory but
also for checks of covariance matrix for helix parameters.
Much simplified, if trajectory consists of N hits measured
in Rg & M hits measured in z, then track fit = to minimize:

752 = ZZI(R¢1' _fR¢(Ri))2/G(R¢i)2 &Z2 :ZZI(Zi _fz(Rz’))z/o-(Zi)2

where f,.(R) describes dependence w.r.t. to radius, R.
Typical for particle physics. Ny; = N-3 (solenoidal field) &
M=-2. Here multiple scattering & energy loss ignored.
Calculate corresponding P-value from observed y? value:
pP= J‘ ” f(zN,,)dz where f(z;N4,) chi-square pdf

97 for Nyor degrees of freedom.
K.Osterberg, PhD thesis, HIP-1998-01

500
5200 F mixture of
3000 P-values for 400 "bad” & "good”

i trajectories
2500 charged particle o0 /J
2000 trajectories in o0t
e DELPHI Vertex 200 trajectories
1000 Detector:

100

500 :

0

0 : 0.2 0.4 0.6 0.8 : .1
VD traock probability in RPhi VD trock probobility in Rz
Distribution should be flat; raise towards O indicate that

there is a class of hits with a slightly worse resolution &
peak at 0 misassociated hits or badly reconstructed tracks
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To make goodness-of-fit tests of distributions, the
Kolmogorov-Smirnov (K-S) test is often used.

By construction, it was developed for the comparison
of functions, but is widely also used for binned data.

* The K-S test is predominantly sensitive to the shape
of the distribution, much more than the y?—test. It's also
normalization independent, which is not the y?-test.
Used mainly in three ways:

— test whether data sample follows certain distribution
— test whether two data sample could be consistent to
come from the same distribution

— test whether data in two histograms are consistent
with each other

* Kolmogorov distance is defined as:

- dist = Max|Fparem(x) - F

cumulative distribution for parent and test
normalized to one.

(X)| , where F is

— distance is also know as Kolmogorov test
statistic.

- Probability that dist,_ > X is given by Kolmogorov

distribution function:

P(d]SthX :22 (_l)j—le_21-2xz
=1

1

NB! true if n large (> ~10), where » is size of data sample.

Statistical Methods 2025 . 11/34
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‘ HELSINGFORS UNIVERSITET Kolmogorov.Smirnov test =
UNIVERSITY OF HELSINKI R
| |

Example: 10 random numbers between 0 and 1:
0.58, 0.42, 0.52, 0.33, 0.43, 0.23, 0.58, 0.76, 0.53, 0.64
Are they uniformly distributed in [0,1]7?

L.e. Hy: Figg(x) = Fy(x) = x \
max|F,,, (x) ~ F,, ()] = max((F, (X)) »

1<i<n

F, (Xi+ )}x‘)

b

cumulative distribution function value before/after i jump

Empirical CDF

1
ool - o o o o ST B s
| | | | | A | |
o8l . TRRR TR S TR TR A AT TR ]
07_ ....... ....... ....... ....... ..... ...... .......
: : : : : . - sup: |Fu(r) — x| £ 0.26
0_6 ........ ....... ....... ....... ....... L. SRR OS’]’,‘S]_ ....... ...... -
X ael o o o o A o o o S 1
T 0% | | | | z | | | |
o4l ... S S L / U L L e S _
osl 7 S e e e AR
ook . L < e S . S S ]
o1k . A s SRR SRR R SRR S _
0 0.64 :

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

KS probability: dist, — dist,~Nn so here 0.26-V10 ~ 0.82
hypothesis testing at significance level o = 0.05:
1-P(c>x)=0.05=¢c=1.35(0.82 = P-value =17 %)

Here dist,.\n = 0.82 < ¢ = 1.35 = hence hypothesis
random numbers uniform in [0,1] can not be rejected.
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KS-test

* Kolmogorov distribution is slow to integrate and
there are plenty of algorithms to calculate
Kolmogorovs probability: eg. ROOTs TMath library,
matlab, octave, mathematica, java...

|_K> x using ROOTs KolmogorovProb-function |

1 \

K-prob.

