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This course aims to be:

Practical but (hopefully) still precise,

* give recipes & examples (students can suggest)

* give merits & limitations of methods

 explain background (avoid usage w/o understanding)
 exercises have a large weight ("learn by doing”)

* (hopefully) improves understanding & eases use
aimed for data analysis typical in physics:

* measurement — parameter & uncertainty estimate
 hypothesis testing

useful & supportive in research work however
only an introduction to statistical methods:

« cannot cover all methods — give the broad picture!!

« any computational tool allowed: Matlab & Python
tutorials (see homepage)

* covers (upon request) student questions &
problems

N.B. For statistical methods in data analysis:
practical methods can’t always be proven to be
optimal but can be proven to be at least sensible !!
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Things can get rather fast computationally intensive
e.g. a simple electric circuit. Assume you built the circuit
below ("Black box™) & need to find out its resistance R &
inductance L. Have to study response to the applied
potential V¢ as function of the frequency w. Specially
uncertainties on o, case (b) below, make things more
complicated but needs to be taken into account in the
determination of R & L and their uncertainties (!!).

5. An unknown electronics circuit (“Black box”, see Fig. below) induces a
signal measured at V.. Given that the capacity C is known, one can de-
termine the internal resistance R and inductance L of the “Black box” by
measuring # as function of the frequency w:

cotf = (L/R)w — (1/RC)w = y=mz— my/z,

if y=coth, &y =wL/R, o = 1/(wolLR), T = w/wy and wy = 1 rad/s. A
measurement at five frequencies w by connecting a known capacitor, C =
0.02 pF, to the circuit, gave the following results:

yEo, Zto, v "Black box"é

-4.02+0.50 22000+440

-2.744-0.25 22930470 6) i

-1.15+0.08 23880-£500 : :
1.49+0.09 25130+530
6.873+1.90 263904540

(a) Determine the L and R values (and their errors) for the “Black box”
neglecting the uncertainties in z. Plot the covariance ellipse and compare
extracted covariance to analytical result. What is the P-value of the fit?

(b) Determine the L and R values (and their errors) for the “Black box”
taking into account both the uncertainties in z and y. Hint: Non-linear
problem, solution must be found numerically. What is the P-value now?
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The course content has significant overlap with
PAP303 Statistical Inverse Methods, it is
recommended to take only one of the two.

Course Material:

v Lecture notes
(available on course web-page in pdf format).

v Selected lecture recordings from previous years
(available on course web-page in mp4 format).

v G. Cowan: Statistical Data Analysis (Oxford
University Press 1998)
— highly recommended reference.

v Particle Data Group (PDG): reviews on probability,
statistics, Monte Carlo techniques & machine
learning (http://pdg.lbl.gov/)

— compact & good summaries available on the web

v Recent summaries on Interpretable machine
learning & quantum computing (in particle physics)
— additional reading on state-of-the-art methods.

v C. Walck: Handbook on statistical distributions for
experimentalists
(http://staff.fysik.su.se/~walck/suf9601.pdf)

An opus on statistical distributions. If you know
your physics distribution, useful for finding out
distribution characteristics & how to generate it.
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Course Outline:

v Fundamental concepts: experimental
uncertainties & their correct interpretation,
frequentist & Bayesian interpretation of
probability and common distributions.

v MC methods & statistical tests: Monte Carlo
methods, the concept of hypothesis & test
statistic, rejection of a hypothesis,
discriminant analysis (including machine
learning) and goodness-of-fit tests

v Parameter & uncertainty estimation: the
concept of estimation, method of maximum
likelihood & method of least squares

v Confidence interval & unfolding: classical
confidence intervals and their interpretation,
unfolding techniques

Course Grading:

v Exercises (~10 exercise papers), weight 50 %;
given latest Thursday (on Moodle),
to be return next Thursday 12.00.

v Home exam December/January, weight 50 %
(time & date to be determined)

v General exam in February, weight 50 %
v two best of the three used for course grade

Statistical Methods 2025
I/5

Fundamental concepts Kenneth Osterberg



HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET IntrOductlon
UNIVERSITY OF HELSINKI

Use of generative Al:

v Follow University of Helsinki general rules on Al usage:
https://studies.helsinki.fi/instructions/article/using-ai-
support-learning?

v Usage of Large Language Models (LLMs) encouraged.

v However: the usage of LLMs should be clearly
stated including how the LLMs were used.

v~ Recommendation: use Copilot provided by the
university (https://copilot.cloud.microsoft/).

v LLMs to be used as a tool (& NOT as a black box).

v Can help you with ideas & methods (= library),
coding & repetetive tasks (e.g. partial derivates).

v Always check yourself that the LLM suggestion
makes sense. Explore the capabilities of LLMs.

% Copilot ]
what is a systematic uncertianty? Try GPT-5 [E @ €D
) Copilot ®

A systematic uncertainty (or systematic error) refers to an error that consistently affects measurements in a
predictable way. Unlike random uncertainties, which vary unpredictably from one measurement to another,
systematic uncertainties cause a bias in the results — shifting all measurements in the same direction or by a

consistent amount.

Key Characteristics of Systematic Uncertainty:

« Consistent and repeatable: The error is the same each time the measurement is taken.
« Originates from flaws in the system: These could be due to:

« Calibration errors in instruments

« Environmental factors (e.g. temperature, humidity)

» Observer bias

« Incorrect assumptions in the model or method

« Can often be corrected: Once identified, systematic errors can sometimes be eliminated or accounted

Explain difference from random uncertainty How to reduce systematic uncertainty? NS
|Message Copilot
+ 9
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Basically two different types of experiments:

 "parameter determination” — determine numerical value
of some physical quantity from data.

* "hypothesis testing” — test whether a particular model
or prediction consistent with data or not.

