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Introduction

A 5 ECTS credit course autumn 2025
https://www.mv.helsinki.fi/home/osterber/statistics/

Lectures Prof. Kenneth Österberg,
email: kenneth.osterberg@helsinki.fi

Exercises PhD Fredrik Oljemark
email: fredrik.oljemark@helsinki.fi

lectures Fri 10-12 in Physicum D112
exercise sessions Fri 14-15 in Physicum D112
lectures: weeks 36-39, 41-42, 44-48 and 50

exercise sessions: starting week 38
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Introduction

This course aims to be:
Practical but (hopefully) still precise,
• give recipes & examples (students can suggest)
• give merits & limitations of methods
• explain background (avoid usage w/o understanding)

• exercises have a large weight (”learn by doing”)
• (hopefully) improves understanding & eases use
aimed for data analysis typical in physics:
• measurement – parameter & uncertainty estimate
• hypothesis testing
useful & supportive in research work however 
only an introduction to statistical methods:
• cannot cover all methods - give the broad picture!!
• any computational tool allowed: Matlab & Python 
tutorials (see homepage) 
• covers (upon request) student questions & 
problems

N.B. For statistical methods in data analysis:           
practical methods can’t always be proven to be
optimal but can be proven to be at least sensible !! 



Statistical Methods 2025
Fundamental concepts Kenneth Österberg I/3

Practical example

Things can get rather fast computationally intensive
e.g. a simple electric circuit. Assume you built the circuit
below (”Black box”) & need to find out its resistance R & 
inductance L. Have to study response to the applied
potential VAC as function of the frequency w. Specially
uncertainties on w, case (b) below, make things more
complicated but needs to be taken into account in the
determination of R & L and their uncertainties (!!).
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Introduction

  Course Material:
ü Lecture notes                                                  

(available on course web-page in pdf format). 
ü Selected lecture recordings from previous years                                                        

(available on course web-page in mp4 format). 
ü G. Cowan: Statistical Data Analysis (Oxford 

University Press 1998)                                                 
– highly recommended reference. 

ü Particle Data Group (PDG): reviews on probability, 
statistics, Monte Carlo techniques & machine 
learning (http://pdg.lbl.gov/)                                         
– compact & good summaries available on the web.

ü Recent summaries on Interpretable machine 
learning & quantum computing (in particle physics)                                        
– additional reading on state-of-the-art methods. 

ü C. Walck: Handbook on statistical distributions for 
experimentalists 
(http://staff.fysik.su.se/~walck/suf9601.pdf) 
An opus on statistical distributions. If you know 
your physics distribution, useful for finding out 
distribution characteristics & how to generate it.

The course content has significant overlap with 
PAP303 Statistical Inverse Methods, it is
recommended to take only one of the two.

http://pdg.lbl.gov/
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Introduction

Course Outline:  
ü Fundamental concepts: experimental 

uncertainties & their correct interpretation, 
frequentist & Bayesian interpretation of 
probability and common distributions.

ü MC methods & statistical tests: Monte Carlo 
methods, the concept of hypothesis & test 
statistic, rejection of a hypothesis,         
discriminant analysis (including machine 
learning) and goodness-of-fit tests

ü Parameter & uncertainty estimation: the      
concept of estimation, method of  maximum 
likelihood & method of least squares

ü Confidence interval & unfolding: classical 
confidence intervals and their interpretation, 
unfolding techniques

Course Grading:
ü Exercises (~10 exercise papers), weight 50 %; 

given latest Thursday (on Moodle),                       
to be return next Thursday 12.00. 

ü Home exam December/January, weight 50 % 
(time & date to be determined)

ü General exam in February, weight 50 %
ü two best of the three used for course grade
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Introduction

  Use of generative AI:
ü Follow University of Helsinki general rules on AI usage:                                                  

https://studies.helsinki.fi/instructions/article/using-ai-
support-learning?

ü Usage of Large Language Models (LLMs) encouraged.
ü However: the usage of LLMs should be clearly 

stated including how the LLMs were used.
ü Recommendation: use Copilot provided by the 

university (https://copilot.cloud.microsoft/).
ü LLMs to be used as a tool (& NOT as a black box). 
ü Can help you with ideas & methods (= library), 

coding & repetetive tasks (e.g. partial derivates).
ü Always check yourself that the LLM suggestion 

makes sense. Explore the capabilities of LLMs. 
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Experiments

Basically two different types of experiments:

• ”parameter determination” – determine numerical value
of some physical quantity from data.

