
Introduction to
ROOT and TMVA

Fredrik Oljemark, PhD

Contents:

• In these slides I will present a general overview and few key practical
examples on the ROOT toolkit and one plugin to it, TMVA.

• We cannot cover exhaustively all the aspects but at the end you will know
what these programs are used for and you will have a feeling on how you
can use them.

• First Part:
• Introduction to ROOT: how to run it, how to use the files to store data

and read it, how to perform fits.

• Second Part:
• Short introduction to TMVA: structure of the software, and some

example code, with explanations.

FIRST PART:

INTRODUCTION TO ROOT

 Histograms and fits
 Graph, scatter plots (2D, 3D), GUI applications
 I/O files

 Production of Ntuple (TTrees), see later.

 A user interface
 GUI: Browsers, Panels, Tree Viewer
 Command line interface: C++ interpreter (CINT)
 Python interface to ROOT, see

https://root.cern/manual/python/
 Script processing (C++ compiled)
 Very many statistical and mathematical libraries

What do we do with ROOT?
Root is a C++ based analysis framework widely used in HEP. It provides a
powerful and easy to use environment to perform:

Root helps physicist to perform data analysis thanks to:

Interacting with ROOT
• Interactive GUI (buttons,

graphical menu…)

Root interactive command line CINT (C++ interpreter,
idiosyncratic/more forgiving than compiler): mainly used for
simple operations: display operations, basic fits of the
histograms, histogram content check.

Compiled C++ programs
are much faster than
interpreted ones.
Libraries and executables
can be created and used
externally to the root
framework

• Open/Browse root file
• Display histograms

content rebin/fits
Change scales

• Online analysis of the
data (simple variable
selection and content
visualization

Example: start a new GUI session Open a new Browser:
 [] TBrowser b;

Call root to access
the command line:

> root

[] TF1 f1("func1","sin(x)/x",0,10)
[] f1.Draw()

name formula range Draw a new
function

or check an histogram already saved in a root
data file: (double click in Tbrowser or):

[] Tfile* f= new TFile("namef.root")
[] //TFile f("namef.root","READ")
[] TH1F* histo=(TH1F*) f->Get("nameh")
[] histo->Draw()

1) Download and install root: https://root.cern/install/

par(0)=10, par(1)= 1, par(2)= 0.5

[] TF1 myfunc(“myfunc”,”gaus”,0,3);

[] myfunc.SetParameters(10.,1.,0.5);

[] TCanvas c;

[] c.Divide(2,1);

[] c.cd(1);

[] myfunc.Draw();

[] TH1F h2(“hist”,”Histo from my function”,100,-3,3);

[] h2.FillRandom(“myfunc”,100000);

[] c.cd(2);

[] h2.Draw();

Example: create a histogram according to a given underlying
distribution and then fit it:

Gauss function:

1- Generation

2

)2(

)1(
5.0

)0(







 


par

parx

epar

2- Fit

Fit a histogram with the function:

[] TF1 f1(“myfunc”,”gaus(0)+[3]*exp([4]*x)”,-10.,10.);

[] f1.SetParameters(1000.,1.,0.5,0.5,-0.5);

[] TH1F h1(“hist”,”Histogram from myfunc”,100,-10,10);

[] h1.FillRandom(“myfunc”,100000);

[] h1.Fit(“myfunc”);

[] //gStyle->SetOptFit(1) : fit parms in statbox

xparpar

parx

eparepar)4()2(

)1(

)3()0(

2









 


• Named scripts can be interpreted line by line (interpreter CINT)
root [3] .x myMacro.C;

• Or Compiled to produce a shared library via ACLiC (then executable)
root [3] .L myMacro.C++; //always recompile
root [3] .L myMacro.C+; //recompile only if necessary
root [3] .x myMacro.C++; //compile and execute
root [3] .L myMacro_C.so; //load the shared library
root [3] myMacro(); //execute the function of the library
root [3] .U myMacro_C.so; //unload the library