In physics, both occur commonly. N.B. a parameter
determination involves also an uncertainty determination!

* not only interested in the result but also its uncertainty.
(the smaller the uncertainty — the more accurate experiment,
the more selective & conclusive the answer; often not interested
in parameters themselves but in their use as a test of a model ...)

* the design & the construction of an experiment mostly
driven by the accuracy that one wants to obtain.

Numerical value of uncertainty crucial for interpretation.
One can (schematically) obtain essentially 3 possible
results of e.g. a measurement of the mass of the proton
(m,=(1.672 621 923 69 + 0.000 000 000 51) - 10?" kg):

- consistent: e.g. (1.6727 + 0.0002) - 10-%” kg

* inconsistent: e.g. (1.6710 £ 0.0002) - 10-% kg

* inconclusive: e.g. (1.8 £ 1.0) - 10%" kg

Course should provide you with methods & tools to
determine a parameter & its uncertainty correctly.

Data consistent (or not) with prediction/model?
Course provides possible methods to sort that out.

Statistical Methods 2025
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degree of randomness of a result of a measurement
in physics usually quantified using probability.

mathematical definition of probability:

"Kolmogorov axioms”: set S ("sample space”) with subsets 4, B
Forall Ac S, P(A4)=0

If AN B =0 (mutually exclusive), P(4U B) = P(A)+ P(B)
P(S)=1

"random variable” has a specific value for each element of S.

"physical meaning” of probability P (in terms of frequency
interpretation): if an element from sample space S drawn
many times, obtain event 4 in a fraction P (4) of the times
= naturally true for all quantum mechanical phenomena.

define conditional probability of 4 given B (P(B) > 0) as

p(4|B)=FANE) . -
P(B) \ ANB .
Subsets A and B independent if Q
P(ANB)=P(A)P(B) 4 :

— P(4|B)=P(4)

NB! not confuse with mutually exclusive subsetsi.e. AN B =0

P(B| A)P(A)
P(B)

from conditional probability definition since P(AN B) = P(B N A)
.e. P(A|B)P(B) = P(B|A)P(A)

— Bayes theorem: | P(A|B)=

Statistical Methods 2025 . I/8
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The law of total probability: Suppose S can be divided into
disjoint subsets 4; such that u4; = §

P(B):P(Ui(BmAi)):ZP(BmAi)DP(B):Z.P(B|Ai)P(Ai)

Modified Bayes’ theorem: P(A|B) = 21; ((}Z ||12§§é)11)

N.B. Result depends on the P(A4;)’s, the prior probabilities!

Let’'s examine an example:

Suppose the probabilities (for anyone) to have AIDS are:
P(AIDS) =0.0002 prior probabilities, i.e.

P(no AIDS) = 0.9998 before any test carried out
Consider an AIDS test: result is either + or —

P(+ | AIDS) = 0.9999 probabilities to (in)correctly
P(— | AIDS) =0 0001‘ identify AIDS infected person

P(+ |no AIDS) =0.0001_ probabilities to (in)correctly

) identif ithout AIDS
P(—|HOAIDS)=O9999 iaentry person witnou
Suppose your AIDS test result is +. How worried should you be?

P(+| AIDS)P(AIDS) B
P(+| AIDS)P(AIDS) + P(+ | no AIDS)P(no AIDS)

0.9999-0.0002 0.67 posterior

0.9999-0.0002 + 0.0001-0.9998 probability

Your viewpoint: my degree of belief that | have AIDS is {e"éxwe
s\

Your doctor’s viewpoint: 2/3 of people like you have A%I Igguen’{\s‘
(

P(AIDS |+) =

Statistical Methods 2025
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Interpretation of probability:

« Frequentist interpretation
A,B, ... are possible outcomes of a repeatable experiment

. number of occurances of outcome A4 in N experiments
P(A4)=1lim N
N—>w

cf. quantum mechanics, radioactive decay... classical statistics

» Subjective (or Bayesian) interpretation

A,B, ... are hypotheses (statements that are true or false)
bayesian
statistics
Both interpretations consistent with the mathematical
definition. Probability in data analysis: frequentist more

natural but subjective used e.g. for non-repeatable phenomena:

P(A4) = degree of belief that hypothesis 4 is true

Systematic uncertainties (same upon repetition) — the universe is
open — the billionth digit of © is 7 — it rains in Paris tomorrow...

Frequentist vs. subjective probability:

What does one mean by m, = 520 + 10 keV ?
(me is the mass of the electron)

frequentist: true or false (but one doesn’t know which)
subjective (bayesian): 68 % (statement of knowledge)

i.e. P(510 < m,< 530 keV) = 0.68 (subjective) means:

My uncertainty that 510 < m, < 530 keV is same as uncertainty to

draw a white ball out of container with 100 balls, 68 of which are
white & rest black (cf. G. D’Agostini, CERN Yellow Report 99-03, 1999).
— Calibration by relating to some frequency (or symmetry etc...)

Statistical Methods 2025
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If a large group of Baysians say things like:

P(Finland gets a medal in ice hockey at 2026 Olympics) = 68 %
P(0.22 < (3, < 0.32) = 68 % (4 = matter density in the universe)

P(Social Democrats wins Finnish parliamentary elections in 2027) = 68 %
then 68 % of these statements should end up being true.

NB! Calibration not always feasible, e.g.
P(Mr A. Known wins curling tournament in Ivalo January 2026) = ???

Possible frequentist interpretation: can P(510 < m, < 530 keV) =
68 % mean, consider many universes with different values of m,;
68 % of them will have m-valuesin [510,530] keV range (??77?)