• ”hypothesis testing” – test whether a particular model
or prediction consistent with data or not.

In physics, both occur commonly. N.B. a parameter
determination involves also an uncertainty determination!

• not only interested in the result but also its uncertainty.     
(the smaller the uncertainty ® the more accurate experiment,  
the more selective & conclusive the answer; often not interested
in parameters themselves but in their use as a test of a model ...) 
• the design & the construction of an experiment mostly 
driven by the accuracy that one wants to obtain. 

Numerical value of uncertainty crucial for interpretation. 
One can (schematically) obtain essentially 3 possible
results of e.g. a measurement of the mass of the proton      
(mp = (1.672 621 923 69 ± 0.000 000 000 51) × 10-27 kg):
• consistent: e.g. (1.6727 ± 0.0002) × 10-27 kg
• inconsistent: e.g. (1.6710 ± 0.0002) × 10-27 kg
• inconclusive: e.g. (1.8 ± 1.0) × 10-27 kg 
Course should provide you with methods & tools to 
determine a parameter & its uncertainty correctly.

Data consistent (or not) with prediction/model?       
Course provides possible methods to sort that out.
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Probability

degree of randomness of a result of a measurement
in physics usually quantified using probability.
mathematical definition of probability:
”Kolmogorov axioms”: set S (”sample space”) with subsets A, B

”random variable” has a specific value for each element of S.

”physical meaning” of probability P (in terms of frequency
interpretation): if an element from sample space S drawn
many times, obtain event A in a fraction P (A) of the times
Þ naturally true for all quantum mechanical phenomena.
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Bayes’ theorem

The law of total probability: Suppose S can be divided into 
disjoint subsets Ai such that ÈiAi = S

Modified Bayes’ theorem: 

Let’s examine an example: 

Suppose the probabilities (for anyone) to have AIDS are:

Consider an AIDS test: result is either + or -
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prior probabilities, i.e. 
before any test carried out

probabilities to (in)correctly 
identify AIDS infected person

probabilities to (in)correctly 
identify person without AIDS

N.B. Result depends on the 𝑷(𝑨𝒊)’s, the prior probabilities!

Suppose your AIDS test result is +. How worried should you be?

Your viewpoint: my degree of belief that I have AIDS is 67 %

Your doctor’s viewpoint: 2/3 of people like you have AIDS
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Interpretation of probability

Interpretation of probability:

• Frequentist interpretation
A,B, ... are possible outcomes of a repeatable experiment

cf. quantum mechanics, radioactive decay… classical statistics

• Subjective (or Bayesian) interpretation
A,B, ... are hypotheses (statements that are true or false)

Both interpretations consistent with the mathematical
definition. Probability in data analysis: frequentist more
natural but subjective used e.g. for non-repeatable phenomena:

Systematic uncertainties (same upon repetition) – the universe is 
open – the billionth digit of p is 7 – it rains in Paris tomorrow…
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number of occurances of outcome A in N experiments

degree of belief that hypothesis A is true

Frequentist vs. subjective probability:

What does one mean by me = 520 ± 10 keV ? 
(me is the mass of the electron)

frequentist: true or false (but one doesn’t know which)
subjective (bayesian): 68 % (statement of knowledge)

i.e. P(510 £ me £ 530 keV) = 0.68 (subjective) means:                    
My uncertainty that 510 £ me £ 530 keV is same as uncertainty to 
draw a white ball out of container with 100 balls, 68 of which are 
white & rest black (cf. G. D’Agostini, CERN Yellow Report 99-03, 1999).  
® Calibration by relating to some frequency (or symmetry etc...)

bayesian
statistics
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Problems of both interpretations

If a large group of Baysians say things like:                            
P(Finland gets a medal in ice hockey at 2026 Olympics) = 68 %                   
P(0.22 £ WM £ 0.32) = 68 % (WM = matter density in the universe)         
P(Social Democrats wins Finnish parliamentary elections in 2027) = 68 %
then 68 % of these statements should end up being true.

NB!  Calibration not always feasible, e.g. 
P(Mr A. Known wins curling tournament in Ivalo January 2026) = ???