0.8

0.6

0.4

0.2

lllllllll!1]l]1[l1l

0 llll_Llllj_lJJLulll]_llllllll 1 ‘IIIIIIAL
0 02 04 06 038 1% “127 447 16" 1.8

* When comparing how two one-dimensional

distibutions differ, Kolmogorov probability is same when
calculated by replacing: testing if two
1 data sample
dist,— dist, originate

n+n I' from same

distribution !!
* where n and n' are the number of entries in parent ?
and test distributions.

Statistical Methods 2025 . 11/36
MC methods & statistical tests Kenneth Osterberg



h

n
HELSINGIN

UNIVERSIT
n

HELSINGFORS UNIVERSITET

YLIOPISTO

Y OF HELSINKI

Kolmogorov-Smirnov test

experiment has larger K,  than K-distance is in data vs

KS-test

* P-value is calculated comparing how often simulated

model.
P-value = 0.725 ’ Cumulative distributions for Data and Model
Z 70 . Data 1*_
of- i
P — Model i
a0 o.e:— by Data
30 -
- 0.4;‘
20— r — Model
E 02
10— z
0:_..1.“‘1‘...1..“1.‘ 0' T Sl N S N e M i
( 50 100 150 200 250 o 50 100 150 200 250
GeV GeV

* WARNING: Few bad bins can make your KS-value really bad!
Check your distributions, understand your measurements! One
bin with 4-sigma deviation can make your KS close to zero.

* Eg. Low energy region badly modelled. Otherwise distribution
identical to one above.

P-value = 0.001

1 Cumulative distributions for Data and Model |

3w = :
E 1=
70— I
g — Data :
E 0.8_—
50 C
F 0.6— —_
ar — Model : Data
30;— 0.4_—
a s — Model
10 L
0:_..|. PR Ll T o A e e oy 0— o e B T B[ P ol e e )
0 50 100 150 200 250 0 50 100 150 200 250
GeV GeV
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UNIVERSITY OF HELSINKI

An additional usage of Kolmogorov-Smirnov is to
test the compatibility of two sets of measurements
with uncertainties using MC methods. In this case
one tests whether the shape of the distributions of
the two data sets are compatible with each other.

1 HH — ]_0_1 C T T T T T T T ]
What is the probability < :ii PSS —
that data Set 1 (blue, % - \\\ pp measurement by DO:

. . . . G \\\ e central values with error bars |
taklng ItS uncertalntles 3 \\i\ pp extrapolation by TOTEM:
into account) with uncer-s ¢ 4 Dand centerat DO bins

\) — — band width (£1 o)

tainties of data set 2 (red) N N +//:$::1§: _

would give disty >= distg 4., f IS o b
.e. the disty between data | | {*l | R
set 1 & 27 Answer: 1.0 % 05 06 07 08 09 1

[t (GeV?)
1. determine disty 4, between data 1 and 2 (= 0.079)
2. generate data set 1’ (1”) by adding to the central
value of each data set 1 point, a random gaussian
according to point uncertainty in data set 1 (2)
calculate disty ,, between data set 1" and 1~
Repeat step 2 and 3 to get a distribution of distx ¢
Calculate probability that disty y,c>= distx 4.

3200

° . B — 0
2800 . 1 dlStK,MC P Value 10 A)

ok w

2400

2000

P-value = integral

1200

800 ®

400 -
L J

L L J
L J
o~ ® e e e e e o
0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 0.105 0.115 0.125
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Let’'s examine another goodness-of-fit test applicable to
distribution of a variable x. Assume histogram of observed
x-values in N bins. Suppose number of entries in bin i is
n; & number of expected entries v, then the test statistic

7= Zi]\:ll(ni _Vi)z/vi

reflects level of agreement between observed & expected
histogram. Above test based on Pearson’s y? statistic.

If data n = (n4, ..., ny) consists of NVindependent Poisson
variables with mean values v = (v4, ..., vy) & all v not too
small (rule of thumb: all v > 5) then test statistic 2 follow
chi-square pdf for N degrees of freedom. Holds regardless
of distribution for variable x (y? test distribution free).

Standard deviation of Poisson distribution /v; so y? test
sum of difference squared between observed & expected
values, measured in units of standard deviations squared.