= usual stumbling block for the interpretation of a measurement

true_

— measy2 2 _
P(mirue|mmeas) o« g~(me ™ —me*™)"/20meas of certain result

meas

m€%S no possibility to give any certain statements about m. %€

Note Bayes’ theorem interpreted in subjective (bayesian) way:

P(result | theo
( | y), P(theory )
P(result)
The (posterior) belief in a theory modified by the experimental

result. Large likelihood P(theory|result) increases belief, small
decreases. Receipe applies to many successive results.

P(theory |result) oc

Problem: P(theory|result) depends on assumed prior P(theory).
Hence result not objective (as science supposed to be).

Usual assumption for a continuous parameter eg. P(m,) = flat
arguments: value not known (problematic if value already "known”),
every value as believable as any other & all possibilities equal.
(statistically correct procedure is to test robustness under different priors)

Many measurements: P(theory)-dependence eventually removed

Statistical Methods 2025
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Let’'s examine meaning of measurement uncertainty o.
However let’s first define the normalised distribution of
repeated measurements of variable x, the probability
density function (pdf) f{x) (todennakaisyystiheysfunktio)

Sometimes only referred to as the “distribution” of variable x.
x can be either continuous or discrete & values of x confined to

a finite (e.g. 0 — 1) or (semi-)infinite (e.g. 0 — ) range.
histogram: way of displaying number of entries within a sub-

interval Ax (that is either constant or variable), N(x), as a function of
variable x. Ax optimised based on statistics to show distribution shape.

= t AT nnnin Ol [ e e ideally pdf (for
: a (b) ..
J, - 7 | JL[ 1 acontinious x)
= -, L ] | g = histogram
50 l gl 5 .
lﬂ ‘ vl with:
10 | e l :
H 25 % . . .
r L ﬁ\ﬁ Y * infinite data
0 i 1 | 1 0 [l 1 1 —L"h.
o g g bta g ObinE e g i lgien Ig oG Sample
2 poar) : ' « zero bin
= 500 T T T T = 05 T T T T )
= b E i width
400 |+ JJ!H . 04 -
a00 |- 11 1o sk 1 e normalised
200 | j Il 2] 02 | 4 to unity
100 /J ‘\ g 01 F f()C) _ N()C)
0 i ‘ l“\L 0 nAx
0 2 4 6 8 10 0 10
X X

n = total # of entries

Fig. 1.2 Histograms of various numbers of observations of a random variable = based on the

same p.d.f. (a) » = 100 observations and a bin width of Az = 0.5. (b) n = 1000 observations,

Az = 0.2. (c) n = 10000 observations, Az = 0.1. (d) The same histogram as in (c), but

normalized to unit arca. Also shown as a smooth curve is the p.d.[. according to which the f(x) — 1
observations are distributed. For (a—c), the vertical axis N(z) gives the number of entries in a

bin containing z. For (d), the vertical axis is f(z) = N(z)/(nAz).

For a discrete variable, pdf of course discrete z f=1
as well: probability to observe value x; = f; . !

Statistical Methods 2025 . I/ 12
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Random variables:
Normalised distribution of repeated measurements of a

P(x found in [x,x + dx]) = f(x)dx

= f(x) = probability density function (pdf) tiheysfunktio)

In frequentist interpretation, f(x)dx gives fraction of times
x observed in [x, x+dx] for n observations when n — .

normalization: If(x)dle (e.g. § =[-00,0]),
S

where S = entire x range, i.e. true value of x somewhere in S.
Define the cumulative distribution function:

F(x)=| f(x")dx' (kertymafunktio)
(G. Cowan) o

3
=

1

F(x)

03 | @) o

0.75

02
05

01 o 025 |

0 : L L L 0 1 1
0 2 4 6 8 10 0 2 4 6 8 10

X X

X, = F'(a) most common a-point the median x,, (mediaani)

For a discrete variable x; (P(x;) = probability to observe value x;):

f=PO) D=l F@= ) )

HELSINGIN YLIOPISTO
‘ HELSINGFORS UNIVERSITET . . . -
unversity of neisineg P robability density function

continuous variable x (label for an element in sample space S)

(todennakoisyys-

A useful concept-related to cumulative distribution are a—points:

Statistical Methods 2025 . I/l 3
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Consider continuous random variable x with pdf 7(x)
define the expectation or mean value & variance as:

Elx]- j X f()dv=p VIx]=El(x—E[x]Y]= j (= ) f()dx = 07

Variance measures spread of x around mean ..
The standard deviation (hajonta) ¢ given by /V[x]

For a function a(x) with pdf g(a):

El[a]= j;g(a)da—ja(x) f(x)dx=pu, (equivalent but # a(E[x]))

—0o0

V= El(a— Ela j (a1, gla)da = j (a(x) = 1, f (¥)dr = 07

Equivalent to (arithmetic) mean & variance when N — oo:

=— Z or generallya = — Za(x )
(x) = —— Z(x _%)? or generally s*(a) = —— Z(a(x )—a)’

Covariance of two random variables x & y defined as:
V= Bl )0 1= Bl s, = [ [y s,
Covariance (or uncertainty) matrix V;, often denoted by cov[x,y]

By construction the covariance matrix V,, symmetric in a & b
and diagonal elements V,, = ¢,° (i.e. the variances) positive.

/14
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To express the correlation between two random variables, x & y,
in a dimensionless way, the correlation coefficient, p,, used

P, =covix,yl/oco,,  —1<p <1
If x,y independent, i.e. f{x,y) = £(x)fy(v), then
Elxy]= I j xy f(x,y)dxdy =p,u, = covlx,y]=0

l.e. x & y 'uncorrelated’ NB! not always true the other way.