Possible frequentist interpretation: can P(510 £ me £ 530 keV) =     
68 % mean, consider many universes with different values of me;      
68 % of them will have me-values in [510,530] keV range (???)        
Þ usual stumbling block for the interpretation of a measurement
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Note Bayes’ theorem interpreted in subjective (bayesian) way:

The (posterior) belief in a theory modified by the experimental
result. Large likelihood P(theory|result) increases belief, small
decreases. Receipe applies to many successive results.

Problem: P(theory|result) depends on assumed prior P(theory). 
Hence result not objective (as science supposed to be). 

Usual assumption for a continuous parameter eg. P(me) = flat
arguments: value not known (problematic if value already ”known”),
every value as believable as any other & all possibilities equal. 
(statistically correct procedure is to test robustness under different priors)

Many measurements: P(theory)-dependence eventually removed.
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Probability density function

Let’s examine meaning of measurement uncertainty s. 
However let’s first define the normalised distribution of 
repeated measurements of variable x, the probability
density function (pdf) f(x) (todennäköisyystiheysfunktio) 
Sometimes only referred to as the “distribution” of variable x.     
x can be either continuous or discrete & values of x confined to 
a finite (e.g. 0 - 1) or (semi-)infinite (e.g. 0 - ¥) range.  
histogram: way of displaying number of entries within a sub-
interval Dx (that is either constant or variable), N(x), as a function of 
variable x. Dx optimised based on statistics to show distribution shape.   

(G. Cowan)

ideally pdf (for 
a continious x)
=  histogram 
with: 

• infinite data 
sample

• zero bin 
width

• normalised 
to unity

For a discrete variable, pdf of course discrete
as well: probability to observe value xi = fi
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Probability density function

Random variables:
Normalised distribution of repeated measurements of a 
continuous variable x (label for an element in sample space S):

In frequentist interpretation, f (x)dx gives fraction of times
x observed in [x, x+dx] for n observations when n® ¥.

normalization:

where S = entire x range, i.e. true value of x somewhere in S.
Define the cumulative distribution function:

A useful concept related to cumulative distribution are a-points:

For a discrete variable xi (P(xi) = probability to observe value xi):
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Expectation values

Consider continuous random variable x with pdf f (x)  
define the expectation or mean value & variance as:    

!!! "#"#$$"%%#$%"#$% σµµ ≡−=−=≡= ∫∫
∞

∞−

∞

∞−
!""#""$"$"%!""#""$

Variance measures spread of x around mean µ.
The standard deviation (hajonta) s given by 𝑉[𝑥]

For a function a (x) with pdf g (a): 
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Covariance (or uncertainty) matrix Vxy often denoted by cov[x,y]
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By construction the covariance matrix Vab symmetric in a & b
and diagonal elements Vaa = sa

2 (i.e. the variances) positive.

!"#$ !"#≠



Statistical Methods 2025
Fundamental concepts Kenneth Österberg I/15

Correlations

If x,y independent, i.e. f(x,y) = fx(x)fy(y), then 

i.e. x & y ’uncorrelated’            NB! not always true the other way.
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To express the correlation between two random variables, x & y, 
in a dimensionless way, the correlation coefficient, rxy, used
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(R.J. Barlow)
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Experimental uncertainties

Two types of uncertainties related to any measurement:

• random/statistical uncertainties (satunnaiset/tilastolliset 
epävarmuudet) – inability of measurement system to give
infinitely accurate answer (due to measurement precision
| sampling statistics½phenomenon itself) – µ

• systematic uncertainties (systemaattiset epävarmuudet) –
some feature/uncertainty of method, apparatus, calibra-
tion, environment etc ... influencing result ((un)knowingly
to experimentalist) – (usually) not statistics dependent N.B. 
often knowledge & ability to determine systematic uncertainty
increases with statistics Þ decreased systematic uncertainty.
(sometimes 3 given: statistical, systematic & gross (karkeita). Gross
refers here to carelessness in measurement or malfunction of apparatus).

E.g. determine the decay constant l of a radioactive source based on 
decay rate (-dN/dt) and sample weight.                -dN/dt = lN                          
Statistical uncertainty comes from the number of events in time interval. 
Possible systematic uncertainties are detector efficiency, background
sources (& subtraction), sample purity, clock & balance calibration etc...  

Systematic distinct w.r.t. statistical uncertainties - no 
decrease with statistics + measurement at different points
usually affected in same direction (points ”non-independent”)

No simple rules/prescriptions for eliminating systematic
uncertainties but common sense, careful thinking & 
experience usually helps to identify & estimate sources.