Corres%c))nding P-value givekr: by }?e Acf))bsria_rved (2 us(;rf\g
_ . where f(z;N) chi-square p

P= jzz J (2 N)dz for N degrees of freedom.
(google "chi square calculator” to get cumulative y2 function)
Recall that for chi-square pdf, expectation value E[z] = N
— often give y?/N as a measure of level of agreement.
However better to give y? & N separately...

v>=15, N=10 — P-value =13 %

v2=150, N =100 — P-value = 0.09 %

If neor = Y- n; fixed then »'s multinomial withv; = p;nyo; &

) N 7 follows chi-square pdf with
2= 2 (= i) [P N=1 dof (if all ;e » 1).
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Even if amount of data too small for requirement all v, > 5
to be fulfilled, one can still construct 2 statistic as long as
aII v’'s > 0. Will no longer follow chi-square distribution &

2 statistic dlstrlbutlon will depend on pdf of variable x. e.g.

a2 10
= — data (G. Cowan) histogram (to the left)

8  --- expected background . Wlth peak giVGS Xz —
29.8 for N = 20 dof.

but ...all bins have <
5. here 2 statistic will
not follow a normal chi-
square distribution.

Pearson’s y? still used as test statistic, but must generate
corresponding f(x2) using MC methods to get P-value.

- generate n; from Poissonian with mean v, fori =1, ..., N,
- compute & record y? value into a histogram,

- repeat steps above many times to get f ( 2),

- compute P-value as probablllty of %2 > v, USINg f(2).

@ using f{(y?) from MC:
S valle =11 %

(G.Cowan) | ysing chi-square pdf:

P-value =7.3 %

1 The 2 test not very sensitive
| to presence of peaks.

0.06 |

0.04 | ——> P-value

0.02 r

o \N NB! binning ambiguity of y?2 test.
° 10 20 % 40 %0 8 p.yaglue can vary significantly
X with binning for small data samples.

0

Statistical Methods 2025 . II/40
MC methods & statistical tests Kenneth Osterberg




HELSINGIN YLIOPISTO
‘ HELSINGFORS UNIVERSITET Significance of a Signal ‘ l
UNIVERSITY OF HELSINKI

A simple type of goodness-of-fit test carried out to judge
whether a discrepancy between data & expectation is
sufficiently significant to merit a claim for a new discovery.

One observes n events; these can then consist of:
n, events from a known process (background)
n, events from a possible new process (signal)

If n, & n, Poisson random variables with means v, & v, =
n = n, + n, also Poissonian with mean v= v, + v,:
n
(V)" ~vy)
n!
Suppose v, = 0.5 & one observes n,,s = 5.

Should one claim evidence for a new discovery?
hypothesis H: v, = 0, i.e. only background events present.

P—ValuezP(nZnobs)=Z:_n P(n;v, =0,v,) =
~—obs

[N probability
=) ot b o™ =1.7.107* (= P(v, = 0)!) forv, =0
= n! hypothesis

Typical misunderstandings:
a misleading (but often occuring) estimate...

estimate for mean v: ng,s =5
estimated standard deviation of n: \n =22 =

"measured signal” = ny,s — v, =4.5+2.21.e. ~ 20 from 0.

Wanted: probability for Poisson variable with mean v, =
0.5 to give 5 or more (answer: 0.017 %)

Misunderstanding implied: probability for variable with y =
4.5 & o= 2.21to give 0 or less (Gaussian answer: 2.2 %)

NB! difference disappear wheny, »1, i.e. Poisson ~ Gaussian.
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another pitfall: believe 1, to be God-given; in reality must
study influence of systematic uncertainties on v,. if e.g.
o(v,8yst.)=0.3=P(n=>5;1v,=0.38, ,=0)=0.14 %

— conservative approach: report P-value corresponding
to 1o in disfavourable direction of result, here P =0.14 %

When can one claim observation? Often require P-value
corresponding to 50 (30) of a Gaussian distribution for

new ("’known”) phenomenai.e. <2.9- 107 (<1.35-1073).
Particle physics convention: >5¢ = discovery, >30 = evidence

Significance of a peak:
In addition to counting events, one measures also x for
each event; data viewed as a histogram as function of x:

Sl T UG o histogram of observed data &
s | - expected background | theoretical expectation. Each
bin a Poisson variable, since

| B | each x value independent (or

24 multinomial if the expectation
is normalised to the total

: J—ﬂ_ft _ﬂmﬂ__i H_ number of observed events).