Equivalent to well-known variables with similar names:

OV, ) = D (%, =)~ ) = F -7

_cov(x,y) _ xy—X-y

ley ony < [_191]
0.0, 0,0,
p=000 p =0.50
Examples of
distributions

of 2 variables
with different

correlation L=
coefficients
P
?;z:;_::".
Tl
Fig. 2.4 Scatter plots showing examples of correlation. The scales and origin of the
axes are irrelevant (see text) and are therefore not shown.
Statistical Methods 2025
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Two types of uncertainties related to any measurement:

» random/statistical uncertainties (satunnaiset/tilastolliset
epavarmuudet) — inability of measurement system to give
infinitely accurate answer (due to measurement precision

| sampling statistics | phenomenon itself) — « 1/1/statistics

 systematic uncertainties (systemaattiset epavarmuudet) —
some feature/uncertainty of method, apparatus, calibra-
tion, environment etc ... influencing result ((un)knowingly

to experimentalist) — (usually) not statistics dependent N.B.
often knowledge & ability to determine systematic uncertainty
increases with statistics = decreased systematic uncertainty.

(sometimes 3 given: statistical, systematic & gross (karkeita). Gross
refers here to carelessness in measurement or malfunction of apparatus).

E.g. determine the decay constant A of a radioactive source based on
decay rate (-dN/dt) and sample weight. -dN/dt = AN

Statistical uncertainty comes from the number of events in time interval.
Possible systematic uncertainties are detector efficiency, background
sources (& subtraction), sample purity, clock & balance calibration etc...

Systematic distinct w.r.t. statistical uncertainties — no
decrease with statistics + measurement at different points
usually affected in same direction (points "non-independent”)

No simple rules/prescriptions for eliminating systematic
uncertainties but common sense, careful thinking &
experience usually helps to identify & estimate sources.

|[deally minimize effect from systematics sources during
the design of the experiment (which is not always possible).

Statistical Methods 2025
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Generally accepted method for treating systematic uncer-
tainties: eliminate those effects you can, correct (large)
"biases” introduced by effects you can estimate &
evaluate remaining (+ uncertainties of the corrections

of the "biases”) in terms of statistical-like uncertainties.

my, = (1.6727 £ 0.0001 (stat) £+ 0.0002 (syst)) - 107*" kg
Some suggestions related to systematic uncertainties:

» Pay special attention to all numbers that enter result
directly & crosscheck them (like efficiency, calibration etc..)!!

« Make analysis in subsamples as a function of variables
that should have no influence on result (e.g. time, rate etc..)

» Use alternative analysis methods & possible constraints

(e.g. energy & momentum conservation, coincidences etc...)
2 T

= | (G. Wilkinson)
R .s| PDG World Average
=
l_)

* Never underestimate ]
your own “subijectivity” 7 7
(tendency to "know” the answer) 16| |
/ (self)criticism useful ’ *

& mostly constructive

14 -

JWW

Average B hadron (i.e. particle

containing a b quark) lifetime vs 1} .
year. Note jump 1992 — 1994. LEP dominated |
0.8 e by by by by by by by by

1986 1988 1990 1992 1994 1996 1998 2000
A good rule of thumb: Year

a) estimate realistically all uncertainties
b) sum the systematic uncertainties in quadrature
c) try to reduce total systematic uncertainty < statistical.

Statistical Methods 2025 . I/l 7
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n

Resolution (erotuskyky)

Most common definitions: >

largest change of input
without change of output
* given as per cent of
input range

e common example:
digitalization resolution
(digitointiresoluutio)

40

(given as bits: 32 bits, 1or
64 bits etc..)
. 0 0 1 I0 210 310 410 510 610 70

resolution of output Input

o full width at half 50

maximum (FWHM, e
puoliarvoleveys) ~ wol| o

2.35 x Gaussian ¢ &

T H

* related to statistical ol A

uncertainty (or precision) 3 >

* given in units of output & !,.i'

20 + : °
4

35 !:i!'
£ t?
520
éw I % 0 20 30 40 50 80 70
giof Input
S 5|

. A - repeated measurements

0 Gwa ° ¥ atinput values 10 &12

Statistical Methods 2025 Kenneth Osterberg I/l 8
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Physics terminology convention:

* Precision: (sisainen tarkkuus) — "statistical” uncertainty

how well repeated measurements agree
* Accuracy: (ulkoinen tarkkuus) — "bias” / "systematic”

how well result reflects true value

© @

):(true ! ):(true
a b C
Figure a) Good accuracy (ulkoinen tarkkuus) but bad

precision (sisainen tarkkuus); b) both good accuracy
and precision; ¢) good precision but bad accuracy.

Xtrue

International Organisation of Standarization
(ISO) convention (used e.g. in metrology):
* Precision: repeatability/reproducibility
closeness of agreement among a set of results

* Trueness: calibration
closeness of mean of a set of measurement results

to the actual (true) value
» Accuracy: (kokonaistarkkuus)
overall closeness of a measurement to the true value

Low accuracy Low accuracy
due to a low @ @ due to a poor
trueness

precision

Statistical Methods 2025 . I/l 9
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Consider f to be a function of a random variable x. For
small deviations can do a Taylor expansion around xy:

f(x) = f(xy)+(x—x)0f Jox) _
Vif)=(ef/ox)V(x) & o, = |(af/ax)10

Approximation works well for small deviations as long as the 1st
differential doesn’t change S|gn|f|cantly over a scale of few o’s.

Fr) = V(f) = [5f ] V<x>+[5f j V(y)+2(af j[af ]cov(x »)
ox oy ox )\ Oy

2 2
where V(x)=o0, V(y)=o0, cov(x,y)=p0o.0,
The law of combination of uncertainties: consider n
uncorrelated variables x; (virheitten kasautumislaki)

Sxenx,) = O z\/Z(@f/@xi)zo'fi

valid only for uncorrelated variables i.e. cov(x;,x;) = 0 for all i #
If not all cov(x;, x;) = 0, general formula have to be used:

. Jzz(af/axi)(af/axj)covwﬂ

Can be generalized to arbitrary # of functions (m) that are
functions of arbitrary # of variables (n). Uncertainty matrix:

U,=GYV, G' ,where G, = £%)
OX;

l

U, (V,) symmetric & square matrices size m x m (n x n).
G a rectangular m x n matrix. Next a simple example.