Ideally minimize effect from systematics sources during
the design of the experiment (which is not always possible). 

!"#"$!"$%!&
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Systematic uncertainties

Generally accepted method for treating systematic uncer-
tainties: eliminate those effects you can, correct (large) 
”biases” introduced by effects you can estimate & 
evaluate remaining (+ uncertainties of the corrections
of the ”biases”) in terms of statistical-like uncertainties.          

Some suggestions related to systematic uncertainties:

• Pay special attention to all numbers that enter result
directly & crosscheck them (like efficiency, calibration etc..)!!

• Make analysis in subsamples as a function of variables
that should have no influence on result (e.g. time, rate etc..)

• Use alternative analysis methods & possible constraints
(e.g. energy & momentum conservation, coincidences etc...)

• Never underestimate
your own ”subjectivity” 
(tendency to ”know” the answer)
/ (self)criticism useful
& mostly constructive

A good rule of thumb:                                                                         
a) estimate realistically all uncertainties
b) sum the systematic uncertainties in quadrature
c) try to reduce total systematic uncertainty £ statistical.

Average B hadron (i.e. particle
containing a b quark) lifetime vs
year. Note jump 1992 ® 1994.

(G. Wilkinson)

t !
[p
s]

𝑚. = 1.6727 ± 0.0001 stat ± 0.0002 (syst) 3 10(,/ kg
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repeated measurements 
at input values 10 &12

Most common definitions:

largest change of input 
without change of output
• given as per cent of   
input range 
• common example: 
digitalization resolution 
(digitointiresoluutio)   
(given as bits: 32 bits,       
64 bits etc..)

resolution of output
• full width at half 
maximum (FWHM, 
puoliarvoleveys) »        
2.35 ´ Gaussian s
• related to statistical 
uncertainty (or precision)
• given in units of output 

Resolution (erotuskyky)
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Precision, accuracy & trueness

• Precision: (sisäinen tarkkuus) – ”statistical” uncertainty                               
how well repeated measurements agree

• Accuracy: (ulkoinen tarkkuus) – ”bias” / ”systematic”                              
how well result reflects true value

Figure a) Good accuracy (ulkoinen tarkkuus) but bad 
precision (sisäinen tarkkuus); b) both good accuracy 
and precision; c) good precision but bad accuracy.  

Physics terminology convention:

• Precision: repeatability/reproducibility                           
closeness of agreement among a set of results

• Trueness: calibration 
closeness of mean of a set of measurement results
to the actual (true) value

• Accuracy: (kokonaistarkkuus)
overall closeness of a measurement to the true value

International Organisation of Standarization
(ISO) convention (used e.g. in metrology):

Low accuracy
due to a low
precision

Low accuracy
due to a poor
trueness
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Uncertainty propagation

Consider f to be a function of a random variable x. For 
small deviations can do a Taylor expansion around x0:
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Approximation works well for small deviations as long as the 1st

differential doesn’t change significantly over a scale of few s ’s.
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The law of combination of uncertainties: consider n
uncorrelated variables xi    (virheitten kasautumislaki)

valid only for uncorrelated variables i.e. cov(𝑥",𝑥#) = 0 for all i≠ j
If not all cov(xi, xj) = 0, general formula have to be used: 

Can be generalized to arbitrary # of functions (m) that are
functions of arbitrary # of variables (n). Uncertainty matrix: 

Uf (Vx) symmetric & square matrices size m	´m		(n ´ n).      
G a rectangular m ´ n matrix. Next a simple example.
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Correlation
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𝑥 uncertainty depend on the 𝑦 value as well & vice-versa. Also
𝑥𝑦 covariances ¹ 0. 𝑧 uncertainties & covariances not affected. 

Typical radiation detectors that measure charged particles in 
a magnetic field perpendicular to the transverse plane have
cylindrical shape & particle position measured in cylindrical
coordinates (𝑟, 𝜙, z). 𝑟 mostly known quite precisely, 𝜎" small. 
𝜙 & 𝑧 measured with uncorrelated uncertainties 𝜎# & 𝜎$.