0 5 10

4k

: » Is the peak significant?

In the two bins of peak, 11 observed events, v, = 3.2,
Pn>11;v,=3.2,v,=0)=0.05%

but ... did one know where to look for the peak? — give

P(n>11) in any 2 adjacent bins ("look elsewhere” effect).

Is observed width consistent with expected x resolution?

How many bins x distributions did one examine?

Did one adjust selections to "enhance” the peak?

What about the side-bands of the peak, are they too low?
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Significance from p-value

Often define significance Z as the number of standard deviations
that a Gaussian variable would fluctuate in one direction
to give the same p-value.

o0 ]. —1132/2
p=/ e dr =1-®(Z) 1 - TMath: :Freq

Z=a11-p) TMath: :NormQuantile

E.g. Z=15 (a “5 sigma effect”) corresponds to p =2.9 x 1077,
Search for the signal process

But what if the signal process is not known to exist and we want
to search for it. The relevant hypotheses are therefore

H,: all events are of the background type
H,: the events are a mixture of signal and background

Rejecting H, with Z > 5 constitutes “discovering” new physics.

Suppose that for a given integrated luminosity, the expected number
of signal events is s, and for background b.

The observed number of events n will follow a Poisson distribution:

b _ b\ 7
P = e Pals 4 )= D e

n! n!
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Likelihoods for full experiment

We observe n events, and thus measure n instances of x = (x, x,).

The likelihood function for the entire experiment assuming
the background-only hypothesis (#,) is

pn n
Ly=—e "] f(xilb)

i—1

and for the “signal plus background” hypothesis (/) it is

s+ b)" . i
Loy = S =0 [T (my £ (i) + mof(xi1b)

n!
n! Pl

where 7, and s, are the (prior) probabilities for an event to
be signal or background, respectively.

Likelihood ratio for full experiment

We can define a test statistic Q monotonic in the likelihood ratio as
Ls+b X;|s
)= —21 — E :1 1 4 2L
@= H s 11( +bfxl|l)>

To compute p-values for the b and s+b hypotheses given an
observed value of Q we need the distributions f{Q|b) and f{Q|s*b).

Note that the term —s in front is a constant and can be dropped.

The rest is a sum of contributions for each event, and each term
in the sum has the same distribution.
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‘ HELSINGFORS UNIVERSITET | jkelihood ratio of experiment (G. Cowan)

UNIVERSITY OF HELSINKI

Distribution of O

Suppose in real experiment

Take e.g. b =100, s = 20. / O is observed here.

Ej 0.08 /
006 - f(Qlb)
/(Qls+b) i
0. —\
0.02 -—
(-)8:] - -610 ‘ -40 ‘ -210 - 0
/ \ Q
p-value of b only p-value of s+b

Systematic uncertainties

Up to now we assumed all parameters were known exactly.
In practice they have some (systematic) uncertainty.

Suppose e.g. uncertainty in expected number of background events
b is characterized by a (Bayesian) pdf ().

Maybe take a Gaussian, i.e.,

7(b) 1 —(b—b0)? /20

— e
V2moy,
where b, 1s the nominal (measured) value and o is the estimated
uncertainty.
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Distribution of O with systematics

To get the desired p-values we need the pdf /' (Q), but
this depends on b, which we don’t know exactly.

But we can obtain the Bayesian model average:

Q) = / F(Ob)(b) db

With Monte Carlo, sample b from s(b), then use this to generate
Q from f(Q|b), 1.e., a new value of b 1s used to generate the data
for every simulation of the experiment.

This broadens the distributions of O and thus increases the

p-value (decreases significance Z) for a given Q.

For s =20, b, = 100, 0, = 10 this gives

80'08
0.06 |- Qoos £(Olb)
f(Qstb) | o
04 —
0.02 _—
0 I |
-80 -60 -40 -20 0
/ ,\ Q
p-value of b only p-value of s+b
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What if number of data samples to compare is large?

