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Monte Carlo methods
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The Monte Carlo method
A numerical technique for calculating probabilities & 
related things using sequences of random numbers.
The usual steps:
• generate sequence r1, r2, ..., rm uniform in ]0,1[.
• use them to produce another sequence x1, x2, ..., xn
distributed according to pdf f(x) of interrest
• use obtained x values to estimate some property of

f(x), e.g. fraction of x values within [a,b] =
Þ MC calculation sort of integration (at least formally)

Trivial for 1D: obtainable by other methods,
but MC more powerful for multi-dimensional problems.

MC x values = ”simulated data”                                                   
® used for testing statistical procedures
MC methods a wide field, actually own field in itself -
here focus on the usage of MC for data analysis e.g. 
determining the statistical (& systematic) uncertainties. 
In such cases, MCs are used to generate different
data distributions. So, let’s try to answer the question
”how can I generate the type of distribution I need?”. 
more complete & deeper discussion found in e.g. 
• MATR323 “Basics of Monte Carlo simulation”-course 
by Prof. Flyura Djurabekova in spring 2026 (period III) 
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Random number generator

goal: to get uniformly distributed values in ]0,1[ interval.                       
Þ ”random number generator”                                           
= computer algorithm to generate r1, r2, ..., rm.              
e.g. multiplicative linear congruential generator (MLCG)

ni+1 = (ani) mod m,  where
ni = integer, a = multiplier, m = modulus & n0 = seed.            
(NB! mod = modulus (remainder), e.g. 27 mod 5 = 2)            
ni follow periodic sequence in [1, m -1]      Þ
ri = ni /m distributed in ]0,1[.                                             
Choose a & m so that ri’s pass various tests of random-
ness: ri’s uniform in ]0,1[, succeeding ri’s uncorrelated
& ”period” for ri’s long (maximum = m -1) e.g. L’Ecuyer, 
Comm. ACM 31(1988)742: a = 40692, m = 2147483399

Much better algorithms exist e.g. Mersenne twister,   
with period » 106000.   Many good algorithms
implemented in freely available program libraries
NB! ri’s like above in reality pseudorandom numbers 
See e.g.  F.James, Comput. Phys. Commun. 60 (1990) 111

(period ~ 109)

test generating 60 000 
random numbers
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Inverse transform method

given r1, r2, ..., rn uniform in ]0,1[, find x1, x2,...,xn which  
follow f(x) by finding a suitable transformation x(r).

P(r £ r’) = P(x £ x(r’)) i.e.

A method that always works when inverse function of 
cumulative distribution function F(x) can be calculated
or put in a table. Then inverse transform method:
• sample r from a uniform distribution ]0,1[
• calculate x = F-1(r)
then generated random numbers x that obey pdf f(x).            
From following graph it is easy to see that it works
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Inverse transform method

Discrete distributions                                                     
Inverse transform method for discrete distributions.       
pi = probability for integer i. First one has to put in table 
cumulative distribution function  Fj = Si=0

j pi , j = 0, ...,N.       
If infinite number of possible outcomes i, N to be set so 
large that FN »1. Generation algorithm for discrete pdf:         
(i) sample r from a uniform distribution ]0,1[.
(ii) find k so that Fk-1 < r < Fk. 
(iii) accept integer k-1                                             
Resulting distribution proportional to probabilities pk. 

Example of inverse transform method: 
exponential pdf:

cumulative distribution function:    

assume r Î ]0,1[, now set r = F(x) & solve for x(r) Þ
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(G. Cowan) 

𝑥 𝑟 = −𝜉 ln 1 − 𝑟 (NB! 𝑥 𝑟 = −𝜉 ln 𝑟 works also)
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Acceptance-rejection method

(G. Cowan)

Example: generate a polar
angle distribution 1 + cosq 2

(-1 £ cosq £ 1). x = cosq

fmin = 0, fmax = ¾; x of pairs
of random numbers lying
below the curve accepted.      
The distribution of  the 
accepted x shown below.

!""#!"#!# $
%
& ≤≤−+= !!!"

(i) generate a random number x, uniform in ]xmin, xmax[, 
i.e.  x = xmin + r1(xmax – xmin) where r1 uniform in ]0,1[   
(ii) generate 2nd random number u uniformly distributed 
between fmin & fmax, i.e. u = fmin + r2(fmax – fmin).             
(iii) if u < f(x), then accept x. If not, reject x & repeat. 