How to avoid correlation between variables?                  
transform to orthogonal variables x’ Þ cov[xi’, xj’] = 0 for         
all i ¹ j (see e.g. G. Cowen: Statistical data analysis 1.7)

Example: straight line fit 𝑦 = 𝑎% 𝑥 − 𝑥̅ + 𝑏′ & not 𝑦 = 𝑎𝑥 + 𝑏
Coefficients 𝑎′ & 𝑏′ uncorrelated, not the case for 𝑎 & 𝑏.

Nice in theory but often not so useful in reality since physical 
meaning of new variables often ambigious & they usually 
cannot be directly measured from experimental data anyway.

⇒ 𝐔 =
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𝜎%" 0 0
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𝐆𝐓

=
(𝑥"𝜎%" 𝑟" + 𝑦"𝜎&" (𝑥𝑦𝜎%" 𝑟" − 𝑥𝑦𝜎&" 0
(𝑥𝑦𝜎%" 𝑟" − 𝑥𝑦𝜎&" (𝑦"𝜎%" 𝑟" + 𝑥"𝜎&" 0
0 0 𝜎$"
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Correlations (derived using Copliot)
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Binomial distribution

N independent trials (or experiments): 
outcome of each trial either ”success” or ”failure”, 
the probability of success on any given trial p
Define discrete random variable n = # of successes (0 £ n £ N). 
Probability of a specific outcome (in a specific order) e.g. ssfsf

but order irrelevant;                 ways to get n successes in N trials.

So the total probability to have n successes in N events

such a distribution binomial.   The normalisation

OK by default.
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Binomial & multinomial distribution

Expectation value & variance:

Examples: Monte Carlo based efficiencies; decay
fractions; histograms; # of decays X ® YZ, n, a binomial rand-
om variable, p = X ® YZ branching fraction, N = # of X decays.

Multinomial distribution:
like binomial but now m possible outcomes instead of two, 

the probabilities now
For N trials, want to know probability to obtain: n1 times of 
outcome 1, n2 times of outcome 2, ..., nm times of outcome m
Þ the multinomial distribution for

Consider outcome i as ”success”, other outcomes ”failure” Þ
all individual ni binomially distributed with parameters N, pi.

Example: probability to obtain a particular histogram from N
observations (= entries). 7𝑛 = 𝑛0, … , 𝑛1 equals bin content
& 𝑝̅ = (𝑝0, … , 𝑝1) bin probability. Negative Vij Þ # of entries
in any 2 bins correlated. If larger # entries than expected in 
bin i (ni > Npi), probability increased for nj < Npj& vice-versa.
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E[n] & V[n] not functions of 
random number n, but con-
stants of parameters N & p
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!"!!"""! #$#%&%%&%&' −=−−= !"!#!"$##$covariance for i¹j. 

NB! When p ≈ 0/1, 𝜎$ is 
not accurate (too small!),  
recommend to use exact   

         estimate  
         (Clopper- 
    Pearson). 
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Poisson distribution

(G. Cowan)
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ννν pdf has only 1 parameter n

’Events in a continuum’ e.g. # of lightning during a thunder storm. 
Binomial random variable n in the limit: N ® ¥, p ® 0,  E[n] = Np
® n (i.e. a finite value), n follows a Poisson distribution.

Expectation value & variance
of Poisson random variable n

Examples: # of decays in a fixed
time interval from a radioactive
source, # of scattering events n
occuring for a fixed integrated luminosity L (≈ particle flux) due
to some process with cross section s (𝜈 = 𝜎 ∫ℒ 𝑑𝑡).

Poisson vs binomial: hitchhiking; cars passing by according to a 
Poisson distribution with mean frequency 1 / minute. Probability
of individual car giving lift is 1 %. Calculate probability that hitch-
hiker still waits for a lift (i) after 60 cars passed (ii) after 1 hour.   
(i) 1 − 𝑝 % = 0.99&' = 0.5472 (# of trials, binomial)                                        
(ii) 𝑒(%$ = 0.5488 (time span ≈ random, Poisson)
Assume 2 Poisson with means n1 & n2. The combined sample
e.g. two types of decays of a particle Þ get a convolution: P(n) = 
S f (n’,n1) f (n-n’,n2) = f (n, n1+n2), a new Poissonian with n = n1+n2
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Uniform distribution
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(G. Cowan)

Uniform distribution
often our ”naive”      
guess but seldomly
correct. 