Statistical Methods 2025 . 1/20
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Typical radiation detectors that measure charged particles in
a magnetic field perpendicular to the transverse plane have
cylindrical shape & particle position measured in cylindrical
coordinates (r, ¢, z). r mostly known quite precisely, g, small.
¢ & z measured with uncorrelated uncertainties o4 & o,.

ox/or Ox/0¢ Ox/oz cos¢gp —rsing 0
ThenG=|0dy/or 0oy/o¢p Oy/oz|=|sing rcos¢p O

Oz/Or 0z/0¢p 0Oz/0z 0 0 1
0-9? ny sz 0}2 0 0
>U=|Uy of Uy, |=G[0 g 0 |GT
Up Uz 07 0 0 o2

x*cf [r? + y?o5 xyof[r? —xyos O

=| xyo? [r* —xyog y*0r/r* +x%c5 O

0 0 o2
x uncertainty depend on the y value as well & vice-versa. Also
xy covariances # 0. z uncertainties & covariances not affected.

How to avoid correlation between variables?
transform to orthogonal variables x’ = cov[x;, x;] = 0 for
alli#j (see e.g. G. Cowen: Statistical data analysis 1.7)

Example: straight line fity = a’'(x — %) + b'&noty =ax + b
Coefficients a’ & b’ uncorrelated, not the case for a & b.

Nice in theory but often not so useful in reality since physical
meaning of new variables often ambigious & they usually
cannot be directly measured from experimental data anyway.

Statistical Methods 2025 1/2 1
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| |
if x = r sin phi and y = r cos phi, how are the uncertainties of x and y
depending on the uncertainty on phi and r? Derive also the dependence
of the uncertainty of x and y on the exact x and y value.
@ copilot ®

Great question! Let's go step by step to derive how the uncertainties in z and y depend on the uncertainties

in 7 and ¢, and also how they depend on the actual values of  and y.

We want to express the uncertainties 0 and gy, in terms of the actual values of z and y.
1. Definitions
From the definitions:
Given:
« z=rsing
« z=rsing

« y=rcoso
« y=rcos¢
So:
Let: —
s r=4/a?+y?
* 0, = uncertainty in 7 « sing =2
=
+ 04 = uncertainty in ¢ . cos¢p=1Y
T

* 0z, 0y = uncertainties in z, y ‘
Substitute into the uncertainty formulas:

Assume 7 and (p are uncorrelated, so covariance terms vanish.

2,
Foroy:
N\ 2 2
aif (—) tTer(r g) aif
2. Error Propagation " "
Using the general formula for error propagation:
g theg Propag Forol:
For x = rsin ¢: 9 . 7
z\2
af = (‘1—!) 0,2 + (7' o —) f = yfa'Q + 2202
. 5 T 2T
9z \? 2 ) T T
o= (3_) ol + ) 02 = (sing)?o? + (r cos §)%a?
"
Fory = r cos ¢ 4. Final Expressions
i dy 2 dy 2 . o letr = /a2 + 32, then:
aj =(==2) o2+ (22) o2 = (cos¢)’a? + (rsind))zaé
L or Do 2
2_ Z 2 2 2
Oz 720 Yo
T
To compute the covariance between the uncertainties in  and y, we need to apply the error prc
2
formula for covariance between two functions of correlated variables. 2 Yy o2 + 2202
y 1:2 + yz T @

Given:
« z=rsing
+ y=rcoso

Interpretation
Let:

The uncertainty in  depends more on o, when  is large compared to ¥, and more on o4 when ¥ is
+ 0, 04 be the uncertainties in 7 and ¢ large
+ Cov(z,y) be the covariance between & and y

Similarly, the uncertainty in y depends more on g, when ¥ is large, and more on o4 when z is large.

Assuming 7 and ¢ are uncorrelated, i.e, Cov(r, ¢) = 0, the covariance between z and y is: + This shows a cross-dependence: uncertainty in angle affects the orthogonal coordinate more strongly.

covariance expressed using x and y values
Covariance Formula

@ copilot ®
dzdy , Oxdy ,
Cov(z,y) = — 0"+ =0, ;i " i
'Y dror " a¢ EX3 ¢ To express the covariance between & = 7 sin ¢ and y = 7 cos ¢ in terms of the actual values of x and y,
we start from the derived expression:

Compute the partial derivatives: Cov(z,y) = T—Zyof = zyaf,

& _gin ()

. Ccos ¢ Now, since 72 = 22 + y?, we substitute:

. =1Ccos¢

q Yy 2 2

. = —rsing Cov(z,y) = = o} — ayo]

Substitute:

Cov(z,y) = singcos po? + (rcos@)(—rsing) o2
Interpretation:

. 2 9 . . 2 + The first term %03 reflects how the uncertainty in the radial distance 7 contributes to the
Cov(z,y) =singcospo, —r°singcosdoy ) 1Y
covariance.

The second term —zya? reflects how the angular uncertainty ¢ contributes.
Factor out sin ¢ cos ¢ « Ifeither z = 0 ory = 0, the covariance is zero.
. « Ifo? = 1?02, the two terms cancel out and the covariance is zero.
C ——— - 2 2 2 r @
ov(z,y) = singcos ¢ (o7 — r’a})

Would you like to visualize how this covariance behaves for different values of z, ¥, o, and 04?
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N independent trials (or experiments):
outcome of each trial either "success” or "failure”,
the probability of success on any given trial p

Define discrete random variable n = # of successes (0 <n < N).
Probability of a specific outcome (in a specific order) e.g. ssfsf

pp(1- p) p(1— p) = n success, N-n failures = p"(1 _p)N—n
N

but order irrelevant; ——ways to get n successes in N trials
n!(N —n)!

So the total probability to have n successes in N events

!
f(nm;N,p)= ' N p"(1- p)N‘” n — random variable
nl(N —n)! N, p — parameters

such a distribution binomial. The normalisation

N N! n N-n
n=0 "te T .

(G. Cowan)
04 204
2 , N=5 = N=20
& 02 | '|H p=0.5 | S 02 | ”F p=0.1 ]
| il
0 H ‘ [ n 0 H I H { =y
0 5 10 15 20 0 10 15 20
n n
w04 = 04
=z N=10 = N=20
q“;’ 0.2 ” F " p=0.5 | é 0.2 ' !_ p=0.2 |
o Lol1IT Lt
0 5 10 15 20 0 5 10 15 20
n n
w 04 = 0.4
= N=20 = N=20
??\_ 0.2 | 2 p=05 | :i/ 02 ; p=0.6
0 nnﬂh”““q[nﬂ 0 qr||ﬂHH”lEqnn
0 5 10 15 20 0 5 10 15 20
n n
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UNIVERSITY OF HELSIhﬁlmomlal & multinomial distribution

Expecta’g\ifon value & variance: E[n] & V[n] not functions of

Elnl= N.p)=N random number 7, but con-
7] ;n SN, p)=Np stants of parameters N & p

Vin]= E[n*]-(E[n]) = Np(1 — p)NB!'When p ~ 0/1, g, is
not accurate (too small!),

v V[n]/E[n] = J(1- P)/P/\/N recommend to use exact
NB! 7y = Vp) = WVl ]V =0~ P/ | Gpper.

Examples: Monte Carlo based efficiencies; decay = Pearson)
fractions; histograms; # of decays X — YZ, n, a binomial rand-
om variable, p = X — YZ branching fraction, N = # of X decays.

¢~

Multinomial distribution:
like binomial but now m possible outcomes instead of two,

the probabilities now ~ p=(p,,..,p,) Wwith Y. p =1

For N trials, want to know probability to obtain: »n4 times of
outcome 1, n, times of outcome 2, ..., n,, times of outcome m
= the multinomial distribution for 7 = (nlw_,n ):

N! "

f(m;N, p)= 28 e
n!n,l.n |

Consider outcome i as "success”, other outcomes "failure” =
all individual »; binomially distributed with parameters N, p;.
E[n]=Np,, V[n.]=Np,(1-p,) forall i. One can also define
covariance V, = E[(n, — E[n;])(n, — E[n;])]=—Np,p, fori#.
Example: probability to obtain a particular histogram from N
observations (= entries). n = (n4, ..., n,,;) equals bin content
& p = (p1, .-, Pn) bin probability. Negative V; = # of entries
in any 2 bins correlated. If larger # entries than expected in
bin i (n; > Np;), probability increased for n, < Np; & vice—versa.

Statistical Methods 2025 . 1/24
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'Events in a continuum’ e.g. # of lightning during a thunder storm,
Binomial random variable » in the limit: N — o, p > 0, E[n] = Np
— v(i.e. a finite value), n follows a Poisson distribution.

n

| 4
f(mv)= —'e_v (0 <n <o) pdfhas only 1 parameter v
n!

= (G. Cowan)
Expectation value & variance % ** s
of Poisson random variable n ~ °2 ;J ﬂ
0 Vn 0 ' ‘ ‘i: H ” T
E nl= n_e_v — v 0 5 1’10 15 20
7] Z_: n! '
n=0 . 2 04
= v=5
o 0.2 0
Vin]= Z<n v) = Vitoelin Wiy .
0 5 10 15 20
WVInl/E[n]=1 \F = o
= 0.2 i
Examples: # of decays in a fixed i s
time interval from a radioactive 0 5 10 TR

n

source, # of scattering events n
occuring for a fixed integrated luminosity £ (= particle flux) due
to some process with cross section ¢ (v = o [ £ dt).

Poisson vs binomial: hitchhiking; cars passing by according to a
Poisson distribution with mean frequency 1 / minute. Probability
of individual car giving lift is 1 %. Calculate probability that hitch—
hiker still waits for a lift (i) after 60 cars passed (ii) after 1 hour.
(i) (1 —p)¥ = 0.99° = 0.5472 (# of trials, binomial) a\:o‘dj
(i) e”NP = 0.5488 (time span =~ random, Poisson) “&oﬂ-\e‘s
Assume 2 Poisson with means v; & v,. The combined sample
e.g. two types of decays of a particle = get a convolution: P(n) =

2 f(n’,v4q) f(n-n",v5) = f(n, vi+v,), @ new Poissonian with v = v4+v,
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Uniform distribution, simplest continuous distribution.
Have continuous random variable x. Uniform pdf definition

1
a<x<
f(saB) = (p-a) g
0 otherwise
Expectation value & the variance of a uniform pdf:

B

Elx]- j xdv/(B-a)=L(a+p)

B
V)= j =L@+ BT de/(B-a) =L (B -a)

(G. Cowan)
a 1.2
=
Xl o B
Uniform distribution  °® | 131—
9 . ’ -0
often our "naive 08 i
guess but seldomly  , |
correct.
0.2
0 1 |
0 1 2 3

X
Example: relativistic kinematics: decay angles of a 2-body

particle decay (spin = 0) in its rest frame, e.g. azimuthal
angle ¢ uniform in [0, 2x] & polar angle 8 uniform in [—=, «].

Monte Carlo methods start from an uniform distribution
N.B. for random variable x with cumulative distribution,
F(x), always uniformly distributed in [0,1] = used for MC.

Statistical Methods 2025 . 1/26
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Exponential distribution:

Exponential pdf for a continuous random variable x
|-
J(x;8) = ge = (x20)

Exponential pdf characterized by only one parameter ¢.
Expectation value & variance of exponential distribution

(G. Cowan)
w1 ' '
(L < =
E[x]:Jer dx=¢ ol t
0 T e el e -
) 1 0.6
VIx=[(x-¢) e Fdv=¢ |\
g é: 04
JVIx]/ E[x]=1 02 |
Examples of exponential "o : 2 3 4 5
distributions (§ = 1, 2 & 5). X

Example: proper decay time of an unstable particle/state
f(t;Z'):e_t/T/T (t20) 7= mean life time
NB! unique feature of exponential pdf — "lack of memory”

— >t ) = absolute starting (& end)
f(t to |t_ tO) f(t) point ("zero”) irrelevant

Very convenient for any lifetime measurement. Also:
attenuation of light/particles in medium, radioactive decay.
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Gaussian (or normal) distribution:

Gaussian pdf for a continuous random variable x

Fsp,0) = —— zexp[‘(’““)zj (0 <x<o0)

2o 20°

Gaussian pdf characterized by two parameters: 1 & o .
Expectation value & variance of gaussian distribution:

A o (G. Cowan)
o ' ‘ ' 1 .
E[x]:jxf(X;ﬂ,O')dXZ,U E oo — u=0, o=1
€ m=sa =0 =2
- SRR A AR i Y e e B “=1, 0=1

0

Vix]= j (5= 1)’ fl o) =

NB! 1 & o often used for mean &

spread of any random variable ils G .
(that not necessarily a Gaussian) 9 2 0 5 4

Special case: =0, o0=1 ("standard Gaussian”)
1 > .
(x)= expl\—x7/2), D(x) :I (x")dx'
P(0)=——exp(-x*/2) 4

if y Gaussian with i & o, then x = (y—u)/o follows ¢(x) &
F(y) <> @(x). No analytic expression of cumulative distri-
bution ®(x). Numerical evaluations of ®(x) as well as a—
points x, = ®'(«) tabulated and/or available in program
libraries. E.g. 68.3 % within 15, 90 % within 1.645c, 95%
within 1.960c, 99.7 % within 3c... (2-tailed Gaussians).
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Why uncertainties often are Gaussian?

A consequence of Central Limit Theorem (CLT). Look
at behaviour of variable equal to sum of several others.
Irrespective of distribution of orginal variables, if one
takes sum X of n independent variables x;, i = 1,...,n,
each taken from a distribution with mean x4 & variance
Vi, distribution for X has expectation value & variance

& becomes Gaussian n — oo.<X> = Z,ul. V(X)= ZVZ

I I
note V(X) equation above holds only for independent variables,
formal proof of CLT tedious so we'll give a MC "proof” instead:

1 random 3® = 1000 |-
number 20 2 random
(X)=0.58& - 500 num_bers
V(X)=112 : - (X)=1.0
0 0
0 1 0 1 2
(R.J. Barlow)

1000 5 12 random
3 random - numbers
numbers 500 (X) =6.0 &
(X)=1.5 b V(X)=1.0

(~Gaussian)

0

0
Fig. 4.1. The CLT at work.

Already after summing ~12 uniformly distributed random
numbers in [0,1], one obtains a Gaussian like distribution.
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In practice, important to know how CLT works for »n uncertainty
contributions. Approximately true if large # of small contributions.
Discrepancies arise when individual terms have long "ails” so
that occasional large value will give large contribution to the sum
= Gaussian approximation works usually well for central part of
distribution, but "tails” (or wings) might be very non-Gaussian.

Below two examples where CLT (at least partially) breaks down:

 charged particle scattering in material. Average scattering angle

(0) = 0. If sufficiently thick material, particle scatter many times,

multiple scattering. Sometimes 6 large = non-gaussian tails
("Moliere tails” or "Moliere scattering”)

P g L
( ﬁ
w(w) —
60 ‘. L r.plal’le
Gplane
0 Qdene

= (R. Brenner et al.)

Entrles

» total # of electron-hole (electron-
ion) pairs created by a charged
particle traversing a (thin) solid state
(gaseous) detector. Described by
the Landau distribution having a

Signal pulse from
charged partigles
traversing a silicon
micro strip detector

long tail extending to large values.  _} Jf

High ionization events ("delta o e b lanne
electrons”) make up a significant A oy
fraction. A Gaussian approxirmation .7 2 e i
generally not valid in real systems. MR o O
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A binomial or a Poisson distribution can be satisfactorily
approximated with a Gaussian when Np or v large.

A binomial can be approximated by a Gaussian with 1= Np &
o = [Np(1-p)]¥2 when Np large (> ~10). Approximation better for
p ~ 0.5 than for small or large p—values (that requires Np > 10).

A Poission distribution can be approximated by a Gaussian
when v large (>~10). Thenu= v & o =+/v

Multivariate Gaussian distribution:
consider a vector x =(x,,...,x, ) all Gaussian distributed variables

1 1

X; 1, V)= ex ——(f—ﬁ)TVl(f—ﬁ))

VACHTAD (27r)m/2|V|1/2 p ( 5

where X = (t4,..-, 4,,) the vector containing the means & V a

symmetric m x m matrix containing m(m +1)/2 free parameters.

The expectation values & (co)variances can be computed to be
Elx;]1= Vix, 1=V, covlx,,x;]=V;

For example in two 2

dimensions the pdf is

1 =
f(xlaxz;ﬂl7ﬂ23019629p12): 5 X (\/—>
| 2 2
X, — Xy — X, — Xy —
exp| — : ( 1 ﬂlJ _{ 2 ﬂzJ _21012[ 1 :U1J£ 2 ﬂzJ ,
2(1-p13) O 0 0y 03

where p,, = cov[x4,x,]/( o4 0,) the correlation coefficient. The pdf
can be expressed by contour lines of equal probability that are
ellipses in the x—y plane centered at (x; = 14, x5 = 15).

X1
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Log-normal distribution:
Assume continuous variable y to be gaussian with mean u &
variance o2, then x = ¢” follows the log-normal distribution:

1 _(Inx — 11)
f(x;ﬂ,0)=—eXp( 5 j (x20)
xv27o? 20

The log-normal pdf characterized by same parameters as
corresponding Gaussian of y, i.e. £ & o. N.B. now 1 & o has
nothing to do with the mean & the standard deviation of x.
Expectation value & variance of log-normal distribution:

E[x]=exp (,u +1lo? ) c -
2 = i — u=0, o=1
= 08 M --- 1=0,0=15 A

V[x]=exp (2,u+02)-
[exp (%) —1]

v VIX]/ E[x] =

Vlexp (o%)—1]

Examples of log-normal distributions
(t=0,0=051&15+u=1,0=1). %

Recall from CLT: if random variable y, a sum of a large number
of small contributions, will be distributed according to a Gaussian
= if random variable x, a product of many small factors, will be
distributed according to log-normal distribution. Used in modeling
random uncertainties, that change result by a multiplicative factor,

Examples: describes the size of the clusters of silver atoms in
photographic emulsion and weight & blood pressure of humans.
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Chi-square (y?) distribution:
Chi-square pdf for a continuous random variable z

1
fEn=gmram® ¢ (E20n=12.)

where parameter n = "number degrees of freedom” (ndof)

& gamma function I'(x) defined as  I'(x) = JettXIdt

0
For our purposes only need to know following features of I'(x)
T(n)=(n-1)! forinteger 1 T(x+D)=x[(x) T[(/2)=+r

Expectation value & variance of chi-square distribution
0 (G. Cowan)

E[z]:jzf(z;n)dz=n é G

0 o === =2

L mam s ey e

0.3

V[z]:j(z—n)zf(z;n)d2=2n _____ e

) 0.2 f
For m Gaussian random o i
variables x; with means
& covariance matrix V;; L ek nii ks
(for uncorrelated variables 19 20
can use variances o). Z

- — S (=) | follows a 2 distri-
(¥ _ TV li= 7 = N i X
z=lx=p)y Ve —p) ; o’ bution with m ndof

Example: variable for testing goodness-of-fit, especially with the

"method of least squares” (pienemman nelibsumma menetelma).
NB! For large m distribution for the value of ,/2;(2 can be

approximated by a Gaussian distribution with z=+v/2m—-1& o =1
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n

Cauchy (also called Lorentzian or Breit-Wigner) distribution:
Cauchy (Lorentzian) pdf for a continuous random variable x

1 1 1 S t & s are location &
f(x) T (f(x»t’s) -2 2j scale parameter

special case: Breit-Wigner (common in quantum mechanics)
1 /2 where parameters x,
f(x,x,)=— > > & I' mass & width of
7 (/2)" +(x = xp) a resonant state

NB!. T x 1/t, where T = mean lifetime of resonant state
The Cauchy distribution has a peculiar mathematical behaviour

] E_? 0.8 T T T T
E[x] = not well defined 2 — x,=0,T=1 i& Zowan)
;R—\/ - Xp=2, I'=1 .
V[x] = SRl on i %
However the Cauchy distribution ,, | )
can be described by 2 parameters:
x, (or t) = peak position (i.e. 02 :
mode or most probable value)

Examples: describes a resonance (an unstable
particle or state) e.g. the W boson responsible Y
for radioactive decays. I' = decay width (o« inverse
of the mean life time). Describes the distribution

of horizontal distances X at which a line segment

tilted at a random angle 6 cuts the horizontal axis:

NB! in reality mean & variance mostly calculable for a phy)/(sical
phenomena described by a Breit-Wigner distribution since
description only approximative (i.e. the resonance mass restricted by
energy conservation, cannot be smaller than 0 or larger than total energy).
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In nuclear & particle physics one often encounters the Landau
distribution f(A,p) for energy loss A of a charged particle with
S = v/c traversing a layer of matter of thickness d

f(AB) = l¢( A), 0<A<o Parameter & related to
4 properties of material &
velocity of particle whereas A

A= 1 A— g(bgé +1- ij ’ = dimensionless random
g &' variables related to both £ & A
£ 27 N e*2*p2Z d o IPexp(B?) first written down by
- 2 2 - 2 2, 2> L.Landauin 1944
m,c” 2A b 2m,c By
where z charge of incident particle in units of electron charge,

2.7 & 2.4 sums of atomic numbers & weights of the material,
I=1Z ionization energy characteristic of the material
(lp ~13.5eV), y= (1-8?)"” & y; Eulers constant (=0.5722...).

P(A) = —J-exp( ulogu — Au) sin 7u du, (Ge:Cowar)

il 4

£ s A By

The mtegral above must be
evaluated numerically & can
be found in program libraries.
Mean & variance of Landau
distribution diverge due to tails.
Described by 1 parameter:

keV)

Amp = most probable value of A, < <t
sensitive to particle velocity # <
(follows "Bethe—Bloch formula”) =
used for identifying particle type

0 S RTE | Al Loseaanl aaaaxal WYY
for review see e.g. W. Allison & J. Cobb, 10 10 o

Ann. Rev. Nucl. Part. Sci. 30 (1980) 253. By
= momentum/mass
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