• Command line commands (as the example before) can be organized in single files.
• Depending on the complexity of the task, we can just need a set of command to be interpreted

(macros) or we can create a shared library that can be executed or used by other programs (compiled)

Example: execution of a macro
”say.C”
void say(TString what="Hello")
{
 cout << what << endl;
}

root [3] .x say.C
Hello
root [4] .x say.C("Hi")
Hi

Compiling and executing macros

TFile and TTrees

• Very often, ‘high level’ HEP experimental data (i.e. the ones that analyst use to perform Physics
analyses) are stored in ROOT ‘TFiles’. In the file the data are organized by using a ‘TTree’ object.

• Open a file for reading:
root[] TFile f("Example.root")

• Check file content:
root[] f.ls()
TFile** Example.root ROOT file
 TFile* Example.root ROOT file
 KEY: TTree myTree;1 Example ROOT tree (more about this next slide)
 KEY: TH1F totalHistogram;1 Total Distribution
 KEY: TH1F mainHistogram;1 Main Contributor
 KEY: TH1F s1Histogram;1 First Signal
 KEY: TH1F s2Histogram;1 Second Signal

• Get a particular content by name
root[] totalHistogram->Draw();
root[] TH1F* myHisto = (TH1F*)
f.Get(“totalHistogram”);

Example: check the content of the root file.

The ROOT TTree object

TTree is a ROOT object, can be seen as a very flexible container, a table where:

• In each row there is an ‘entry’ (typical HEP example is an ‘event’ or the detector status for a given trigger)
• In different columns there are different objects (whatever ROOT object you consider suitable to contain the

data) that logically belong to the same events. Example: vector of reconstructed particles, DAQ event number,
Timestamp ... can be in different columns.

• TTree allows the storage of a very large amount of
entries. A tree has a hierarchical structure with “Branch
and Leaf”. This is useful if one want to read only the data
belonging to that Branch/Leaf without loading in memory
all the content of the Tree (fastest)

[] TTree* myTree = (TTree*) f.Get(“name”);
[] myTree->StartViewer();

Interactive view of a Ttree:

Useful commands for the interactive analysis of a TTree

Variable list (leafs and branches):
[]> tree->Print()

Plot 1D of a variable
[]> tree->Draw(“varname”)

Scatter plot of two variables:
[]> tree->Draw(“varname1:varname2”)
...with graphical option (lego2)
[]> tree->Draw(“varname1:varname2”, “”, “lego2”)
...with cut on a third variable:
[]> tree->Draw(“varname1:varname2”, “varname>3”, “lego”)

Scatter plot of three variables
[]> tree->Draw(“varname1:varname2:varname3”)

Usage of the class TCut for the definitions of the cuts to be used in the analysis
[]> TCut cut1=“varname1>0.3"
[]> tree->Draw(“varname1:varname2”,cut1)
[]> TCut cut2=“varname2<0.3*varname1+89“
[]> tree->Draw(“varname1:varname2”,cut1 && cut2)

Creating and filling a TTree in a root macro

TFile *myfile = new TFile(“test.root","RECREATE");
TTree *tree = new TTree("myTree","A ROOT tree");

Now add a branch (class Event):
Event *event = new Event();
myTree->Branch("EventBranch","Event",&event);

Add also a Tleaf:
Int_t ntrack; myTree->Branch(“NTrack",&ntrack,"ntrack/I”);

 To fill the Tree:
• Assign the value to ntrack, event …
• myTree->Fill();

 To save the Tree:
• myTree->Write();

Read a TTree in a root macro

This is needed for more complex analysis, see $ROOTSYS/tutorials/tree/tree1.C

TFile f("tree1.root")

Get the Tree by name:
 TTree * t1 = (TTree*)f.FindObject("t1")