(G. Cowan)

Often analytic solution
impossible or very
impractical Þ
acceptance-rejection
method (or hit-or-
miss): enclose pdf in 
a box ]fmin= min(f(x)), 
fmax = max(f(x))[

fmin = 0

Acceptance-rejection method (von Neumann)
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Importance sampling

Importance sampling:
To improve acceptance-rejection method efficiency, use 
importance sampling method. First random numbers gene-
rated according to g(x) satisfying g(x) > f(x) all over whole
x-interval. x’s generated according to g(x)/∫ g(x) (with e.g. 
inverse transform method), and x accepted if u < f(x), where
u random number ]0,	g(x)[,	or weighted with a factor f(x)/g(x) 

Acceptance-rejection
method simple to      
apply but efficiency of  
algorithm depends on 
area ratio of pdf to 
enclosing box. Inefficient
for ”peaky” distributions. 

(F. Porter) 

Fraction of trial points accepted:

𝜀 = !"#$ %&'#" (%")#
!"#$ *+ ,*-

=
∫!"#$
!"%! / 0 10

(/"%!3/"#$)(0"%!30"#$)

𝑃(𝑌 > 3) if 𝑌 Gaussian 𝑁(𝜇 = 0, 𝜎 = 1): truth ≈ 
0.00135. ℎ 𝑌! = 1 if 𝑌! > 3; ℎ 𝑌! = 0 if  𝑌! ≤ 3

(J. Cisewski)

e.g. to estimate the
integral of the tail of 
Gaussian distribution. 
Instead of using the
original Gaussian,      
use an equivalent
Gaussian with larger
acceptance rate to 
reduce uncertainty
of the estimate and 
coverge much faster. 

integral

importance 
sampling
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MC in particle physics

MC methods often used to ”mimic” data in e.g. particle  
physics, a two-step process: simulation of physics,
”event generator” & simulation of response of 
experimental apparatus,”detector simulation”.
MC event generator:
simple example: 
e+e- ® µ+µ-

generate q and f:

In reality implemented into program packages that 
accounts for all (known) effects (hadronisation, initial
and final state radiation, longlived particles etc…)
MC detector simulation (built on e.g. GEANT4):
Input: particle list & momenta from event generator
simulate particle interactions with detector material & 
detector response: multiple Coulomb scattering (generate
particle scattering angle), ionization energy loss (generate
energy loss dE/dx), electromagnetic & hadronic showers, 
produce detector signals, electronics response ...
Output: simulated ”raw” data ® input to reconstruction
Usage:
Predict what should be seen at ”detector level” given a 
hypothesis at ”generator level”. Compare with real data.
- optimize measurement & experiment sensitivity.
- estimate efficiency & purity (expected signal & background)
- simulate measurement many times (”gedanken” experiment) 
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Gaussian/Poisson generation methods

Standard Gaussian distributed random numbers

cumulative distribution function

Square evaluation method: Generate numbers in polar
coordinates & afterwards transform them to cartesian 
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r & f generated according to g(r) & h(f) Þ
x & y independent Gaussian distributed random numbers.
Marsaglia polar method: very efficient algorithm for 
generating Gaussian random numbers

u1 & u2 uniform in ]0,1[
construct v1 = 2u1–1 & v2 = 2u2–1 (uniform in ]-1,1[),        
if r2 = v1

2 + v2
2 > 1 start over again, otherwise

z1 & z2 independent Gaussian numbers with µ = 0 & s = 1 
zi’=µ+s zi Gaussian numbers with mean µ & variances 2
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!!

!!
"" #$!%$&#$! !!"#!!"# −=−=

Poisson random numbers: efficient algorithm for small 𝜈: 
Set k = 1 & A = 1 at start, then iterate until successful choice
(i) generate u (uniform in ]0,1[), replace A with uA
(ii) if A < exp(-n), where n mean of Poisson distribution, 

accept nk = k-1 & stop. 
(iii) replace k by k+1 and repeat (i). 
for large n (> ~10), faster & easier to generate Gaussian
random numbers since Poisson distribution » Gaussian.
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Accuracy of MC methods

(G. Cowan)

MC: accuracy ∝ ⁄1 𝑛 ¬ independent of d !      
trapezoid: accuracy ∝ ⁄1 𝑛5/1

MC wins for 𝑑 > 4. Gaussian quadrature better than
trapezoid but for high enough 𝑑, MC always wins!!                                  
(see e.g. F. James, Rep. Prog. Phys. 43 (1980) 1145).