Can test each sample pair with - (basic method to test
if two samples have same mean or not), y? or KS-test...
but easily get into trouble since probability of (at least)
one pair to differ significantly naturally gets high (like
"peak” search in large # of histograms, "peaks” are found)

Analysis of Variance (ANOVA): collection of statistical
methods to treat comparison of 3 or more data samples.
Originally developed by R. Fisher in 1920’s and 30’s.

Comparison can be made on one or several variables
(one-way ANOVA and two(three)-way or factorial ANOVA)

Typical assumptions: independent samples, normal

distributed samples, equality of variances...
_ ndf of »?
Logic of ANOVA: distribution

Vil X]=Vulx]+ le‘ﬁ” sample [x] / SSrSan?ing
ndf, [x]=ndf , [x]+ndf,, ,..[X] variances

tot stat

variance of sample means

F =
mean of within - sample variances
variable F follows F—distribution.Cumulative F—distribu-
tion to get P—value. If replace "mean of within-sample
variances” with "expected variation of sample means”
then F follows y? distribution with ndf = # of samples —1
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Example 11.1 A barmaid at the Bull’s Head is working to pay her way through
university. To get a little intellectual exercise while pulling pints, she keeps track of
the drinking habits of the various UMIST departments whose staff drink in the pub.
Here are her findings from the previous week:

Physics Maths Chemistry

21 6 8
16 10 6
17 13 4
18 13 5
4 2
The data are usually arranged in columns, as in the table above:
Total number of staff: Column 1 Column 2 Column r
r T11 1,2 e T1,r
N = E nj. To1 T22 - Ty
=1 : : ;
Then one does the following. X,1.1 X2 Xprr

a) Compute the mean of each column separately:

Ty

ﬂj

m; = ’column” = sample

b) Compute the mean of all the entries in the table

T o
j=1 [Ek:] ij]
N
S MM
7=1"%"3"%
N

m =

c¢) Compute a measure of the variation between the columns. It is called SS,, the
“sum of squares between columns”, and defined by
,
SSy =Y ni(m; —m)*.
j=1
d) Compute a measure of the variation within the various columns. It is called
5SS, the “sum of squares within the columns”, and is given by

SSw=)_ [2(:’1,';,’]‘ — 'm,j)Ql

j=1 Lk=1
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]
I1t’s messy, but not difficult, to show that the two sums-of-squarcs account for all

the variation in the whole table:

SS, = S5+ 58S, = Z [Z(:}:M —m)2]

j=1 Lk=1
Here the subscript 't7 stands for “total”; 55, is the sum-of-squarcd-deviations from

the mean for the entire table.
One then assembles these results into a standard table that looks like:

Average sum of squares
Type of Variation | Sum of Squares | deg. of freedom | (estimated variances)
Between Samples S5 (r—1) SSy/(r—1)
Within Samples S8 Z;:l('n,j - 1)
=(N—-r) SSu/(N —1)
Total S8, (N —-1) —

Finally, one docs a test to sce whether the mean variation between columns,
SS,/(r—1) is significantly bigger than the mean variation within columns SS,,/(N —
). In the usual way one computes a statistic,

Find P-value: google

F— SS;)/('I‘— 1) . . :
~ 8S,/(N—-r)" "F-distribution applet

then looks the value up (in special tables) to see if it is large enough to reject the null
hypothesis. These tables depend on the number of degrees of freedom in the sums,

so one consults the table for F((r —1), (N —r)).

Example of beer drinking: N=14,r=3

Average sum of squares
Type of Variation | Sum of Squares | deg. of freedom | (estimated variances)
Between Samples 386.9 2 193.5
Within Samples 102 11 8.5
Total 488.9 13 —
= P-value=1.2. 104

and the test stat. is F ~ 22.8. The attached table shows that if F(2,12) exceeds
3.89 we can reject the null with 95% confidence, so we can safely conclude that the

members the various groups do not drink the same amount in the Bull’s Head.
Scheffe test statistic: expected maximal statistical difference
(MSD) of two samples (if the underlying distribution is the same):

1

MSD:\/(T—l)*m* F (P = 0.05) * (7114'72)
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