Create the appropriate variables to contain the data (the same as the slide
before):
Int_t Ntrack_read;
Associate the Branch/Leaf one wants to read to the variables by using the
method:
SetBranchAddress("name", address)

t1->SetBranchAddress("px NTrack", &Ntrack_read)

To read the TTree entry in position nr we can use the Ttree method
GetEntry(nr)

t1->GetEntry(0) // first entry

Usually, one wants to loop over all the entries, from 0 to t1->GetEntries()

More details about fitting with root

Let’s see here how to define a generic function to be used to fit a histogram. You can define like this all the functions
you like that are writable in a C++ format, and include all the functions defined in the CERN math libraries. The code of
3 examples is shown below, you should include them in a root macro, in its global scope.

Structure of the user defined function

This is the independent variable of this 1D function

This is a pointer to the parameters, it specifies the
array of the parameters associated to the function.

N.B.

• The range where the function is
defined will be set in the calling
part of the program, the user
should check that the function is
well defined in the specified range

• We will see how to set the
maximum range of the fit
parameters where ROOT will try to
find the best solution.

Example on how to fit (user defined):

Here I just define an histogram and I fill it according
to an array of data specified with the variable data[]

Here I define a root TF1 function and I tell ROOT
that it is defined by my code specified outside the
main part of the program.

Notice:

The definition of the number of parameters (6)
The range where we want to perform the fit (0,3)

Extract the result of the fit

or more in general

Useful fitting-related methods

How the root fit works

When you call the ‘Fit’ method, ROOT will ask the TMinuit program (or Minuit2, C++ version) to find the best
parameters to fit the data. By default the Fit method will use an iterative program to find the minimum value of the c2
but other options can be used

More details in:
https://root.cern/root/htmldoc/guides/users-guide/F
ittingHistograms.html , https://root.cern/manual/fitti
ng

https://root.cern/manual/fitting
https://root.cern/manual/fitting

Reminder:

Message:

It is a good idea to study the dependence of your fit results from the fit options

General usage of TMinuit

Root and TMinuit can be used, for generic parameter estimation problems (outside the Fit function).

The user has to define a function to be minimized.

Example: A set of rate measurements at fixed intervals of a radioactive source yielded:

Find the mean with Minuit. Of course this problem can be solved without Minuit. But imagine that you have data with
different errors given by third measurements etc.. There the usage of Minuit can make your life easier.

Indeed MINUIT is a program to calculate numerically:

General usage of TMinuit

Data and definition of the funtion to be minimized

Initialization

Parameter definition

Execution defines function value above minimum
value for error and contour calculation

https://root.cern/manual/math/#tminuit for more,
including Minuit2

https://root.cern/manual/math/#tminuit

ROOT for Unfolding

Several algorithms have been written
already in root to solve unfolding
problem:

• TUnfold is based on a least square fit
with Tikhonov regularisation

• User has to provide data histograms,
response matrix, measurement
covariance matrix.

ROOT for Unfolding

RooUnfold is a package containing many
unfolding algorithms, TUnfold is one of
them

• The Tunfold algorithm is used in this
example where we want to unfold the
data containing two Breight wigner
peaks. Data are affected by a Gaussian
smearing.

• The program return the unfolded
distribution the correlation matrix, the
c2, the bias...

• Have a look to https://root.cern.ch/doc
/master/classTUnfold.html for more
details, including improved https://roo
t.cern.ch/doc/master/classTUnfoldDen
sity.html

https://root.cern.ch/doc/master/classTUnfold.html
https://root.cern.ch/doc/master/classTUnfold.html
https://root.cern.ch/doc/master/classTUnfold.html
https://root.cern.ch/doc/master/classTUnfoldDensity.html
https://root.cern.ch/doc/master/classTUnfoldDensity.html
https://root.cern.ch/doc/master/classTUnfoldDensity.html

QUESTIONS?