Binomial random numbers: principle same as for  
any discrete distribution. Use inverse transform
method and tabulate cumulative distribution F(x)
Most computer libraries include generators for most
common distributions like Gaussian, Poisson, c2 etc…
Accuracy of Monte Carlo methods:

c2 random numbers: for even n, generate n/2 uniform

random numbers ui; then follows c2(n).

for odd n, generate (n-1)/2 uniform numbers ui & one
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MC = ”integration”.                   
compare to trapezoidal rule,         
𝑛 = # of computing steps
for 1D integral: MC: 𝑛 ∝
number of accepted random               
values, accuracy ∝ ⁄1 𝑛
trapezoid: 𝑛 ∝ number of   
subdivisions, accuracy ∝ ⁄1 𝑛!

in 1D trapezoid wins!!!                         
but in 𝑑 dimensions:



Statistical Methods 2025
MC methods & statistical tests Kenneth Österberg II/10

Hypothesis testing

A statistical test:
applied to physics mainly in two different ways 
- how to distinguish events of interest, ”signal”, from
(a large number of) uninteresting events, ”background”.
- how well a given hypothesis compatible (without any
alternative) with observed data, ”goodness-of-fit” test.
Hypothesis testing:
Statistics related to questions where answers not 
numerical but logical – a ”yes” or ”no”.
Example: ”Is this particle an electron / a signal event?”
Statistics (& science in general) can never in absolute
terms say that something is true. 
Only falsify (”empirical falsification” Karl Popper 1930).
Answer generally a probability.
This probability refers to ensemble of statements.

Result of a measurement follows
a pdf in n-dimensional space that depends on         
variables e.g. pdf          specified by some
hypotheses H0, H1… each having a probability density

Equivalent to provide a statement & ask if true or not.
null hypothesis: H0, hypothesis whose validity tested.
alternative hypothesis: H1(, H2 ...) to compare with H0.
simple hypothesis: completely specified.
composite hypothesis:           , parameter(s)q unknown.
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Test statistic

!"!"
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(G. Cowan) Often formulate    

compatibility 
between data & 
various hypotheses 
in terms of an 
acceptence or a 
rejection of null 
hypothesis H0

Many dimensions akward Þ use test statistic of
lower dimension (e.g. 1D) to compactify data, keeping
as much hypothesis discrimination power as possible.
A test statistic t following pdf’s

Critical region i.e. where t not likely to occur if H0 true
t ³ tcut in figure (alternative define acceptance region).
If observed value tobs in critical region, reject H0, 
otherwise ”accept” (or strictly speaking, not reject !!).
Critical region chosen such that probability for t to be
there assuming hypothesis H0 some 
small value a = significance level.

H0 rejection even if true error of 1st kind (= probability a)
H0 acceptence if some other hypothesis 
true error of 2nd kind (probability b )
Can define 1-b as power to 
discriminate against alternative hypothesis.
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Example with particle identification

(G. Cowan) 
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n energy loss measurements for a particle in a particle 
detector, t = truncated mean of the measurements
& suppose all particles either electrons (e) or pions (p).
H0 = electron (signal)
H1 = pion (background)
select electrons with t < tcut. 
selection efficiencies:

Higher tcut: higher e efficiency but more p background.
Lower tcut: lower e efficiency but better sample purity.
For observed value t, probability P, to have an e (or p)?

Bayesian: degree of belief that particle is an e or a p.
Frequentist: particle fraction at given t which is e or p.
sample purity, pe, fraction of actual electrons in sample:

= electron probability averaged over interval (-¥, tcut].
NB! purity depend on (un)known e & π fractions ae & ap.
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𝑎&(𝑎') = fraction of electrons (pions) in sample; 𝑎& + 𝑎' = 1 



Statistical Methods 2025
MC methods & statistical tests Kenneth Österberg II/13

Discriminant analysis

A multidimensional test statistic and
hypotheses H0 (”signal”) & H1 (”background”). Optimal
choice of critical region, i.e. what selection to use ? 

Neyman-Pearson lemma: acceptance region giving
highest power (& also highest signal
purity) for a given significance level
a (or selection efficiency e = 1-a) :

equivalently, optimal test statistic
i.e. the likelihood ratio for simple
hypotheses H0 & H1. Requiring r > c
gives maximum significance level
(efficiency) for a given power (purity).  
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c = constant, fixed by
significance level (or
selection purity) 

When is discriminant analysis needed?
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aim of discriminant analysis:  
distinguish between a number 
of distinct hypotheses, Hk , k  
= 1,…, nh. various hypotheses 
known a priori (H1, H2, …, Hnh).  
problem: determine to which 
hypothesis new element  x 
(determined a posteriori by 
simulation, measurement,…) 
belongs. Careful hypothesis 
testing required, especially if 
only few elements available 

H1?, H2?, …, Hnh?∈
H2

H1 Hnh

Discriminant analysis techniques applied in many fields
e.g. astrophysics, particle physics, biophysics, imaging,...

(low statistics).
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Constructing a test statistic
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t(x) > tcutt(x) = tcut

t(x) < tcut

“signal 
   area”

“background area”

A vector 𝑥̅ = (𝑥7, … , 𝑥8)
measured for each event.
construct 1D test statistic
𝑡(𝑥̅) to distinguish between
two hypotheses H0 & H1.
most optimal
choice: the
likelihood ratio
but need pdfs analytically

(in most cases not possible).
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In practice calculated, from MC simulations,   
where pdf’s approximated by multidimensional

histograms filled with 𝑥̅ of each generate event.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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0.7

0.8

0.9

x1

x 2 M bins

M bins

Number of parameters to
be determined by MC: M 2

method impractical if number of 
input variables too large since 
available MC statistics finite.
compromise: make Ansatz         
for functional form of 𝑡(𝑥̅)
with a fewer number of input 
variables; choose variables
(e.g. based on MC) that give best 
discrimination between H0 & H1.
linear test statistic: e.g. Fisher 
discriminant - straight ”line” cut
in 𝑥̅-space:

nonlinear test statistic:
e.g. neural networks -
more complicated cut
function in 𝑥̅-space.

x 2
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Linear test statistics
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t(x) = tcut

t(x) > tcutt(x) < tcut

“signal 
   area”

“background 
  area”

a Fisher linear
discriminant see e.g.
R.A. Fisher, Annals of 
Eugenics 7 (1936) 179; R.A. 
Fisher: Contributions to 
mathematical statistics, 1950.
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A choice of )𝑎 gives certain
pdf’s
choose ai’s to maximize
”separation” between

Þ must define
”separation” more exactly !! 
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!"#$!"# %& !"#!"#n = 2, a 𝑡(%9 can be interpreted
a straight line in the x1-x2 plane. 

Data have mean values & covariance matrix

Each hypothesis has certain mean & variance of
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To optimize separation: large small
(pdf’s tightly concentrated about well separated means).
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Fisher discriminant

MAX
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MIN

spread i.e. 
concentrate 
the elements 
of H0 & H1 .

Fisher defined as a measure of separation (taking both 
into account):

Numerator & denominator can be written as

This gives

set 
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μ1

μ0
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μ1

μ0

distance 
between 
µ0 & µ1
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separation between classes
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sum of variances within classes

Above Fisher’s linear discriminant function & 
corresponding test statistic a Fisher discriminant. 

’ = a1 × x1

’

’
’ =

 a
2
×x

2

= a1 × x1

= 
a 2
×x
2
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Fisher discriminant
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x 2
To determine coefficients ai, 
need matrix W & expectation
values µ(0,1)i. Usually estimated from a set of training data 
e.g. from a MC simulation. Important point being that one
doesn’t need to determine joint pdf’s
as n-dimensional histograms, only means & covariances.
Instead of determining Mn parameters now only n(n+1)/2. 

Maximizing with fixed t0 & t1 same as

minimizing

(Ek denotes expectation value under hypothesis Hk)
® maximizing Fisher’s 𝐽 )𝑎 kind of least square problem.
(more about parameter determination using least squares later)

Special Fisher discriminants: 𝑓 𝑥̅|𝐻" multidimensional
Gaussians with same covariance matrix V0 = V1 º V
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tcut increases

rejected:bad
“background area”

“signal 
area”

Note coefficients ai only
determined up to arbitrary
scale factor. Use scale (tcut)                                             
& offset a0 to fix purity and                                                           
efficiency. Larger tcut can
improve signal purity with
efficiency loss & vice-versa.

and the Fisher discriminant: !"!# $ !
!"" #$#$ −−+= !µµ

rejected: good
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Fisher discriminant

i.e. t given by monotonic function of r
Þ Fisher discriminant = likelihood ratio i.e. most optimal.
NB! for non-equal Vi or non-Gaussian pdfs, no longer true.

Multidimensional Gaussian with equal covariance
matrices also gives simple expressions for posterior
hypotheses probabilities
e.g.

where p0 & p1 prior probabilities for H0 & H1.

Combining this with above expression for r, one gets
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the logistic sigmoid
function (see figure below)

(Bayes’ theorem)

Recall likelihood ratio (maximum efficiency at given purity):
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𝑃(𝐻:|𝑥̅) = tanh 𝑡 = (𝑒; − 𝑒3;)/(𝑒; + 𝑒3;)

Logistic sigmoid a  
very common neural
network activation
function (= giving the
weight of the node in 
the network). Another
common one is the
hyperbolic tangent: 

Fathi & Maleki Shoja
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Neural networks

Optimal decision boundary mostly not ”straight line” (due to
non-equal Vi or non-Gaussian pdfs), use instead nonlinear test
statistics: neural networks, boosted decision trees…  
Artificial Neural Networks (ANN) today used in many fields: 
medical imaging, pattern recognition, financial forecasting
etc... but also in physics. Assume 𝑡(𝑥̅) to have the form

single-layer perceptron a test
statistic of this form. 𝑥̅ input 
values represented as a set  

of nodes.  s(×) mono-
tonic Þ 𝑡(𝑥̅) corres-
ponds to a linear test

statistic.

(G. Cowan) 

(G. Cowan) 

Generalized to multilayer
perceptrons (MLP) with
one or several hidden
layers. Each hidden layer
has m nodes (h1, ... hm). 
Usually connection are
restricted: value of a given
node only depends on 
nodes in previous layer,    
a feed-forward network.

( )∑ =
+=

!

" "" #$$%#&
!"#$

where s(×) activation function
(often logistic sigmoid or tanh(𝑡))
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Neural networks

In a two-layer perceptron output defined by

𝑡(𝑥̅) non-linear test statistic, since non-linear function of
inputs 𝑥#. 𝑎# and 𝑤# connection strengths or weights
(n+1)m free parameters for n input parameters. With more
nodes,  ANN closer to optimal but more parameters to fix. 

Parameters determined by minimizing an error function

where t(0) & t(1) target values e.g. 0 & 1 for logistic sigmoid,
equivalent to least square method for Fisher discriminants.
To determine parameters minimizing e, iterative numerical
methods, network training or learning, used. In practice
expectation values replaced by means computed from
training samples, i.e. MC simulations. Learning starts with
random initial values for weights and proceed evaluating
function using training data. Weights adjusted to minimize  
𝜀 by different methods, i.e. error-back-propagation.

Theorem: MLP with a single hidden layer having sufficient
number of nodes can approximate arbritrarily well optimal
decision boundary;Leshno et al., Neural networks 6 (1993) 861

Advantages/disadvantages of using a single hidden layer
with many nodes over many hidden layers not known
exactly but seems reasonable to assume that many layers
have better performance & more stable than a single layer
⟹deep learning (networks with 10’s or 100’s of hidden layers)  
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Physics can benefit from progress in Machine learning

Nonlinear test statistics

Machine learning in python: sklearn, https://scikit-learn.org/

• artificial neural networks
• boosted decision trees
• generative AI
…

yellow
white

Focus here on supervised learning i.e. 
answer for each training event known
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Overtraining

Kenneth Österberg
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Boosted decision trees

application:      
Jan Welti, PhD 

thesis in physics, 
HU-P-D235 

(2017)

For multiclassification problems can work
better in practice than e.g. neural networks

sklearn implementation: 
Randomforestregressor

bagging = draw bootstraped samples from training 
sample, create tree for each & finally combine them
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Quantum machine learning?

• When data points projected in higher and higher 
dimensions, becomes harder for a classical computer 
to deal with it. Even if it does, it takes too much time.

• Sometimes, classical machine learning algorithms 
too taxing for classical computers.

• Solution: quantum computers? They use super-
position & entanglement to solve problems (potentially) 
much faster than their classical counterparts.

V. Mehtola

A. Musti
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Quantum machine learning?

First trial in particle physics in Finland: 
V. Mehtola MSc 
thesis 2025

quantum kernel 
for selecting 
Vector Boson 
Scattering events 
from background

⟹
Need sufficient 
number of qubits 
to remove ”noise” 
(= limit error rate) 
to be competitive 
with classical 
machine learning.

we are somewhere here today
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2D example (G. Cowan)

Kenneth Österberg
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2D example (G. Cowan)

Kenneth Österberg
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2D example (G. Cowan)

Kenneth Österberg

Region
typically
used
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Selection of input variables

Kenneth Österberg

Also decide whether ”hard” classification (defining explicitly signal
& background regions) is necessary or whether ”soft” classification
(that gives simply signal & background probabilities) is sufficient. 

First clean the input of faulty, problematic or inadequate data 
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Multivariate methods (TMVA)

Toolkit for Multivariate Analysis  (TMVA) included in ROOT-
package enables usage of many techniques simultaneously:

”Sensitivity” 
(probability to predict
signal when signal true)

”Specificity” 
(probability to 
predict back-
ground if back-
ground true)

Region
typically
used for 
analysis

Multivariate/machine learning techniques included:
• Neural networks 
• Deep networks
• Multilayer perceptron (MLP)
• Boosted/Bagged decision trees (BDT)
• Support Vector Machine (SVM)
• Fisher and Function discriminant analysis (FDA)
• Multidimensional probability density estimation (PDE) 
range-search approach (PDERS)
• Multidimensional k-nearest neighbour classifier (KNN)
• Predictive learning via rule ensembles (RuleFit)
• Projective likelihood estimation (PDE approach)
• Rectangular cut optimisation
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Multivariate methods

SKLEARN  - Machine Learning in Python 
• Simple and efficient tools for predictive data analysis
• Built on NumPy, SciPy, and matplotlib
https://scikit-learn.org/stable/

KERAS – Python interface to many different neural network
packages https://keras.io/

PyTorch – Python interface for neural networks in Torch
programme package https://pytorch.org/

Dedicated course at University of Helsinki: DATA11002 
Introduction to Machine Learning 5 ECTS (period 2/2025)

https://root.cern.ch/

PDG review on machine learning:        
https://pdg.lbl.gov/2025/reviews/rpp2024-rev-machine-learning.pdf

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://keras.io/
https://pytorch.org/
https://root.cern.ch/
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Goodness-of-fit tests

Want to substanciate how well hypothesis H compatible 
with observed data (without reference to an alternative). 
Hypothesis H predict 𝑓 𝑥̅ 𝐻 for data vector 𝑥̅ = 𝑥$, … 𝑥%
Observe a single point in 𝑥̅-space: 𝑥̅&'(. What can be said 
about validity of H in light of data? ® decide what parts of 
𝑥̅-space less compatible with H than observed point 𝑥̅&'(.         

Construct test statistic 𝑡 𝑥̅ whose value reflects level of 
compatibility between 𝑥̅ & H. e.g. 
high t	® data less compatible with H
low t® data more compatible with H.
Express goodness-of-fit by giving P-value:

P = probability to observe data 𝑥̅ (or 𝑡 𝑥̅ ) having
equal or lesser compatibility with H than 𝑥̅&'( (or 𝑡(𝑥̅&'()). 

NB! P-value not be interpreted as probability that H true !!
P-value also observed significance level/confidence level
If H true, then (for continuous 𝑥̅)  P uniform in [0,1] 
If H not true, then pdf of P (usually) peaked close to 0.
Does small P-value really mean H is false? No, P-value =  
probability to obtain such a result ”by chance” if H is true.

(NB! no 
unique 
definition)
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Goodness-of-fit example

Example: fit of charged particle trajectory in magnetic field. 
Primary aim, obtain parameters of trajectory (”helix”). 
Goodness-of-fit variables to determine compatibility of 
trajectory segments/hits to charged particle trajectory but
also for checks of covariance matrix for helix parameters. 
Much simplified, if trajectory consists of N hits measured
in Rf & M hits measured in z, then track fit ≈ to minimize:

where fRf/z(R) describes dependence w.r.t. to radius, R. 
Typical for particle physics. Ndof = N-3 (solenoidal field) & 
M-2. Here multiple scattering & energy loss ignored.
Calculate corresponding P-value from observed c2 value:
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where f(z;Ndof) chi-square pdf 
for Ndof degrees of freedom.

Distribution should be flat: raise towards 0 indicate that
there is a class of hits with a slightly worse resolution & 
peak at 0 misassociated hits or badly reconstructed tracks. 

P-values for 
charged particle
trajectories in 
DELPHI Vertex
Detector:

”good” 
trajectories

mixture of 
”bad” & ”good” 
trajectories

K.Österberg, PhD thesis, HIP-1998-01
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Kolmogorov-Smirnov test

To make goodness-of-fit tests of distributions, the    
Kolmogorov-Smirnov (K-S) test is often used.
• By construction, it was developed for the comparison 
of functions, but is widely also used for binned data.
• The K-S test is predominantly sensitive to the shape   
of the distribution, much more than the c2-test. It’s also 
normalization independent, which is not the c2-test.
Used mainly in three ways:
- test whether data sample follows certain distribution
- test whether two data sample could be consistent to 
come from the same distribution
- test whether data in two histograms are consistent
with each other

NB! true if n large (> ~10), where n is size of data sample.
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Kolmogorov-Smirnov test

Example: 10 random numbers between 0 and 1: 
0.58, 0.42, 0.52, 0.33, 0.43, 0.23, 0.58, 0.76, 0.53, 0.64
Are they uniformly distributed in [0,1]? 
i.e. H0: Ftest(x) = F0(x) = x

( )!"#!"#!#!# $%$%%$&'(&F*&*!
−−=− +−

≤≤≤≤
!"#!"$%&!"!"$%&

''(

cumulative distribution function value before/after i th jump

KS probability: distk ® distk×Ön so here 0.26×Ö10 » 0.82
hypothesis testing at significance level a = 0.05:
1 - P(c ³ x) = 0.05 Þ c = 1.35 (0.82 Þ P-value = 17 %)
Here distk×Ön = 0.82 < c = 1.35 Þ hence hypothesis 
random numbers uniform in [0,1] can not be rejected.
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Kolmogorov-Smirnov test

same when
testing if two
data sample
originate
from same
distribution !!
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Kolmogorov-Smirnov test

P-value = 0.725

P-value = 0.001
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Kolmogorov-Smirnov test

An additional usage of Kolmogorov-Smirnov is to 
test the compatibility of two sets of measurements 
with uncertainties using MC methods. In this case 
one tests whether the shape of the distributions of 
the two data sets are compatible with each other.
What is the probability   
that data set 1 (blue,   
taking its uncertainties
into account) with uncer-
tainties of data set 2 (red)
would give distK >= distK,data  
i.e. the distK between data 
set 1 & 2? Answer: 1.0 %  
1. determine distK data between data 1 and 2 (= 0.079)
2. generate data set 1’ (1’’) by adding to the central

value of each data set 1 point, a random gaussian 
according to point uncertainty in data set 1 (2)

3.    calculate distK,MC between data set 1’ and 1’’
4.    Repeat step 2 and 3 to get a distribution of distK,MC
5.    Calculate probability that distK,MC >= distK,data

distK,MC

P-value = integral

P-value = 1.0 %
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Pearson’s c2 test

Let’s examine another goodness-of-fit test applicable to 
distribution of a variable x. Assume histogram of observed 
x-values in N bins. Suppose number of entries in bin i is 
ni & number of expected entries ni, then the test statistic

reflects level of agreement between observed & expected 
histogram. Above test based on Pearson’s c2 statistic.
If data )𝑛 = (𝑛$, … , 𝑛)) consists of N independent Poisson 
variables with mean values 𝜈̅ = 𝜈$, … , 𝜈) & all ni not too 
small (rule of thumb: all ni ³ 5) then test statistic c2 follow 
chi-square pdf for N degrees of freedom. Holds regardless   
of distribution for variable x (c2 test distribution free).
Standard deviation of Poisson distribution 𝜈# so c2 test
sum of difference squared between observed & expected 
values, measured in units of standard deviations squared.
Corresponding P-value given by the observed c2 using

(google ”chi square calculator” to get cumulative c2 function)
Recall that for chi-square pdf, expectation value E[z] = N
® often give c2/N as a measure of level of agreement. 
However  better to give c2 & N separately...

c2 = 15, N = 10 ® P-value = 13 %
c2 = 150, N = 100 ® P-value = 0.09 %

If 𝑛*&* = ∑#+$) 𝑛# fixed then ni’s multinomial withni = pi ntot & 
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!"#"$% where f (z;N) chi-square pdf 
for N degrees of freedom.

∑ = −=
!
" """ #$#$#! "#"

$
"#" %&$χ follows chi-square pdf with 

N-1 dof (if all pi ntot » 1).
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Pearson’s c2 test

histogram (to the left) 
with peak gives c2 = 
29.8 for N = 20 dof. 

but ...all bins have ni < 
5. here c2  statistic will 
not follow a normal chi-
square distribution. 

(G. Cowan) 

(G. Cowan) 

using f(c2) from MC:                                
P-value = 11 % 
using chi-square pdf:                   
P-value = 7.3 %

The c2 test not very sensitive
to presence of peaks.

NB! binning ambiguity of c2 test.   
P-value can vary significantly

with binning for small data samples. 

Even if amount of data too small for requirement all ni ³ 5 
to be fulfilled, one can still construct c2 statistic as long as 
all ni’’s > 0. Will no longer follow chi-square distribution &  
c2 statistic distribution will depend on pdf of variable x. e.g.

Pearson’s c2 still used as test statistic, but must generate
corresponding f (c2) using MC methods to get P-value.
- generate ni from Poissonian with mean ni, for i = 1, ..., N,
- compute & record c2 value into a histogram,
- repeat steps above many times to get f (c2), 
- compute P-value as probability of c2 ³ c2

obs using f (c2). 
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Significance of a signal

A simple type of goodness-of-fit test carried out to judge
whether a discrepancy between data & expectation is 
sufficiently significant to merit a claim for a new discovery.
One observes n events; these can then consist of:

nb events from a known process (background)
ns events from a possible new process (signal)

If nb & ns Poisson random variables with means nb & ns Þ
n = ns + nb also Poissonian with mean n = nb + ns :

Suppose nb = 0.5 & one observes nobs = 5.
Should one claim evidence for a new discovery?
hypothesis H: ns = 0, i.e. only background events present.

Typical misunderstandings:
a misleading (but often occuring) estimate...

estimate for mean n : nobs = 5
estimated standard deviation of n: Ön = 2.2   Þ

”measured signal” = nobs - nb = 4.5 ± 2.2 i.e. ~ 2s from 0.
Wanted: probability for Poisson variable with mean nb = 
0.5 to give 5 or more (answer: 0.017 %)
Misunderstanding implied: probability for variable with μ = 
4.5 & s = 2.2 to give 0 or less (Gaussian answer: 2.2 %) 
NB! difference disappear whennb »1, i.e. Poisson ~ Gaussian.
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Significance of a signal

histogram of observed data & 
theoretical expectation. Each
bin a Poisson variable, since
each x value independent (or
multinomial if the expectation
is normalised to the total
number of observed events). 

Is the peak significant?

(G. Cowan) 

another pitfall: believe nb to be God-given; in reality must
study influence of systematic uncertainties on nb. if e.g. 
s(nb syst.) = 0.3 Þ P(n ³ 5; nb = 0.8, ns = 0) = 0.14 %
Þ conservative approach: report P-value corresponding
to ±1s in disfavourable direction of result, here P = 0.14 %

When can one claim observation? Often require P-value 
corresponding to 5s (3s) of a Gaussian distribution for  
new (”known”) phenomena i.e. £ 2.9 × 10-7 (£ 1.35 × 10-3).
Particle physics convention: >5𝜎 = discovery, >3𝜎 = evidence
Significance of a peak:
In addition to counting events, one measures also x for 
each event; data viewed as a histogram as function of x:

In the two bins of peak, 11 observed events, nb = 3.2,
P(n ³ 11; nb = 3.2, ns = 0) = 0.05 %

but ... did one know where to look for the peak? ® give
P(n ³ 11) in any 2 adjacent bins (”look elsewhere” effect).
Is observed width consistent with expected x resolution?
How many bins ´ distributions did one examine?
Did one adjust selections to ”enhance” the peak?
What about the side-bands of the peak, are they too low?
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Significance of a signal (G. Cowan)
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Likelihood ratio  of experiment (G. Cowan)
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Likelihood ratio of experiment (G. Cowan)
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Including systematics in likelihood ratio (G. Cowan)
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ANOVA

What if number of data samples to compare is large?

Can test each sample pair with t- (basic method to test
if two samples have same mean or not), c2 or KS-test…        
but easily get into trouble since probability of (at least)   
one pair to differ significantly naturally gets high (like
”peak” search in large # of histograms, ”peaks” are found).

Analysis of Variance (ANOVA): collection of statistical
methods to treat comparison of 3 or more data samples. 
Originally developed by R. Fisher in 1920’s and 30’s.

Comparison can be made on one or several variables
(one-way ANOVA and two(three)-way or factorial ANOVA)

Typical assumptions: independent samples, normal
distributed samples, equality of variances…

Logic of ANOVA:  
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ndf of c2

distribution 
describing 
sum of 
variances

variable F follows F-distribution.Cumulative F-distribu-
tion to get P-value. If replace ”mean of within-sample
variances” with ”expected variation of sample means”   
then F follows c2 distribution with ndf = # of samples -1
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ANOVA

xn2,2 xnr,r

Physics Maths Chemistry

”column” = sample

xn1,1

Total number of staff:
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ANOVA

Example of beer drinking: N = 14, r = 3 

Find P-value: google 
”F-distribution applet”

Scheffe test statistic: expected maximal statistical difference
(MSD) of two samples (if the underlying distribution is the same): 

MSD = 𝑟 − 1 ∗ 𝑉 𝑥 ∗ 𝐹 𝑃 = 0.05 ∗ !
"!
+ !

"#

2
11
13

Þ P-value = 1.2 × 10-4