Uniform distribution, simplest continuous distribution.  
Have continuous random variable x. Uniform pdf definition

Expectation value & the variance of a uniform pdf: 

Example: relativistic kinematics: decay angles of a 2-body 
particle decay (spin = 0) in its rest frame, e.g. azimuthal
angle φ uniform in [0, 2π] & polar angle θ uniform in [-π, π].

Monte Carlo methods start from an uniform distribution.
N.B. for random variable x with cumulative distribution,      
F(x), always uniformly distributed in [0,1] Þ used for MC.
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Exponential distribution

Exponential distribution:

Exponential pdf for a continuous random variable x

Exponential pdf characterized by only one parameter x .   
Expectation value & variance of exponential distribution

Example: proper decay time of an unstable particle/state

NB! unique feature of exponential pdf – ”lack of memory”

Very convenient for any lifetime measurement. Also: 
attenuation of light/particles in medium, radioactive decay. 

(G. Cowan)

Examples of exponential 
distributions (x = 1, 2 & 5). 
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Gaussian distribution
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(G. Cowan)
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NB! µ & s often used for mean & 
spread of any random variable 
(that not necessarily a Gaussian)
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ϕ

Gaussian (or normal) distribution:
Gaussian pdf for a continuous random variable x

Gaussian pdf characterized by two parameters: µ & s .   
Expectation value & variance of gaussian distribution:

Special case: µ = 0, s = 1 (”standard Gaussian”)

if y Gaussian with µ & s, then x = (y-µ)/s follows j(x) & 
F(y) «F(x). No analytic expression of cumulative distri-
bution F(x). Numerical evaluations of F(x) as well as a-
points xa = F-1(a) tabulated and/or available in program
libraries. E.g. 68.3 % within 1s, 90 % within 1.645s, 95% 
within 1.960s, 99.7 % within 3s… (2-tailed Gaussians). 
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Central limit theorem

Why uncertainties often are Gaussian?
A consequence of Central Limit Theorem (CLT). Look 
at behaviour of variable equal to sum of several others. 
Irrespective of distribution of orginal variables, if one
takes sum X of n independent variables xi, i = 1,...,n, 
each taken from a distribution with mean µi & variance
Vi, distribution for X has expectation value & variance

& becomes Gaussian n® ¥.

note V(X) equation above holds only for independent variables, 
formal proof of CLT tedious so we’ll give a MC ”proof” instead: 

∑ ∑==
! !

!! "#"# !"µ

3 random 
numbers
𝑋 = 1.5

2 random 
numbers
𝑋 = 1.0 

1 random 
number
𝑋 = 0.5 & 
𝑉(𝑋) = 1/12

(R.J. Barlow)

Already after summing ~12 uniformly distributed random 
numbers in [0,1], one obtains a Gaussian like distribution.

12 random 
numbers
𝑋 = 6.0 &   
𝑉(𝑋) = 1.0   
(~Gaussian) 
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Central limit theorem

!

θ"#$%&
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θ!"#$%"

θ0

#
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&'()G+θ,-.

(R. Brenner et al.)

Signal pulse from 
charged particles 
traversing a silicon 
micro strip detector

In practice, important to know how CLT works for n uncertainty
contributions. Approximately true if large # of small contributions. 
Discrepancies arise when individual terms have long ”tails” so
that occasional large value will give large contribution to the sum
Þ Gaussian approximation works usually well for central part of 
distribution, but ”tails” (or wings) might be very non-Gaussian.

Below two examples where CLT (at least partially) breaks down:

• charged particle scattering in material. Average scattering angle
áqñ = 0. If sufficiently thick material, particle scatter many times, 
multiple scattering. Sometimes q large Þ non-gaussian tails

(”Moliere tails” or ”Moliere scattering”)

• total # of electron-hole (electron-
ion) pairs created by a charged 
particle traversing a (thin) solid state                                            
(gaseous) detector. Described by 
the Landau distribution having a 
long tail extending to large values. 
High ionization events (”delta 
electrons”) make up a significant                                             
fraction. A Gaussian approximation                                                 
generally not valid in real systems.   
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Gaussian distribution

A binomial or a Poisson distribution can be satisfactorily
approximated with a Gaussian when Np or n large. 
A binomial can be approximated by a Gaussian with µ = Np &     
s = [Np(1-p)]½ when Np large (> ~10). Approximation better for  
p » 0.5 than for small or large p-values (that requires Np ≫ 10).

A Poission distribution can be approximated by a Gaussian
when n large (> ~10). Then 𝜇 = 𝜈 & 𝜎 = 𝜈

Multivariate Gaussian distribution:
consider a vector all Gaussian distributed variables

where the vector containing the means & V a 
symmetric m ´ m matrix containing m(m +1)/2 free parameters. 
The expectation values & (co)variances can be computed to be

For example in two
dimensions the pdf is 

where r12 = cov[x1,x2]/(s1s2) the correlation coefficient. The pdf 
can be expressed by contour lines of equal probability that are
ellipses in the x-y plane centered at (x1 = µ1, x2 = µ2).
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Log-normal distribution

Log-normal distribution:
Assume continuous variable y to be gaussian with mean µ & 
variance s 2, then x = e y follows the log-normal distribution:

The log-normal pdf characterized by same parameters as 
corresponding Gaussian of y, i.e. µ & s. N.B. now µ & s has
nothing to do with the mean & the standard deviation of x. 
Expectation value & variance of log-normal distribution:

Recall from CLT: if random variable y, a sum of a large number
of small contributions, will be distributed according to a Gaussian
Þ if random variable x, a product of many small factors, will be
distributed according to log-normal distribution. Used in modeling
random uncertainties, that change result by a multiplicative factor.

Examples: describes the size of the clusters of silver atoms in 
photographic emulsion and weight & blood pressure of humans.
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(G. Cowan)

Examples of log-normal distributions   
(µ = 0, s = 0.5, 1 & 1.5 + µ = 1, s = 1). 
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Chi-square distribution

Chi-square (c2) distribution:
Chi-square pdf for a continuous random variable z

where parameter n = ”number degrees of freedom” (ndof)  

& gamma function G(x) defined as

For our purposes only need to know following features of G(x)

Expectation value & variance of chi-square distribution

Example: variable for testing goodness-of-fit, especially with the 
”method of least squares” (pienemmän neliösumma menetelmä).  
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t = mean life time

the gaabsolute 
starting point (”zero”) 
irrelevant

(G. Cowan)
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For m Gaussian random 
variables xi with means µi

& covariance matrix Vij
(for uncorrelated variables 
can use variances si
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Cauchy distribution
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where parameters x0
& G mass & width of  
a resonant state
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(G. Cowan)E[x] = not well defined

V[x] = ¥
However the Cauchy distribution
can be described by 2 parameters: 

x0 (or t) = peak position (i.e.        
mode or most probable value)

G (or 2×s) = full width at half maximum

t & s are location & 
scale parameter
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NB!. Γ ∝ ⁄1 τ, where τ = mean lifetime of resonant state

Cauchy (also called Lorentzian or Breit-Wigner) distribution:
Cauchy (Lorentzian) pdf for a continuous random variable x

special case: Breit-Wigner (common in quantum mechanics)

The Cauchy distribution has a peculiar mathematical behaviour

Examples: describes a resonance (an unstable
particle or state) e.g. the W boson responsible
for radioactive decays. G = decay width (µ inverse
of the mean life time). Describes the distribution
of horizontal distances X at which a line segment
tilted at a random angle q cuts the horizontal axis.  

NB! in reality mean & variance mostly calculable for a physical
phenomena described by a Breit-Wigner distribution since
description only approximative (i.e. the resonance mass restricted by
energy conservation, cannot be smaller than 0 or larger than total energy).
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Landau distribution

In nuclear & particle physics one often encounters the Landau
distribution f(D,b) for energy loss D of a charged particle with
b = v/c traversing a layer of matter of thickness d

where z charge of incident particle in units of electron charge, 
SZ & SA sums of atomic numbers & weights of the material,      
I ≈ I0Z ionization energy characteristic of the material
(I0 » 13.5 eV), g = (1-b 2)-½ & gE Eulers constant (= 0.5722...).
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parameter x related to 
properties of material & 
velocity of particle whereas l
= dimensionless random 
variables related to both x & D
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The integral above must be
evaluated numerically & can
be found in program libraries. 
Mean & variance of Landau
distribution diverge due to tails. 
Described by 1 parameter:

Dmp = most probable value of D, 
sensitive to particle velocity b
(follows ”Bethe-Bloch formula”) Þ
used for identifying particle type
for review see e.g. W. Allison & J. Cobb, 
Ann. Rev. Nucl. Part. Sci. 30 (1980) 253.

first written down by 
L. Landau in 1944

=momentum/mass