SECOND PART:

TMVA, shortly

About TMVA:
The Toolkit for MultiVariate Analysis
(TMVA) is a library that allows to create test statistics for classification from data belonging to known categories (eg.
Monte Carlo) and to classify unknown data using these test statistics. TMVA supports several methods, including
artifical neural networks (ANN), boosted decision trees (BDT) and the Fisher Linear Discriminant Analysis method
(Fisher LDA), which we are already familiar with from the homework problems. The TMVA library is included in ROOT
since 2013.

Example:
We need some data to classify. Let’s download data about Italian wines, from the same region, but produced from
different grape cultivars. This data is available from
https://web.archive.org/web/20220320033501/https://archive.ics.uci.edu/ml/machine-learning-databases/wine/
[1]. Also get the User’s Guide from https://github.com/root-project/root/blob/master/documentation/tmva/
UsersGuide/TMVAUsersGuide.pdf. Each line in the file has 14 numbers: grape cultivar, alcohol content, malic acid,
ash, alcalinity of ash, magnesium, total phenols, flavanoids, nonflavanoid phenols, proanthocyanins, color intensity,
hue, OD280/OD315 of diluted wines and proline.

We can use an artificial neural network to classify the wines. For a good article about artificial neural networks, see
[2]. The code below trains the network and classifies the wines. This code uses a MultiLayer Perceptron Artificial
Neural Network (MLP_ANN), with a hidden layer of 10 neurons and a boosted decision tree (BDT). The same code
can be easily changed to use other methods.
See code Wine.cc:

TMVA References:
[1] A. Asuncion and D.J. Newman, UCI machine learning repository, 2007.
[2] M.W Gardner and S.R Dorling, Artificial neural networks (the multilayer perceptron) - a review of applications in the
atmospheric sciences, Atmospheric Environment 32 (1998), no. 14-15, 2627 – 2636.
[3] https://root.cern/manual/tmva/

https://root.cern/manual/tmva/

QUESTIONS?

Credits:

• Mirko Berretti, Jan Welti

• Luciano Pandola (based on S. Panacek & N. Di Marco) https://agenda.infn.it/getFile.py/access?
sessionId=8&resId=3&materialId=0&confId=3085

• Sungkyun Park, http://hadron.physics.fsu.edu/~skpark/root.html

• https://root.cern.ch/root/htmldoc/guides/users-guide/FittingHistograms.html#creating-user-defined-functions-tf1

• Jen Raaf 2011 REU Root Tutorial @ Duke, http://hep.bu.edu/~jlraaf/2011REU/root_lecture02.pdf

• Wouter Verkerke, UCSB https://indico.nbi.ku.dk/getFile.py/access?
contribId=18&resId=0&materialId=slides&confId=100

• Christoph Rosemann, http://www.desy.de/~rosem/flc_statistics/data/04_parameters_estimation-C.pdf

https://root.cern.ch/root/htmldoc/guides/users-guide/FittingHistograms.html#creating-user-defined-functions-tf1
https://root.cern.ch/root/htmldoc/guides/users-guide/FittingHistograms.html#creating-user-defined-functions-tf1
http://www.desy.de/~rosem/flc_statistics/data/04_parameters_estimation-C.pdf
http://www.desy.de/~rosem/flc_statistics/data/04_parameters_estimation-C.pdf

	Sida 1
	Sida 2
	FIRST PART: INTRODUCTION TO ROOT
	Sida 4
	Sida 5
	Sida 6
	Sida 7
	Sida 8
	Sida 9
	Sida 10
	Sida 11
	Sida 12
	Sida 13
	Sida 14
	Sida 15
	Sida 16
	Sida 17
	Sida 18
	Sida 19
	Sida 20
	Sida 21
	Sida 22
	Sida 23
	Sida 24
	Sida 25
	Sida 26
	Sida 27
	SECOND PART: TMVA, shortly
	Sida 29
	Sida 30
	Sida 31
	Credits:

