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Chapter 1

Introduction

1.1 Information about course

This is the lecture material for the course ”Statistical Inverse Methods”, SIM in
short. In Finnish, Tilastolliset inversiomenetelmät. Course ID is PAP303.
Five credit points are rewarded from the course. To achieve these points you need
to i) complete and returnweekly exercises, and ii) pass the final exam. At least 25%
of the weekly exercises need to be done in order to pass, and completing more will
earn you a better grade.
Exercises will include both problems that are to be solved analytically, i.e., with pen
and paper, and computer tasks that should be completed using somemathematical
or statistical software. We do not specify what kind of software should be used,
choose one you are most familiar with or one you would like to learn during the
course. Programming or details about specific software are not taught, so you need
to have prior knowledge on programming and scientific computing.
Most, if not all the computer task are possible to do using any general purpose
mathematical package such asMatlab,Mathematica,Maple etc. Statistical software
packages such as R (free, under GNU GPL), or general data-analysis environment
such as Python, are also excellent choices for a tool. We do not recommend using
low-level programming such as C or Fortran, since toomuch effort would probably
go towriting code for input/output and for producing graphics. On the other hand,
software packages with limited amount of generality and versatile programming
capabilities such as Excel or SPSS are not recommended either. The University of
Helsinki has a license for SAS software, which is a huge statistical (among others)
package that is used quite often in, e.g., medical research and business applications,
but perhaps because of its vast application areas and history, it is quite complex and
a bit cumbersome to use.
Prior knowledge should includemathematical tools that are taught on basic univer-
sity mathematics courses, e.g., Mathematics for Physicists I and II (Matemaattiset
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apuneuvot, FYS1010 and FYS1011). Especially, we will need basic linear algebra
and basic multivariate differential calculus. Prior course for statistics is Statisti-
cal Analysis of Observations (Havaintojen tilastollinen käsittely, FYS1014). Scien-
tific Computing (Tieteellinen laskenta) I and II (FYS1013 and FYS2085) are recom-
mended, because basic programming, data handling, and plotting are needed in
the exercise sessions.

1.1.1 Spring 2025

Up-to-date version of the dates can be found on the course homepage at https:
//moodle.helsinki.fi/course/view.php?id=69911. Lecturer is Dr. Antti Penttilä
(antti.i.penttila (a t) helsinki.fi).

1.1.2 Material

The course material, i.e., this handout and exercises, are based on the following
course materials or books:

• A.Ekholm, ”Johdatus todennäköisyyslaskentaan” and ”Johdatus uskottavuus-
päättelyyn”, handouts

• S.Mustonen, Tilastollisetmonimuuttujamenetelmät, book, University ofHel-
sinki

• Coursematerial for ”Data-analysis and InverseMethods inAstronomy, 2012”
by M. Juvela, K. Muinonen, H. Haario, and A. Penttilä

• P. Saikkonen, ”Lineaariset mallit” and ”Epälineaariset mallit”, handouts

• C.P. Robert & G. Casella, Monte Carlo Statistical Methods, book, Springer

• E.D. Feigelson&G.J. Jogesh Babu,Modern StatisticalMethods forAstronomy
—With R Applications, book, Cambridge U. Press

1.1.3 Notations

Throughout this material I will try to maintain a uniform and consistent style on
symbol notations. If succeeded, the readability of the formulae will probably be
better. Normal weight italic symbols are used for scalars: a, b, c, x. Random vari-
ables are usually written with capital letters: X,Y . For theoretical variables, i.e.,
parameters of distributions and/or theoretical and random properties of random
variables such as the expected value or variance, Greek letters are usually used:
µ, σ2.
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Functions arewrittenwith normalweight and non-italic font: sin(),P(). If possible,
named distributions such as normal distribution aremarkedwith calligraphic font,
N (µ, σ2).
Withmultidimensional symbols bold weight is used. Vectors are with bold slanted
symbols (x,u,v,µ), and matrices with bold capital non-italics (X,A,B,Σ). Vec-
tors can be constructed from components asx = (1, 2, 3)—using () always refers to
a column vector, i.e., n×1matrix. With []we always refer tomatrices, sox = [1 2 3]T

would also be a (column)vector.

1.2 Randomevent, probability and randomvariable

The concepts of random event, probability and random variable are very shortly
introduced, since it is probably discussed in previous courses, andwe are not going
into details behind the philosophical or mathematical measure theory meanings of
random variable.
Probability can be interpreted from a frequentist viewpoint — if random phenom-
ena or experiment is repeated and its outcome is statistically stable, the ratio of
the number of events where result A is observed, nA, and the number of all events
n will estimate the probability of A. In another words, P(A) ≈ nA/n. Naturally,
0 ≤ P(A) ≤ 1. The actual value of P(A)may be unknown, but we assume that it is
constant.
Frequentist interpretation has some caveats because we often want to consider
probability of events that cannot strictly speaking be repeated. Probability is better
interpreted through set theory. The sample space S includes all the possible events
si. The sample space can be finite, countably infinite or uncountable infinite. All
the probability calculus can be derived from three simple axioms for set A in S :

∀A holds that P(A) ≥ 0 (1.1)
P(S) = 1 (1.2)

If A1 ∩ A2 ∩ . . . ∩ An = ∅, then

P(A1 ∪ A2 ∪ . . . ∪ An) =
n∑

i=1

P(Ai) (1.3)

The third axiom tells that if events are mutually exclusive, the probability measure
is additive. The third axiom also holds for infinite sets. This set theory interpre-
tation of probability can often be graphically studied by means of Venn diagrams,
see Fig. 1.1 for an example.

1.2.1 Some probability laws

Laws of probability can be derived from the three axioms. Some simple and most
common definitions are given here. In what follows we will write A ∩ B shorter
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Figure 1.1: Example Venn diagram with some group theory sets.

with AB.
Addition:

P(A ∪ B) = P(A) + P(B)− P(AB) (1.4)
that is valid also if A ∩ B ̸= ∅.
Conditional probability (ehdollinen todennäköisyys): Probability of event A requir-
ing that B has happened, P(A|B).

P(A|B) =
P(AB)

P(B)
(1.5)

Statistical independence (tilastollinen riippumattomuus): EventsA andB are statisti-
cally (or stochastically) independent if and only if P(AB) = P(A)P(B). The usual
notation for this is

A ⊥⊥ B ⇐⇒ P(AB) = P(A)P(B) (1.6)

Chain rule:
P(AB) = P(B)P(A|B) = P(A)P(B|A) (1.7)

and theorem of total probability:

P(B) =
∞∑
i=1

P(Ai)P(B|Ai) (1.8)

when the sample space S has been partitioned into mutually exclusive sets A1, . . .

Bayes formula:

P(Ai|B) =
P(Ai)P(B|Ai)∑∞
i=1 P(Ai)P(B|Ai)

(1.9)

where P(Ai) is called prior probability and P(Ai|B) posterior probability.
We will prove and use some of these formulae in the exercises.
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1.2.2 Random variable

Arandomvariable (satunnaismuuttuja) is amapping of the result of a randomevent
into real axis. If Y is a random variable, then every possible outcome s ∈ S can be
coded into real number y. For example, if there are only two possible outcomes, ”A
will happen, or A will not happen”, it is often coded that Y (A) = 1, Y (not A) = 0.
Probability of certain randomevent to occur follows from set theory notation,P(Y =

y). This is often written also as PY (y) or even as P(y) for short, if it is evident what
random variable is considered. Evidently, from Eqs. (1.1) and (1.2) it follows that
0 ≤ P(Y = y) ≤ 1.
Discrete random variables are such that the set of possible outcomes is finite or
countably infinite. Finite set can be for example three categories where the event
will fall, and countable infinite set, for example, the set of natural numbers. It is
possible that P(Y = yi) = 0 for some yi, but from Eq. (1.2) it follows that there
must be at least one yi for which P(Y = yi) > 0.
Discrete variables can be divided into different scales according to their properties.
The nominal scale is themost simple one. In nominal scale the outcome of the event
is in finite set of ’categories’ for which there is no natural order. An example would
be the party a person is voting for. These categories are coded into numbers, but no
arithmetic operations are meaningful with the numbers. One cannot say that cat-
egory ’1’ is smaller than category ’2’. The only possible probability description of
nominal variable is to list the probabilities P(Y = y). The complete list of outcomes
and associated probabilities is the probability mass function (pistetodennäköisyysfunk-
tio)

f(y) = P(Y = y). (1.10)

With ordinal scale variable, the order of the categories is a meaningful concept.
For example, many polls may ask if you ”agree fully” (Y = 4), ”agree partly” (Y =

3), ”disagree partly” (Y = 2), or ”disagree strongly” (Y = 1). In that case it is
meaningful to claim that ’4’ is more than ’3’, although operations such as 4− 3 = 1

are not meaningful. For ordinal variable, in addition to probability mass function,
a cumulative distribution function (kertymäfunktio) can be defined

F(y) = P(Y ≤ y) =

y∑
u=1

f(u). (1.11)

See Fig. 1.2 for examples.
The most advance scale for discrete variables is the interval scale. Variable has
countable number of outcomes, they can be ordered, and their intervals are mean-
ingful and constant, i.e., 1 < 2 < 3 and 2 − 1 = 3 − 2 = 1. Both probability mass
function and cumulative distribution function are defined. Furthermore, one can
compute with the outcomes, and especially one can compute descriptive statistics
such as mean, median or standard deviation.
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Figure 1.2: Example of probability mass function (on left) and cumulative distri-
bution function (on right) for discrete random variable.

Continuous variables are measured in interval or ratio scales. Ratio scale differs
from interval scale by having a unique and non-arbitrary zero value, but there are
no real differences in using continuous interval or ratio scale variables in statistics.
Most importantly, continuous variables are uncountable infinite. For that reason,
the probability of every single outcome is zero. Instead of probability mass func-
tion, a non-negative, real valued probability density function (pdf, todennäköisyysti-
heysfunktio) is defined so that

P(y0 < Y ≤ y1) =

∫ y1

y0

f(u)du for y0 ≤ y1. (1.12)

The so-called probability density f(y) can be non-negative although the probabil-
ity of single event is zero. The cumulative density function (cdf) for a continuous
random variable is defined as

F(y) = P(Y ≤ y) =

∫ y

−∞
f(u)du. (1.13)

See Fig. 1.3 for examples.

1.3 Descriptive statistics

The pdf or cdf of a randomvariable is the complete description of the phenomenon,
at least in mathematical sense. However, we often would like to compress that in-
formation into some set of numbers that would give us important information on
the behavior of the random variable. These numbers are called statistics (tunnus-
luvut). In principle, everything that is computed from a pdf or from a random
sample is a statistics, but there are some common choices on how distributions or
samples are described.
We should remember to make clear difference between theoretical statistics and
sample statistics. With theoretical statistics we mean quantities that can be derived
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Figure 1.3: Example of probability density function (on left) and cumulative den-
sity function (on right) for discrete random variable.

from the pdf of a random variable, even though the pdf might be unknown. The
idea is that even if the distribution of the random variable is unknown to us, it
’exists’ and we can gather knowledge about it by observing the realized outcomes
of the random variable. Theoretical statistics are often marked with Greek letters.
The most common example of theoretical statistics and its sample counterpart is
the expected value (µ) and the sample mean (x). Actually, sample mean can also
be thought to be random variable (X) and themean computed from one particular
sample (x) is the realization of that.

1.3.1 Expectation

The expected value (odotusarvo) of variable is the ’center of mass’ for a distribu-
tion. It is the most common statistics, and many distributions use it as a parameter.
Expected value, or the expectation operator E(·), is defined as

E(Y ) =

∫ ∞

−∞
y f(y) dy (1.14)

for a continuous variable, and

E(Y ) =
∑
y

y f(y) (1.15)

for a discrete variable. It is said that the expectation does not exists unless the
integral ∫ ∞

−∞
|y| f(y) dy (1.16)

converges, i.e., has a finite value, and similarly but with sum instead of integral
for a discrete variable. The famous example of a distribution without an expected
value is the Cauchy distribution.
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Expectation is an important statistics and is is useful to know some basic properties
of the E(·) operator. First, it should be noted that a function of a random variable
is also a random variable, i.e., if V = g(Y ) then V is a random variable. It can
be shown that the expectation of V that is a function of Y can be derived without
knowing the pdf of V by

E(V ) =

∫ ∞

−∞
g(y) f(y) dy. (1.17)

With discrete variable the same holds but with sum instead of integral. Another
property is that expectation is a linear operator, i.e.

E(Y1 + · · ·+ Yn) = E(Y1) + · · ·+ E(Yn) (1.18)
E(cY ) = cE(Y ) , where c is constant (1.19)

1.3.2 Variance

As expectation is a location measure, variance is a dispersion measure. It describes
howmuch a random variable deviates from its expectation on average. Variance is
derived as

var(Y ) = E[(Y − E(Y ))2] =

∫ ∞

−∞
(y − E(Y ))2 f(y) dy (1.20)

for a continuous variable. Variance must be finite to exist. Instead of operators E
and var, symbols µ and σ2 are often used.
Some properties of variance are dealt next. First,

var(aY + b) = a2var(Y ). (1.21)

Second, for the variance of the sum of independent variables Y1, . . . , Yn ⊥⊥ holds that

var(Y1 + · · ·+ Yn) = var(Y1) + · · ·+ var(Yn), (1.22)

but the same is generally not true if the variables are not independent.

1.3.3 Other statistics

Other commonly used statistics to describe the shape of the distribution include
skewness (γ1, vinous) and kurtosis (γ2, huipukkuus). Both are derived from the
central moments µk of a distribution, µk = E[(Y − µ)k], so that

γ1 =
µ3

σ3
, and γ2 =

µ4

σ4
− 3. (1.23)

Kurtosis is defined so that it is zero for standard normal distributionN (0, 1). Skew-
ness is zero for all symmetric distributions.
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One important family of statistics are defined by quantiles. The p’th quantile is the
value ξ for which

F(ξ) = p. (1.24)

Especially median is the quantile at 1/2, the middle value of a distribution. Lower
or first quartile is at 1/4 and upper or third quartile at 3/4. Median and other quan-
tiles are so-called robust statistics, since their values are not heavily effected if the
distribution has verywide tails, unlike the expectation or the variance, for example.
An example of some of the abovementioned statistics is given in Fig. 1.4.
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Figure 1.4: Symmetric distribution (normal) on left, and skew distribution (log-
normal) on right. For both the place of expected value is marked with black line,
median with green, and 1st and 3rd quartiles with red and blue. For symmetric
distribution median and µ have the same value.

1.3.4 Covariance

Wehave not yet introducedmultivariate randomvariables, but still it is best tomen-
tion covariance and correlation at this point. Covariance dealswith two-dimensional
random variable (U, V ), and it measures the linear dependence between the vari-
ables. Definition for covariance is

cov(U, V ) = E[(U − E(U))(V − E(V ))] = E(UV )− E(U)E(V ) (1.25)

Without proof we mention that the expected value of the product of two random
variables is

E(UV ) =

∫ ∞

−∞

∫ ∞

−∞
uv f(u, v) du dv (1.26)

for continuous variables. The f(u, v) is the joint distribution (yhteisjakauma) of U
and V . Correlation is covariance that is normalized with standard deviations as

cor(U, V ) =
cov(U, V )

σUσV

. (1.27)
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Independence is awider concept than only linear independence, so zero covariance
does not imply statistical independence, but the opposite direction is true,

U ⊥⊥ V =⇒ cov(U, V ) = cor(U, V ) = 0. (1.28)
With the concept of covariance we can generalize Eq. (1.22) about the variance of
the sum of independent variables to apply also for dependent ones,

var(U + V ) = var(U) + var(V ) + 2cov(U, V ), (1.29)
even when U ̸⊥⊥ V .

1.3.5 Sample statistics

All the aforementioned theoretical statistics have their sample counterparts, or sam-
ple estimates (otosestimaatti), to be exact. The concept and the derivation of an
estimate is introduced in the next chapter, but for now we list formulae for these
common statistics without proving their estimate properties.
Sample mean x is computed as

x =
1

n

n∑
i=1

xi, (1.30)

(sample) standard error as

s2 =
1

n− 1

n∑
i=1

(xi − x)2, (1.31)

and sample covariance as

sxy =
1

n− 1

n∑
i=1

(xi − x)(yi − y). (1.32)

The denominator n− 1 is needed instead of n for the estimator to be unbiased, but
this is a topic of estimation theory and not dealt with here. Estimates for different
quantiles are self-evident and can be made by sorting the sample with n observa-
tions and searching for k’th value so that k/n = p.
Mean andvariance are not robust statistics. If the underlyingdistribution has heavy
tails, i.e., the probability for an extreme values is not ’small’, the sample estimate
may vary a lot from one sample to another. With astronomical observations, for
example, sampling more and more is often not an option, so it is difficult to know
whether observations come from a heavy-tailed distribution or not, or if some of
the observations are simply wrong or affected by another process. Therefor, it is
quite difficult to objectively say if some observations are outliers and should be
left out from the analysis or not. However, due to the large effect that ’unusual’
observations can have in mean or variance estimates, they are sometimes left out,
i.e., data is censored or trimmed. Common practices include trimming out ob-
servations with distance to mean larger than three standard deviations and then
computing mean and variance again.
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1.4 Distributions

The distribution, either the probability mass function for a discrete variable or the
probability density function for continuous, is the complete description of a ran-
dom variable. Alternatively, cumulative functions can be used. One should note
that all random variables have distribution and there are infinitive number of dis-
tributions, but only few of them are ’known’ in the sense that they are named and
their formula is given. In this chapter wewill list some univariate distributions and
their statistics.

1.4.1 Discrete distributions

Bernoulli

Most simple discrete distribution is the Bernoulli distribution for a binary random
variable, i.e., a variable with two possible outcomes, 0 and 1. If the probability of
having 1 is π, then

Y ∼ B(π) =⇒ f(y) = πy(1− π)1−y, (1.33)
E(Y ) = π, var(Y ) = π(1− π), y ∈ {0, 1}. (1.34)

Notice the notation, Y ∼ B(π) should be read as Y has/follows/obeys Bernoulli
distribution with parameter π.

Binomial distribution

When more than one identical and independent Bernoulli trials are sampled, the
total number of successes (outcome 1) when n trials are done is given by the bino-
mial distribution

Y ∼ Bin(n, π) =⇒ f(y) =
n!

y!(n− y)!
πy(1− π)n−y, (1.35)

E(Y ) = nπ, var(Y ) = nπ(1− π), y = 0, . . . , n. (1.36)

Poisson distribution

Poisson distribution can be used tomodel counts, i.e., howmany times some (rare)
event has occurred in one time unit. Good example could be the number of photons
that hit the CCD sensor on a telescope per time unit. When the intensity parameter,
i.e., the expected number of events per unit time, is λ, the distribution is

Y ∼ P(λ) =⇒ f(y) = exp(−λ)
λy

y!
, (1.37)

E(Y ) = λ, var(Y ) = λ, y = 0, . . . . (1.38)
Examples of Poisson and binomial pdf’s are shown in Fig. 1.5.
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Figure 1.5: Pdf’s of binomial (on left) and Poisson (on right) distributions.

1.4.2 Continuous distributions

Normal distribution

Normal distribution is by far the most common distribution due to the fact that it
is the limiting distribution of many derived random variables by the central limit
theorem, and thus can be used as an approximative distribution tomany otherwise
too complicated or non-traceable distributions. Gauss derived the distribution to
describe errors observed in themovements of planets and planetoids. With param-
eters µ and σ2 the distribution is

Y ∼ N (µ, σ2) =⇒ f(y) =
1√
2πσ

exp

(
−(y − µ)2

2σ2

)
, (1.39)

E(Y ) = µ, var(Y ) = σ2, y ∈ R. (1.40)

The term standardization (standardointi) means that the expected value (or mean)
is subtracted from the original value, and the result is scaled (divided) with the
standard deviation. This operation is not limited to normal distribution in anyway,
but if general normal variable Y ∼ N (µ, σ2) is standardized, the results hasN (0, 1)

distribution, a.k.a. the standard normal distribution.
The probability mass in normal distribution between µ− kσ and µ+ kσ is approxi-
mately 68% with k = 1, 95% with k = 2, and 99%with k = 3. These are the famous
one, two and three-sigma intervals that are commonly used in statistical tests and
error limits.
The central limit theorem states that, under quite common conditions, pdf of the
scaled sum Z of independent and identically distributed (i.i.d.) random variables
approaches to normal distributionwhen the number of summedvariables increases
without limit. Precisely

For i.i.d Y1, . . . , Yn with E(Yi) = 0 and var(Yi) = σ2, (1.41)

Z =
1√
n

n∑
i

Yi
approx∼ N (0, σ2), as n → ∞.
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Figure 1.6: One (blue), two (orange) and three-sigma (green) areas in normal dis-
tribution.

This has evident implication to the sample meanX as a random variable. For large
samples, the sample mean should have normal distribution around the true, un-
known mean, and the variance of the sample mean around the true value is σ2/n.

N(0,σ2) with σ2=1/2, 1, 2
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Figure 1.7: Pdf and cdf of normal distributions with different σ.

Exponential distribution

Exponential distribution can be used to model waiting times between two succes-
sive events from Poisson distributed variable. When the intensity parameter (same
interpretation as with Poisson) is λ, the distribution is

Y ∼ Exp(λ) =⇒ f(y) = λ exp(−λy), (1.42)
E(Y ) = 1/λ, var(Y ) = 1/λ2, y ≥ 0. (1.43)
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Exp(λ) with λ=1/2, 1, 2
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Figure 1.8: Pdf and cdf of exponential distributions with different λ.

Gamma distribution

Gamma distribution is a general case of the exponential distribution, exponential
is gamma with index κ = 1. Gamma is a flexible distribution and is used to model
lifetimes and other distances before or between events. With index κ and scale λ,
the distribution is

Y ∼ Gamma(κ, λ) =⇒ f(y) =
λκyκ−1 exp(−λy)

Γ(κ)
, (1.44)

E(Y ) = κ/λ, var(Y ) = κ/λ2, y ≥ 0 (1.45)

where Γ() is the gamma function.
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Gamma(κ,λ) with κ=2,3,4 and λ=1
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Figure 1.9: Pdf’s of gamma distributions with different κ and λ.

Log-normal distribution

Log-normal distribution is yet another distribution for positive-valued variable,
and as its name suggest, it is the result of logarithm of a normal-distributed vari-
able. As the normal distribution can be justified through the central limit theorem
and sum of i.i.d. variables, log-normal is the limiting distribution for the product
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of i.i.d. variables. With parameters µ and σ2, which refer to the underlying normal
distribution, the log-normal distribution is

Y ∼ LN (µ, σ2) =⇒ f(y) =
1

y
√
2πσ

exp

(
−(ln(y)− µ)2

2σ2

)
, (1.46)

E(Y ) = exp

(
µ+

1

2
σ2

)
, var(Y ) = exp(σ2 − 1) exp(2µ+ σ2), y ≥ 0. (1.47)
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Figure 1.10: Pdf’s of log-normal distributions with different µ and σ2.

Distribution of a function of a random variable

Functions of a random variables introduce new random variables which have their
own distributions. The new distribution can be found by replacing the original
variable by the inverse transform function and scaling by the derivative of the trans-
form. More formally, let us have original random variable U with known distribu-
tion fU(u), and a transform function from U to V : V = g(U). With the following
method function gmust be differentiable. With inverse transform h(V ) = g−1(V ) =

U we can define that
fV (v) = fU(h(v)) |

dh(v)

dv
| (1.48)

Please note that if inverse transform u = h(v) is a multiple-valued function, for
example u = ±

√
v, then all the possible pdf values must be summed together for

fV (v), e.g., fV (v) = fU(−
√
v) |d|+ fU(

√
v) |d|.

1.5 Statistical plots

A large part of data analysis is to describe the data with methods that compress the
important information with numbers (statistics) or with figures. We show here a
few typical plots for one-dimensional data, and a scatterplot for multi-dimensional
data. Previous pages have already shown examples of probability distribution
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plots for both discrete and continuous variables. The corresponding plot for sam-
ple data is histogram.
Histogram collects data into bins, and plots the bins so that their height (discrete
variable) or area (continuous variable) corresponds to the frequency of the obser-
vations in bins. If the purpose of a histogram is to compare against a theoretical
distribution, the frequencies must be scaled so that their heights (discrete) or ar-
eas (continuous) sum up to one. The number of bins can be chosen freely, but one
’rule-of-thumb’ suggests to use number of bins between

√
n and 2 3

√
n for data with

n observations.
For data with outliers or otherwise long tails, the widths of the bins can differ in
the histogram. Especially then, one must remember that the area of the ’bar’ in the
histogram is what counts, not the height. An example is shown in Fig. 1.11.
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Figure 1.11: Pdf of normal distribution and histogram of 500 normal-distributed
random numbers.

If distributions of several variables need to be compared in one figure, a box-and-
whiskers plot is quite handy choice. Box-and-whiskers plot shows the range where
the data is, and its quartiles. In that way one gets a rough idea on how the data is
spread, and about the symmetric / non-symmetric properties of the distribution
and tails. The plot is drawn using smallest and largest values of data as ’whiskers’,
and a box from the first to the third quartile. The median or mean value is drawn
in the middle of the box. Example in Fig. 1.12 will enlighten the principle. If there
seems to be outliers in the data, the ’whiskers’might use, e.g., 1% and 99%quantiles
as the endpoints instead of the smallest and the largest value.
Scatterplots (sirontakuviot) are used to showdependence between two ormore vari-
ables. With many variables the individual i vs. j plots can be organized into matrix
of scatterplots.
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Figure 1.12: Box-and-whiskers plot of three samples of 100 observations from dif-
ferent distributions. The first two are from normal distribution, and the third from
log-normal.
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Figure 1.13: Scatterplot of data with
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Chapter 2

Statistical inference

Statistical inference (tilastollinen päättely) is the mathematical theory behind esti-
mates and their distributions. Estimates can be constructed in a way that statistical
hypothesis can be tested against their distributions. Estimate and its distribution is
the link between model (i.e., distribution and its parameters) and data.

2.1 Likelihood

Figure 2.1: Concepts ofmodel, parameter, data, and estimate in statistical inference.

Likelihood (uskottavuus) is the key concept in statistical inference. The theory is
developed by R.A. Fisher at the beginning of the 20th century. Likelihood deals
with data, model, and parameters. First of all, we need to have a model. Model is
the statistical distribution that we believe the random variable Y should obey, so
the model is a probability density function fY (·). Model has parameters but their
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values are unknown. In likelihood problems the parameter vector is often noted
with θ, although individual distributions usually have traditional conventionswith
the parameter symbols. For example, normal distribution has θ = (µ, σ2).
The final component in likelihood is data. Very seldom we are doing inference
based on a single observation y, almost always the data consists of observations
y1, . . . , yn. In that case, the data is a vector of observations, y. In the more general
case, the data is vector of multidimensional observations, i.e., matrix Y.
We are not dealing with random processes here, so the observations yi are identi-
cally distributed and the model or its parameters are not assumed to change with
time. If there is (auto)correlation between consecutive observations (yi, yi+k) we
are dealing with time series (aikasarja), but here we do not consider such cases. We
limit ourselves to independent observations, so together with the assumption of
non-varying model we deal with independent, identically distributed (i.i.d.) observa-
tions y = (y1, . . . , yn).
The idea of likelihood is quite simple and straightforward. Let us say that we have
reasons to believe that our data is from process that can be described with the nor-
mal distribution having fixed and known variance of 1. The only unknown param-
eter is the expectancy µ. What if we have one observation y1? We cannot say much,
but our best guess would be that µ = y1, as in Fig. 2.2 a).

µ
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0.4

a)

○

µ

0.0

0.1

0.2

0.3

0.4

b)

○ ○ ○

Figure 2.2: Example of normal model with one observation (a) and with three
observations (b).

Next, we consider a case with three observations y = (y1, y2, y3), as in Fig. 2.2 b).
Intuitively, we should place our normal distribution so that it would somehow fit
to all three observations in the best possible way. What is the best possible way? If
ourmodel Y ∼ N (µ, 1) is correct, the probability (density) of observing Y = y1 can
be computed from fY (y1;µ, 1). As the observations are i.i.d., the joint probability
of observing all three can be computed as a product of individual probabilities
(densities), fY (y;µ, 1) = fY (y1;µ, 1)× fY (y2;µ, 1)× fY (y3;µ, 1). Please note that with
likelihood and related fields both the data and the parameters are usually written
out with the pdf as fY (y;θ). The abovementioned procedure is, in a nutshell, the
maximum likelihood principle.
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2.1.1 Likelihood function

Following the previous procedure we can formulate the likelihood function L(·) in
a more formal way. Likelihood function is

L(θ;y) = c(y) fY (y;θ), (2.1)

where the pdf is the joint density function for y. Note the small change of paradigm
— likelihood function is used to estimate the unknown parameter vector θ, so that
is the main parameter of the function, the observed data y is a ’secondary param-
eter’.

The function c(y) in Eq. (2.1) can be any function involving only the data and not
the parameter vector, and in that sense the likelihood function is not uniquely de-
fined. Any function L(θ;y) ∝ fY (y;θ) is likelihood function. This fact can be used
to clean out unnecessary constants (i.e., terms independent of θ) from the likeli-
hood, making it a bit simpler.

If we have i.i.d. observations, as we do in almost all the examples here, the likeli-
hood function is the product of the one-dimensional distributions:

L(θ;y) ∝
n∏

i=1

fY (yi;θ) , if y is i.i.d. (2.2)

The likelihood function is used together with the maximum likelihood principle
(suurimmanuskottavuuden periaate). The principle simply states, thatwe shouldfind
the value (i.e., estimate) for our unknown parameter θ so that we will maximize
the likelihood function for the observed data y. As L is defined through the joint
probability density, we are essentially maximizing the probability of the parameter
value, given the data.

In the example in Fig. 2.2 b) we had three observed values: −1.2, 0, 0.7. The like-
lihood function is L(µ) ∝ exp (− ((−1.2− µ)2 + (0− µ)2 + (0.7− µ)2) /2). It is not
too hard to see that setting µ = −1/6 will maximize the likelihood, see Fig. 2.3.

Log-likelihood function

The likelihood function is a product of pdf’s, and the aim is to maximize that. Ta-
king any monotonic and increasing function of L will not alter the values where
the function reaches its extrema points. The logarithm function can be used to re-
duce the likelihood into simpler form, because logarithm of a product is a sum of
logarithms. Therefore, maximum likelihood problems are often solved using the
log-likelihood function (log-uskottavuusfunktio). Log-likelihood function l(·) is sim-
ply

l(θ;y) = log (L(θ;y) , (2.3)
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Figure 2.3: Likelihood function of normal model with three observations as in
Fig. 2.2 b).

where log stands for natural logarithm. Another convenient property of logarithm
is that log(exp(x)) = x. Many statistical distributions belong to the so-called expo-
nential family, normal distribution being one of them, so the exponential form in
likelihood function is quite common. With log-likelihood one can change from a
product of exponents to a sum without the exponent functions.

With the log-likelihood function our example in Fig. 2.2 b) would reduce to a task
of maximizing l(µ) = − ((−1.2− µ)2 + (0− µ)2 + (0.7− µ)2), see Fig. 2.4.
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Figure 2.4: Log-likelihood function of normal model with three observations as in
Fig. 2.2 b).

2.1.2 Maximum likelihood estimate

The concept of likelihood defines themaximum likelihood (ML) principle (suurim-
man uskottavuuden periaate) in statistics. The maximum likelihood estimate (MLE)
of the unknown parameter in our probability model, given the data, is the value θ̂
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that maximizes the likelihood (or log-likelihood) function:

L(θ̂;y) ≥ L(θ;y) ∀θ. (2.4)

This θ̂ is the point-estimate (piste-estimaatti) to θ.
In most of the cases the likelihood and log-likelihood functions are at least twice
differentiable over the whole parameter space. If this is the case, the MLE can be
found by studying the first and second derivatives of the (log-)likelihood function.
Extrema points of continuous and differentiable functions have zero value of the
first derivative. Furthermore, if the extremum point is a maximum, the value of
the second derivative at that point is negative.
The conditions described before form the so-called likelihood equations. In the
general case the parameter is a vector (of length d here), and the vector of first
partial derivatives is called the score function u(·):

u(θ;y) = ∇ l(θ;y) =

(
∂ l

∂ θ1
, . . . ,

∂ l

∂ θd

)
, (2.5)

and the Hessian matrix H is the matrix of the second order partial derivatives:

H = ∇∇T l(θ;y) =

[
∂2 l

∂θi ∂θj

]
ij

. (2.6)

With these notations, theMLE θ̂ satisfies the likelihood equations because u(θ̂;y) =
0 and H at θ̂ is negative definite.

Properties of maximum likelihood estimate

MLE has some nice properties which make it even more important in statistics. We
list the most important here, invariance and asymptotic properties. First, MLE is
invariant in re-parametrization. If we would change our parameter of interest so
that we would use parameter ϕ := g(θ), the MLE of the re-parametrized model
would still be ϕ̂ = g(θ̂).
What is even more important with MLE is that we know its asymptotic distribu-
tion, and it is the normal distribution. The proof of that relies on the central limit
theorem, but is far too cumbersome for us. So, without proof, we state that

θ̂
∼−→ Nd

(
θ, (−H)−1

)
. (2.7)

That means, at least, four things. First of all, it states that if we have ’enough’ data,
MLE will approximately follow normal distribution. Note that as the parameter
here is a vector, the distribution is multidimensional.
Second, MLE is unbiased. This means that the expectation of MLE is the ’true’ θ.
Third, MLE is efficient. This concept has not been mentioned before, but it means
that the variance of MLE is the smallest possible over all estimators.
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Fourth consequence is very important in practice—wehave an asymptotic variance
for the MLE, so we know how much it typically varies around the true θ. This is
the basis for confidence intervals and statistical tests. The asymptotic variance for
vector parameter is expressed through the expectation of the Hessian matrix, i.e.,
the second partial derivatives of the log-likelihood function. While this may seem a
bit cumbersome, the good thing is that we usually do not need to derive estimators
and their variances ourselves. Somebody else has gone through the trouble and
done that for us using the abovementioned equations. For many practical cases the
formulas can be reduced to quite simple forms, for example that the variance of
mean x for normal model is σ2/n.
For practical use of Eq. (2.7), we will need to plug in some actual numbers instead
of the theoretical variables θ and H. We do this by replacing with our best guess,
the MLE. So, θ → θ̂ as the expected value, and also everywhere inH. The negative
Hessian matrix −H where θ is replaced with θ̂ is called the Fischer information
matrix.

2.2 Statistical tests

From estimators and their distributions we can continue to statistical tests and con-
fidence intervals. Let us first deal with confidence intervals.

2.2.1 Confidence intervals

The MLE is a point-estimate, it gives us the most probable value for the unknown
parameter of our model. In the same manner, any statistics, whether MLE or any
other t := t(y), are point-estimates. On the other hand, the data that we have
observed, y, is just one possible outcome of the randomprocess. If wewould repeat
the experiment or redo the observations, we would get different data vector y∗.
Following the thought, we would also get another value for the statistics, t∗ that
would probably differ from the original t. As the observations y and y∗ are both
realizations of a random variable Y , also the estimates t and t∗ are realizations of a
random estimator T := t(Y ).
For that reason, often the point-estimate alone is not enough for us for data-analysis
purposes. A more interesting would be to know an interval where the statistics
would most probably be, even if we would repeat the experiment over and over
again. This interval is called the confidence interval (CI; luottamusväli), or the cre-
dible interval in Bayesian inference.
The p 100 % confidence interval (e.g., 95 %) for parameter θ is the region Ωp where
the true value of parameter lies with p 100 % confidence. More formally

P(θ ∈ Ωp) = p, (2.8)
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although there are somephilosophical issues in frequentist probability concept that
require slightly different formulation∗. The Eq. (2.8) does not define how the area
Ωp is chosen. There are some options for that, but with symmetric distributions (of
T ) all the options lead to the same conclusion — the area Ωp should be chosen so
that it is a symmetric interval around the θ, and only (1 − p) 100 % of the density
is left out from the tails of the pdf. Thus, CI for one-dimensional parameter and
symmetric distribution is such that

P(θ̂ − c ≤ θ ≤ θ̂ + c) = p. (2.9)

μ-c μ μ+c

0.0

0.1

0.2

0.3

0.4

μ

Figure 2.5: Confidence interval (µ̂ − c, µ̂ + c) for µ, when data is from normal dis-
tribution.

Asymptotic confidence interval for maximum likelihood estimate

TheMLE of a parameter has the normal distribution as the asymptotic distribution,
as showed in Eq. (2.7). The variance of that distribution is given by the Hessian
matrix as (−H)−1, or, in practice, by the inverse of the Fischer information matrix
F−1 where the unknown parameter θ has been replaced by θ̂:

F = −E(H) = −H|θ=θ̂ (2.10)

So, in one-dimensional case with scalar value f as the Fischer information matrix,
the standard deviation of theMLE is 1/

√
f, and the confidence interval is of the form

P(θ̂ − ξ√
f
≤ θ ≤ θ̂ +

ξ√
f
) = p. (2.11)

∗Actually, in frequentist sense the parameter value is an unknown but constant value, and proba-
bility is notmeaningful for it. The interval should be formulated using statistics as random variable,
T := t(Y ). Still, in practice the interpretation is more or less the same, and in Bayesian concept it is
allowed to speak about the probability of the parameter.
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The coefficient ξ depends on the selected confidence level p. The ξ is selected so
that the probability in standard normal pdf ϕ(·) from −ξ to ξ is p,∫ ξ

−ξ

ϕ(x)dx = p. (2.12)

For 95 % CI (p = 0.95) this value is 1.96, and similarly 2.58 for 99 % CI. To be
exact, Eq. (2.13) with ξ from normal distribution is only the asymptotic result. If
the probability model actually is normal distribution, the ξ-values should be taken
from the Student’s t-distribution with n − 1 degrees of freedom. The difference is
not large, in practice it is something to be taken into account if sample size is, say,
less than 10. Example of normal and t-distributions are shown in Fig. 2.6.
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Figure 2.6: Standard normal distribution (black) and t-distribution with 2 (blue),
4 (orange), and 8 (green) degrees of freedom.

Confidence interval for mean

Mean y is the most common statistics. With normal distribution as the model, it is
the MLE for the expected value, but the same is true for many other (symmetric)
distributions and their location parameters. And, due to the asymptotic behavior
of the mean, normal distribution is at least its asymptotic distribution.
As we know that the standard deviation of mean is s/√n, following Eq. (2.11) the
(asymptotic) CI for mean around the unkown expectancy µ is

P(y − ξ
s√
n
≤ µ ≤ y + ξ

s√
n
) = p. (2.13)

On the asymptotic distribution of MLE

The asymptotic result in Eq. (2.7) is extremely important in statistical inference,
since it provides tools that can be used to construct asymptotic confidence intervals
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and tests for any ML estimate. However, one should remember that the result is
true only asymptotically when the amount of data goes to infinity. In many cases
the asymptotic result is ’accurate enough’ quite fast, typically with some tens of
observations. However, one should be careful using the asymptotic results with
small amounts of data, and especially with estimates from limited range (e.g., 0 ≤
θ ≤ 1) having values close to their limits.
As an example, there is the asymptotic distribution and the 95% confidence interval
shown in the case with three samples from exponential distribution having the rate
parameter λ = 1/4, see Fig. 2.7. One can see how the asymptotic distribution for
the MLE extends to the negative side, although exponential distribution is defined
only for positive rate parameters. Also the 95% confidence interval extends below
zero. In the same Fig. 2.7 there is also the ’exact distribution’ of the MLE, received
via simulation. The exact distribution is clearly non-symmetric, and respects the
limit of zero for the possible values of the parameter.

θ θ

95 % C.I.

correct distributionasymptotic distribution
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Figure 2.7: In the left, the asymptotic distribution of theMLE for the rate parameter
in exponential distribution for random sample with n = 3. The correct parameter
value, used in sampling, was 1/4. In the right, the correct distribution of the rate
parameter MLE directly from simulation.

Continuing the same example, if we increase our sample size to n = 30, the asymp-
totic result is much better, see Fig. 2.8. The 95 % CI nicely stays above zero, and the
exact distribution is already almost symmetric.

2.2.2 Tests

With statistical tests we can check the likelihood of our hypothesis against the ob-
served data, andmake conclusions based on quantitative results. For tests we need
suitably constructed test statistics t(y) and a hypothesis, the so-called null hypoth-
esis H0 (nollahypoteesi). The null hypothesis needs to define the probability model
for the test statistics, i.e., we must be know how T |H0 is distributed.
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Figure 2.8: Same as in Fig. 2.7, but the sample is n = 30.

If the data shows that our null hypothesis is very unlikely to be true, then we
conclude that the alternative hypothesis H1 (vastahypoteesi) seems more plausible.
While the null hypothesis defines either one point in the parameter space, or at least
some (small) set of parameters, the alternative hypothesis is its complement and
does not define single value for the parameter, rather a single value that the param-
eter is not. For example, one could test with the mean from normally distributed
data if (H0) the µ = c or, (H1) the µ ̸= c.

p-value of a test

The principle of statistical tests lies in the distribution of T |H0 and in the likelihood
of observed t. As said, we must know the pdf of T |H0, i.e., fT |H0(t). With that
knowledge we can calculate the probability of observing as extreme value of T as
we have, or even more extreme, on the condition that H0 is true. We return to the
question of ’even more extreme’ later, but for now we just formulate that

P(T more extreme as t|H0) =

∫
tmore extreme

fT |H0(x)dx

= 1−
∫
t less extreme

fT |H0(x)dx = p. (2.14)

Now, the philosophy is that if it is not that unlikely to observe such values of the
statistic twhen H0 is true, we should not reject it. We do not say that H0 is proven,
but that there is no evidence that it should be rejected. If the p-value is very small
it is quite unlikely to observe such value of t if H0 is true. In that case we have two
possibilities — either H0 is not true, or a very unlikely event has happened. When
the p-value is small enough, we tend to rule out the very unlikely event and say that
H0 is rejected andH1 is accepted with a certain p-value. See Fig. 2.9 for an example
of test statistics where T |H0 obeys χ2-distribution, and the corresponding p-value.
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Figure 2.9: χ2-distribution, observed test statistics t and the area corresponding to
p-value of a one-tailed test.

A certain conservative attitude is adopted with testing, and typical p-values where
H0 is rejected are 0.10, 0.05 and 0.01. In times before computers it was common that
just these three p-values were used, because tabulated values were looked up from
tables containing these three cases. Nowadays one can as easily compute the exact
p-value for the test and report that.

Limitations of statistical tests

With statistical tests one needs to understand their capabilities and limitations.
Tests are quite good to quantify observed facts when there is moderate amount of
data in hand. With just a few observations the uncertainty is usually so large, that
it is very hard to reject H0. With large amount of data the problem is the opposite
— it is quite easy to rejectH0. This is because the test usually states that there is ev-
idence of deviation fromH0. What the test does not quantify that well is how large
the deviation from H0 is, and especially, does it have any practical consequences.
For example, if one tests the correlation between two variables, H0 is that there is
no correlation, ρ = 0. Often with real-world data, the parameter ρ might deviate
slightly from zero. When the number of observations increase, the test becomes
stronger and picks up smaller and smaller differences from zero. Therefore, with
large data it is easy to conclude that the correlation is not zero, and thus there is cor-
relation, but the amount of correlation can be very small and not significant within
the physical/real-world context behind the data. That said, statistical tests are very
useful with moderate number of observations and with moderate deviations from
H0 when it is difficult to see without statistics if the deviation is ’unusual’ or not.
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Rejection areas

We need to define what we mean in Eq. (2.14) by areas where t is ’even more ex-
treme’. That depends on the distribution of the test statistics, and on the alternative
hypothesis. First, if the test statistics can have both negative and positive values, the
distribution must be symmetric around zero. This is the case, for example, if the
test statistics has normal or t-distribution underH0. If we cannot say beforehand if
it is impossible to have smaller or larger values of t than assumed in H0, our alter-
native hypothesis must be two-tailed (kaksisuuntainen), i.e., H0 : θ = c, H1 : θ ̸= c.
In this case (symmetric distribution, two-tailed H1), the rejection area for test is
such that

P(T ≥ abs(t)|H0) = 2

∫ ∞

abs(t)

fT |H0(x)dx = 2

∫ −abs(t)

−∞
fT |H0(x)dx

= 1−
∫ abs(t)

−abs(t)

fT |H0(x)dx = p. (2.15)

If we have some a priori knowledge so that we can rule out, for example, positive
values of t, we have one-tailed (yksisuuntainen) alternative hypothesis H1 : θ < c

and the rejection area is

P(T ≤ t|H0) =

∫ t

−∞
fT |H0(x)dx = 1−

∫ ∞

t

fT |H0(x)dx = p, (2.16)

and in similar manner for alternative hypothesis H1 : θ > c but with integration
limits changed accordingly.

The test statistics might have distribution that is only valid for positive values, for
example the χ2 or F -distribution. These distributions are not symmetric, and we
have to choose carefully the rejection area. If our statistics is close to zero and we
have one-tailed H1, the test is defined as

P(T ≤ t|H0) =

∫ t

0

fT |H0(x)dx = 1−
∫ ∞

t

fT |H0(x)dx = p. (2.17)

With observed test statistics ’large’ and with one-tailed H1, the test is

P(T ≥ t|H0) =

∫ ∞

t

fT |H0(x)dx = 1−
∫ t

0

fT |H0(x)dx = p. (2.18)

If we cannot rule out beforehand the small or large values of t, we must choose
two-tailed test. Then, as we observe t to be either (i) close to zero or (ii) large,
we choose (i) Eq. (2.17) or (ii) Eq. (2.18) and multiply the p-value in the correct
equation by two to get the two-tailed p-value.
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Mean tests

To list some tests, let us first consider the mean test, i.e., test for the expected value.
The data is y, and the statistics of interest is the mean value y. The null hypothesis
is of form µ = µ0. For practical reasons we rather use the test statistics

t =
y − µ0

s/
√
n
, (2.19)

where s is the sample standard deviation. From Eq. (2.7) we know that the asymp-
totic distribution of T |H0 is the standard normal distribution. We can formally say
that

H0 : µ = µ0 =⇒ T
approx.∼ N (0, 1). (2.20)

Actually, if we know that the distribution of data is normal, we can replace the
asymptotic distribution with the exact one: T ∼ tn−1, the Student’s t-distribution
with n− 1 degrees of freedom.
In Fig. 2.10 there are 10 random numbers that are sampled from N (0.1, 1) distri-
bution. Our H0 is that µ = µ0 = 0, and that distribution is shown in subfigure a)
together with the data. The test statistics t is calculated (t ≈ 1.29) and the areas
]−∞,−t] and [t,∞] drawn in subfigure b) together with the distribution of T |H0,
the t-distribution with 9 degrees of freedom. The p-value, i.e., the colored area in
subfig b), is 0.23. Therefore, we do not have enough evidence against H0 : µ = 0

andwe cannot reject that possibility, although in here the data actually comes from
distribution with µ = 0.1.

µ0

0.0

0.1

0.2

0.3

0.4

a)

○○ ○○ ○○ ○○ ○○

µ0

0.0

0.1

0.2

0.3

0.4

b)

-t t

Figure 2.10: Data andH0-distribution in left (a), observed value of t and the distri-
bution according to H0 in right (b).

Similar mean test can be also constructed for two samples and the difference of
their mean values. One has to assume that the samples have the same distribu-
tions (expect for the location parameter) and that their variances σ2

1 and σ2
2 , while

unknown, are equal. In that case,

H0 : µ1 − µ2 = d0 =⇒ T =
(y1 − y2)− d0

sp
√

1/n1 + 1/n2

∼ tn1+n2−2, (2.21)
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where pooled variance

s2p =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
. (2.22)

In what follows we will shortly describe some tests, but the list is not by far com-
plete. You will notice that almost all the distributions for test statistics are either
Student’s t-distribution, χ2-distribution or F -distribution. This is simply because
all these distributions are derived from normal distribution: t-distribution from
the ratio of normal variable and its standard deviation, χ2-distribution from sum
of squared normal variables, and F -distribution from ratio of normal variables.

Variance tests

For variance of one normal distributed sample the test is

H0 : σ
2 = σ2

0 =⇒ T = (n− 1)
s2

σ2
0

∼ χ2
n−1. (2.23)

For two normal distributed samples the test for equal variance is

H0 : σ
2
1 = σ2

2 =⇒ T =
s21
s22

∼ Fn1−1,n2−1, (2.24)

and the alternative hypothesis will define the rejection area to either Eq. (2.17) or
(2.18). For two-tailed test one needs to adjust the p-value to 2p.

Correlation test

The linear correlation, the value of correlation coefficient ρ and its sample statistics
r = cor(x,y), can be tested against being zero. The test is

H0 : ρ = 0 =⇒ T =
r
√
n− 2√
1− r2

∼ tn−2, (2.25)

and rejection area is defined by Eq. (2.15) for two-tailed, and by Eq. (2.16) for one-
tailed test.

Kolmogorov-Smirnov test

Kolmogorov-Smirnov (K-S) test is our first non-parametric test. It can be used to
test if the observed distribution differs from theoretical distribution, and the test
is valid for all (continuous) distributions. The test is based on the empirical cdf
and the theoretical cdf. The test statistics t is defined as t =

√
nD, where D is the

maximum difference between the two cdf’s, see Fig. 2.11.
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Figure 2.11: Empirical and theoretical cumulative distribution functions and the
Kolmogorov-Smirnov difference D.

The K-S test is always one-tailed, and the test statistic has Kolmogorov distribution
if H0 that the sample comes from the theoretical distribution is true. The rejection
area is defined as in Eq. (2.18).

There is a similar version for K-S test between two empirical distributions, check
for example Wikipedia for the details.

Goodness-of-fit test

Goodness-of-fit test can be used for discrete variables. It is formulated as

H0 : Empirical distribution obeys the theoretical one =⇒

T = n
n∑

i=1

(oi − ei)
2

ei
∼ χ2

n−1−m, (2.26)

and large values speak against H0 as in Eq. (2.18). The terms oi are the observed
probabilities (proportions) of class/value/category i in the sample, and terms ei are
the expected probabilities ifH0 is true. The variablem in the degrees of freedom for
the χ2-distribution is the number of unknown parameter values estimated from the
data for the theoretical distribution. For example, if we want to test if the observed
proportions come from uniform (discrete) distribution, we do not need to estimate
any parameter values from the data, and m = 0.

Independence test

The same test statistics as above can be used to test the independence between two-
dimensional categorical variable, i.e., proportions in two-way contingency tables
(cross tabulations, ristiintaulukko). For this test, every observation has two proper-
ties, A and B, so the observation can be associated into one cell in the contingency
table. The proportions of the associations are counted, resulting the following table
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A \B 1 . . . k Σ

1 o11 . . . o1k A1

... ... ... ...
m om1 . . . omk Am

Σ B1 . . . Bk 1

The expected proportions, if the two properties A and B are independent, can be
estimated from the product of themarginal proportions: eij = AiBj . The test statis-
tics is computed over all the rows and columns, and

H0 : A ⊥⊥ B =⇒ T = n
m∑
i=1

k∑
j=1

(oij − eij)
2

eij
∼ χ2

(m−1)(k−1), (2.27)

and large values speak against H0 as in Eq. (2.18).
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Chapter 3

Linear model

3.1 Introduction

Linear model (LM, lineaarinen malli) or (linear) regression analysis (regressioana-
lyysi) is a family of models that is used to analyze dependence between scalar de-
pendent variable (selitettävä muuttuja, vastemuuttuja) and one or more explanatory
variables (selittävä muuttuja).
The term regression refers to regression towards mean, the fact that the expected
value (i.e. ’mean’) is the best prediction to a random variable. We construct the
linear model in such a way that it actually models the expected value of the depen-
dent variable, and the difference between the model and the observations is the
’random part’ of the model.

3.1.1 Systematic part of linear model

The terminology in LM is such that the observed values of the explanatory variable
xi = (xi1, . . . , xik) are collected together into n×k data matrix X:

X =

x11 . . . x1k

. . .
xn1 . . . xnk

 , (3.1)

and the observed values of the dependent variable are collected to vector y =

(y1, . . . , yn). Linear regression refers to a model where the functionality between
the explanatory and the dependent variables is linear. With a common choice of
symbol β = (β1, . . . , βk) for the regression coefficients, i.e., the linear function be-
tween the variables, we end up with

y = Xβ, (3.2)
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or, for a single observation i:

yi = xi· · β = β1xi1 + · · ·+ βkxik. (3.3)

The equations above describe the systematic part of LM, there is no random com-
ponent included yet.

3.1.2 Random part of the linear model

The systematic part of LM does not say anything about random variables or devi-
ations between the model and reality. For that we need to introduce randomness
into LM. That is done via the residuals (residuaali, jäännös). The idea is that the
systematic part of the model is described perfectly by Eq. (3.2), but the random-
ness is added to the equation and that explains the errors between the model and
the observations. With residual ϵ (random variable) this means that LM for one
observation is

Yi = xi· · β + ϵi = β1xi1 + · · ·+ βkxik + ϵi, (3.4)

or, in matrix form for all the observations

Y = Xβ + ϵ (3.5)

i.e. Y1

...
Yn

 =

x11 . . . x1k

. . .
xn1 . . . xnk


β1

...
βk

+

ϵ1...
ϵn

 . (3.6)

Figure 3.1 shows an example of one-dimensional linear model and Fig. 3.2 for two-
dimensional model.
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7

x

y

e E[y(x)]

Figure 3.1: Concepts in regression model — data x, dependent variable y, regres-
sion model ŷ = E[y(x)], and residual ϵ.

3-2



0

5

10
0

5

10

5

10

15

Figure 3.2: A linear model with two explanatory variables.

3.1.3 Assumptions for linear model

Some assumption are needed to make LM statistically and technically valid. The
so-called standard assumption are:

1. Explanatory variable is non-random. There are ways to go around this as-
sumption, and this is more important in principle than in practice. Anyway,
it should be noted that LM in its basic form does not take possible errors in
X into account in any way.∗

2. Explanatory variables are not (completely) linearly dependent on each other.
There cannot be an explanatory variable whose values can be computed as a
linear combination from the other explanatory variables. This will indicate
that, for example, the correlation coefficient ρ between any two explanatory
variables cannot have values −1 or 1. This is mostly a technical assumption,
since if violated, the matrix XTX is singular and cannot be inverted. The
inversion will be needed in the estimation of LM as you will see later. We can
run into numerical problems also in cases where an explanatory variable is
almost a linear combination of the other variables.

3. The expected value of each residual is zero, i.e., E(ϵi) = 0 ∀i, orE(ϵ) = 0. This
is a vital assumption, since it guarantees that we are modeling the expected
value of Y with the systematic part of our model, because now

E(Yi) = E(β1xi1 + . . .+ βkxik + ϵi) = β1xi1 + . . .+ βkxik + E(ϵi)

= β1xi1 + . . .+ βkxik. (3.7)

4. The variance of the residuals are constant, i.e., var(ϵi) = σ2 ∀i, or var(ϵ) = σ21.
This is the so-called homoscedasticity assumption. In many cases where this

∗For LM when there is significant measurement error in explanatory variables, see Total least
squares from, e.g., https://en.wikipedia.org/wiki/Total_least_squares.
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is initially not true, it is possible toweight the samples so that this assumption
becomes true for the weighted model (dealt later in this chapter). For the
dependent variable this indicates that var(Yi) = σ2.

5. There is no correlation/covariance between the residuals, i.e., cov(ϵi, ϵj) =

0 ∀i ̸= j or cov(ϵ) = σ2In. The lack of (auto)correlation rules out time-series
from standard linear model.

You may notice that there are no assumptions about the normality of the residuals.
These are not needed for LM to be ’valid’ in statistical sense. However, if normality
can be assumed, it will allow us to do certain statistical inference dealing with con-
fidence intervals, tests, etc. But, even in cases where normality is not assumed per
se, results derived from normal assumption are usually asymptotically valid. The
normal assumption states that

ϵ ∼ Nn(0, σ
2In), (3.8)

and thus
Y ∼ Nn(Xβ, σ2In), (3.9)

3.1.4 Linear model is linear with respect to model coefficients

An important detail to notice with LM and its formulation (e.g. Eq. (3.5)) is that
only the functional dependence between the data and the dependent value needs
to be linear, i.e., of form Xβ. The data itself can be transformed by any linear or
nonlinear function. The justification is simple — if we want to use f(xi) where f is
any function in LM instead of xi, we can just introduce new variable x∗

i = f(xi) into
matrixX. More generally, Y = f(X)β+ ϵ = X∗β+ ϵ. In Fig. 3.3 there are examples
of one-dimensional LM’s where the dependence is through x2 or log(x).
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Figure 3.3: Examples of two linear models with one explanatory variable.
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Constant term

One application to the above is the constant term (vakiotermi) in LM, β0. You will
often see models in the form of

Yi = β0 + β1xi1 + · · ·+ βkxik + ϵi, (3.10)

but this is a simple transformation to data matrix. If you introduce constant value
of 1 as the first variable, you will end up with previous equation. Thus, constant
term is introduced to LM by constructing data matrix

X =

1 x11 . . . x1k

... . . .
1 xn1 . . . xnk

 . (3.11)

With the constant term it is a popular convention that the coefficients are re-numbered†

from 0 to k, instead of 1 to k + 1.

Interaction term

Withmultivariate linearmodel a common ’derived variable’ is the so-called interac-
tion term (yhteisvaikutustermi), i.e., variable of type xjxl. With the interaction term
present the (hyper)planes from LM with only linear xj’s transforms into models
that are not (hyper)planes with respect to original xj’s. In Fig. 3.4 there are ex-
amples of two-dimensional LM’s where the dependence is not in the form of (hy-
per)plane as respect to x1 and x2.

Transformation into linear

The fact that the explanatory variables can be transformed can also be applied to the
whole model equation and the dependent variable Yi, but with certain conditions.
Let us have an example of model where the systematic part is yi = β0x

β1

i1 · · · xβk

ik .
By applying logarithm function to both sides of the equation, we end up with new
dependent and explanatory variables: y∗i = log(yi) = log(β0) + β1 log(xi1) + · · · +
βk log(xik) = β∗

0 + β1x
∗
i1 + · · ·+ βkx

∗
ik. The transformed model is linear.

The one important thing to consider in transformations is that it does not only trans-
form the systematic part, but the residuals also. With the example above, residuals
must be additive to the transformedmodel. That implies that theyweremultiplica-
tive in the original one, i.e., Yi = β0x

β1

i1 · · · xβk

ik ϵi. If this is not reasonable model for
the residuals, the transformed model violates the LM form.

†Please note that in the next sections, the formulae for the confidence intervals, parameter tests,
model performance etc. use the symbol k as the number of coefficients in the model. If you include
a constant term and re-number from 0 to k, you will actually have k + 1 coefficients and should
revise the formulae accordingly.
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Figure 3.4: Examples of two linear models with two explanatory variables. In left,
dependence is of form β0+β1x1+β2x1x2, and in right of form β0+β1x

2
1+β2 log(x2).

Categorical variables

Categorical variables (luokittelumuuttujat, i.e., discrete variables with reasonably
small number of possible values) can be used in linear models, although there
should usually be continuous variables also present in themodel. Model with only
categorical variables can be analyzed better as a special case of LM using analysis-
of-variance (ANOVA) methods. The recipe for including categorical variables is
again to encode the categories to one or more explanatory variables.
Let us have categorical variable c that has p + 1 different outcomes (categories),
coded here with numbers 0, 1, . . . , p. We can introduce a set of p new variables
{gi1, . . . , gip} into X. We need one ’reference category’, for example the case c = 0.
With the reference category we have the set as {0, . . . , 0}. With the case c = 1 we
have {1, 0, . . . , 0}, with c = 2, {0, 1, 0, . . . , 0} etc., and finallywith c = p, {0, . . . , 0, 1}.
Now the augmented data matrix row for, e.g., observation with c = 2 and p+1 = 4

would be x∗
i = (0, 1, 0, xi1, . . . , xik).

With the data matrix augmented with new variables coded from the categorical
variable, the systematic part of ML is

yi = β0 + β1gi1 + . . .+ βpgip + β(p+1)xi1 + . . .+ β(p+k)xik, (3.12)

and the model can be estimated in normal manner. The additional limitation with
categorical variables is that if we do variable selection or model diagnostics (see
later in the chapter), the augmented variables must be dealt as a group.
The interpretation of the model with augmented variables for categories is that the
constant term β0 is now related to the case with c = 0. The regression coefficients of
the new categorical variable, βj’s, estimates the difference in y when moving from
the reference class to class c = j. There is a technical reason behind the reference
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class having zeros for all the new variables — otherwise the ’constant’ variable 1

would be sum of the new variables, and that would violate the beforementioned
assumption 2 with ML.

3.2 Estimation of the linear model

The first task in LM analysis is to estimate the coefficients β for the model. The
LM is implicitly assumed to refer to a case where the L2-norm between model and
observations is minimized. This combination of LM and minimization of L2-norm
is called the method of least squares or ordinary least squares (OLS, pienimmän neliö-
summanmenetelmä, PNS).With OLS the values for the coefficients can be computed
analytically, which is generally not the case with non-linear models or with other
than the L2-norm.

So, in OLS we want to minimize the sum of squared residuals (or errors, SSE):

SSE =
n∑
i

(yi − β1xi1 − . . .− βkxik)
2 = (y−Xβ)T (y−Xβ) = ∥y −Xβ∥2 . (3.13)

The solution to the minimization above can be derived by solving the root of its
derivative. Without details, it will give us the so-called normal equations (NE)

XTXβ = XTy. (3.14)

The solution to NE is the estimate to the model, b = β̂:

b = (XTX)−1XTy. (3.15)

With the estimate b for β we can compute the observed residuals, e = y−Xb, and
again this is the estimate for the random variable ϵ. Now the SSE can be expressed
with

SSE = ∥e∥2 , (3.16)

and the residual variance σ2 (jäännösvarianssi) of the model can be estimated by s2

as
s2 =

1

n− k
SSE. (3.17)

Note that to compute the OLS estimate b, the matrix inversion in Eq. (3.15) can
be avoided, which can be preferable with large number of variables k because the
matrix to be inverted, XTX, is a k×k matrix. The solution to NE in Eq. (3.14) can
be computed with LU- or Cholesky decomposition and Gaussian elimination.
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3.2.1 Properties of OLS estimate

Wecanderive quite easily someproperties of theOLS estimate b. Most importantly,
it holds that

E(b) = β, (3.18)
and

cov(b) = σ2(XTX)−1. (3.19)
These properties do not require any assumption of normal distribution for the
residuals ϵ. However, if we assume that residuals follow normal distribution we
can show that the OLS estimate is also the maximum likelihood estimate, and that

b ∼ Nn(β, σ
2(XTX)−1) (3.20)

3.2.2 Weighted linear model

Weighed LM comes up in cases where the variance of residuals or of the depen-
dent variable is not constant. The observations where variance is small should in-
fluence ’more’ to the estimate, they should ’weight’ more. This means that instead
of var(ϵi) = σ2 we have var(ϵi) = σ2/wi, where wi is the weight of the observation.
In matrix formulation this is written as

cov(ϵ) = σ2V, (3.21)

whereV is a diagonal matrix ⌈1/w1 · · · 1/wn⌋.
The estimation of weighted LM is derived with the help of (Cholesky) decompo-
sition V = CCT . Multiplying LM by C−1 from left we get

C−1y = C−1Xβ +C−1ϵ, (3.22)

which can be written as y∗ = X∗β + ϵ∗. It is easy to see that

E(ϵ∗) = C−1E(ϵ) = 0 (3.23)

and
cov(ϵ∗) = C−1cov(ϵ)(C−1)T = σ2C−1CCT (CT )−1 = σ2In, (3.24)

so that the transformed model is a regular LM. For the estimation of β one does
not even need to form the decomposition, since

b =
(
(C−1X)TC−1X

)−1
(C−1X)T C−1y =

(
XT (CCT )−1X

)−1
XT (CCT )−1y

= (XTV−1X)−1 XTV−1y. (3.25)

This equation above means that the weighted model can be estimated quite sim-
ilarly as the normal LM, only including an extra weight matrix V. Actually, the
procedure is valid for any positive definitive V, therefore it is called the general-
ized linear model and it allows also covariance between the residuals.
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3.3 Diagnostics of linear model

The estimation of linear model, as seen above, is not too complicated. Main inter-
ests for researcher with LM is usually the diagnostics for the model. These include
checks regarding the model assumptions, selection of variables, confidence inter-
vals etc.

3.3.1 Validity of model assumptions

The assumptions behind LM were introduced in Sec. 3.1.3. The validity of the as-
sumptions can be assessed with the observed residuals of the model

e = y −Xb, (3.26)

or even better, with standardized (i.e., studentized) residuals ri:

ri =
ei

s
√
1− pii

, (3.27)

where s is the estimate of the residual standard deviation, see Eq. (3.17). The term
pii is part of the covariance matrix of the observed residuals:

pii is [P]ii in P = X(XTX)−1XT . (3.28)

With weighted model where vii are elements [V]ii in cov(ϵ) = V, the standardized
residuals are

ri =
ei√

vii
√
1− pii

. (3.29)

With residuals, the bestway to study the validity of different assumptions is to draw
figure(s) of (standardized) residuals against explanatory variables, or against pre-
dicted response ŷ = Xb.

Model is unbiased

Thefirst assumption to checkwith themodel is the assumption 3 in Sec. 3.1.3, which
says that the expected value of residuals should be zero, E(ϵ) = 0. As the observed
residuals should estimate the theoretical ones, the (standardized) residuals should
have a mean value of zero. If the mean of the observed residuals is not zero, there
are missing variables in the model, or the data cannot be explained with a linear
model.
An example is shown in Fig. 3.5. The data is produced from y = x2 + ϵ, and two
models are fitted. Firstmodel is y = β1x, and the second is the correct one, y = β1x

2.
This can be seen in the residual plot, where the residuals from y = β1x are clearly
biased with a nonzero mean value, at least locally (see range from 0 to 4, and then
from 4 to 5). Residuals from y = β1x

2 show random, non-systematic variation
around zero, as is expected if the assumptions of LM are valid.
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Figure 3.5: Observations and two linearmodels on left, and their residuals on right.
Blue color is for model y = β1x, and orange color for y = β1x

2.

Residuals are homoscedastic

The assumption 4 in Sec. 3.1.3 says that the residuals should be homoscedastic, i.e.,
the variance of residuals should be constant. This can be quite reliably checked
graphically from residual plots. In Fig. 3.6 we show example of homoscedastic and
heteroscedastic residuals. In many cases the heteroscedasticity can be removed by
choosing suitable weighting for the observations, i.e. modeling out the trends in
variance.
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Figure 3.6: Example of homoscedastic residuals (on the left) and heteroscedastic
residuals (on the right).

Residuals are normal-distributed

The assumptions 1, 2, and 5 from Sec. 3.1.3 cannot be verified from residual plots.
The first one (explanatory variable is non-random) requires background informa-
tion from the observation event and the physics behind the data. The second one
(explanatory variables not linearly dependent) is seen as difficulties in the nume-
rical estimation of the model. The validity of the assumption 5 (no correlation be-
tween the residuals) can be seen from residuals, but without further information
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about the process it is not possible to distinguish that effect from the possible bias
resulting from selecting wrong variables to the model.

The ’extra’ assumption about normality, however, can be tested from the residuals.
If the residuals seem to follow normal distribution, all the tests and confidence
intervals regarding LM are more reliable. There are special tests for normality, e.g.,
Saphiro-Wilk or Anderson-Darling, but one graphical analysis tool is the so-called
quantile-quantile (Q-Q) plot.

The Q-Q-plot is drawn so that the theoretical quantiles of the residuals are plotted
against the residuals. Let us first sort the (standardized) residuals so that e[] =

(e[1] ≤ e[2] ≤ . . . ≤ e[n]). Then, we form the corresponding empirical cumulative
distribution values c = (1/(n+1), 2/(n+1), . . . , n/(n+1)). The theoretical quantiles
are now computed with the inverse cumulative distribution function of standard
normal distribution from the ci’s as ti = F−1(ci). Finally, the pairs (ti, e[i]) are plotted
as in Fig. 3.7.

If the data is fromnormal distribution, the pairs should lie approximately in a y = x

line in the plot. Large deviations from the line is a sign of non-normal distribution.
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Figure 3.7: Residuals that are normally (blue) or non-normally (red) distributed
in the top, and their Q-Q-plots in the bottom.
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3.3.2 Model performance

The overall performance of LM is generally measured from the amount the ob-
servations deviate from the model, and that is measured by the observed sum of
squared residuals (residuaalineliösumma), SSE

SSE = e · e = ∥e∥2 =
n∑
i

e2i = ∥y −Xb∥2 =
n∑
i

(yi − xi · b)2, (3.30)

or by the observed residual variance s2 = SSE/(n − k), where k is the number of
parameters in the model. The smaller the SSE, the better the model fits to obser-
vations.

The SSE does not take into account the general variability of the dependent variable
Y , only the amount of variability around the model. Therefore the coefficient of
determination R2 (selitysaste) is preferred, because it relates the residual variance
to the total variance. The coefficient of determination is defined as

R2 = 1− SSE

SST
, (3.31)

where the sum of squares total (kokonaisneliösumma) is

SST =
n∑
i

(yi − y)2 = y · y − ny2 (3.32)

The R2 is always between 0 and 1, and can be said to be the fraction of the variance
explained by the model. For that reason, R2 is often given in per cents.
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Figure 3.8: Observations and two fitted models. Red line is for model y = β0 + β1x

and blue line for y = β0 + β1x+ β2x
2. The R2-values for the models are 39 % (red)

and 82 % (blue).
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3.3.3 Variable diagnostics

If we have physical model for the observations, we knowwhat kind of explanatory
variables to include. Often, however, we need to find suitable model just by ’guess-
ing’ or trying different choices. In these cases it is very important to be able to say
if certain variables are or are not important for the model. The importance can be
tested.
In LMa variable xj (which can also be any function of the ’original’ x), is not impor-
tant if its coefficient βj is zero, because then it will not influence to the prediction.
Of course the estimate bj is practically never exactly zero, so we need to have amea-
sure which tells how close it must be to zero to be unnecessary. That depends on
the variability of the explanatory and the dependent variable. The test statistics tj
that can be used to study the importance of variable xj is defined as

tj =
bj

s
√
mii

, (3.33)

where s is the observed residual standard error, and bj the estimate for the coeffi-
cient βj . The factormii is the element (i, i) from matrix M−1 = (XTX)−1.
The null hypothesisH0 is that βj = 0, i.e. it is not important in themodel. UnderH0,
the test statistics is (asymptotically) t-distributed with n − k degrees of freedom,
and the rejection area is defined by Eq. (2.13). The standard practice for reporting
LM fit is to construct a table of its coefficient estimates, their standard deviations,
test statistics, and p-values:

β0 b0 s
√
m00 b0/s

√
m00 2FT (−abs

(
b0/s

√
m00)

)
... ...
βk bk s

√
mkk bk/s

√
mkk 2FT (−abs

(
bk/s

√
mkk)

)
where FT is the CDF of t-distribution with n− k degrees of freedom.
Let us take an example. In Fig. 3.9 we have 50 observations and fitted model of
form y = β0 + β1x+ β2x

2. This fit could be reported as:

estimate s.d. test statistics p-value
β0 1.84 0.157 11.7 1.46×10−15

β1 1.36 0.246 5.53 1.4010−6

β2 −0.0790 0.107 −0.738 0.464

The conclusion of the report is that the p-value for coefficient β2 is large, much
larger than e.g. 5 %. The H0 stating that β2 = 0 cannot be rejected. Because β2 = 0,
the variable x2 is unnecessary in the model and should be removed. A new model
of y = β0 + β1x should be fitted.
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Figure 3.9: Observations and fit y = 1.84 + 1.36x− 0.0790x2.

Confidence regions and the distribution of the estimated coefficients

Following from previous tests we can also construct confidence intervals for single
variables in the model, or confidence regions for multiple variables. The main re-
sult that we need is that the vector of the estimated coefficients should follow, at
least approximately, the multinormal distribution:

β̂
approx.∼ Nk

(
b, s2(XTX)−1

)
(3.34)

Confidence intervals for individual coefficients can be constructed using this rela-
tion. Confidence regions for multiple coefficients will be (hyper)ellipsoids due to
the properties of multinormal distribution (discussed later in Sec. 6).
The covariance matrix of the coefficient estimate C = cov(β̂) = s2(XTX)−1 is in-
teresting as such for diagnostic purposes. Or rather, correlation matrixΣwith ele-
ments

[Σ]ij =
Cij√

Cii

√
Cjj

(3.35)

is interesting. If the cross-correlations out of the diagonal of the correlation matrix
are close to zero, the variables in the model are close to being independent. Inde-
pendent variables are a good thing, since they introduce explanatory power to the
model that is not covered by other variables. If there are cross-correlations close to
±1, the variables in the model are correlated. That means that they more or less
’measure the same quantity’ or ’explain the same phenomena’. Usually one of the
two highly cross-correlated variables should be removed from the model.

3.3.4 Model selection

Model selection is a procedure where the correct explanatory variables are not
known beforehand, and decisions on the variables that are selected to the final
model are based on the variable diagnostics. The selection procedure is not always
very straightforward, and that is because the possible cross-correlationsmentioned
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above in the previous section and in Eq. (3.34). The cross-correlations are the rea-
son that variables can be added or removed to the model only one by one, not in
groups. When, for example, the variable with the largest p-value is removed from
the model, the p-values of the remaining variables will change. Furthermore, the
order of the least important variables might change.
There are two different procedures that can be used in automated model selec-
tion— the forward selection and the backward elimination. With small number of
variable candidates in the model, all possible combinations can be checked. As the
number of variable candidates increase, the number of possible combinations be-
comes too large for every combination to be computed. Search methods have to be
incorporated. In forward selection the best possible single variable is added to the
model at one round, and this is continued. In backward elimination one starts from
the fullmodel, i.e. from themodelwith all the possible variables. In each round the
worst variable is removed. The ranking of variables is based on their p-values. The
bidirectional elimination is a combination of the forward- and backward methods.

Selection criteria

We can have competingmodels either bymanual selection of a few sets of variables,
or as the result from the model selection tree. A quantitative measure to compare
different models as whole is needed to select the best models from the possible
ones. The coefficient of determination R2 could seem as a possible measure be-
tween the models, but it has one unwanted property. If you have set of variables A,
and you add one variable xj , the R2 for the latter model is always as large or larger
as for the former model. In another words, new variable cannot add ’negative’ ex-
planatory power, it always contributes positively to R2. Only models with exactly
the same number of variables can be compared fairly using R2.
Therefore, differentmeasures of the ’goodness-of-fit’ have beendeveloped that take
into account the number of explanatory variables that is used to reach certain level
of R2. In one way or another, there is a ’penalty’ from adding more variables. The
most important model selection criteria are adjustedR2 (R2

adj), Akaike Information
Criterion (AIC), and Bayesian Information Criterion (BIC). These are defined as:

R2
adj = R2 − (1−R2)

k

n− k
(3.36)

AIC = n log

(
SSE

n

)
+ 2k (3.37)

BIC = n log

(
SSE

n

)
+ log(n)k (3.38)

Large values for R2
adj are ’good’, while for AIC and BIC small values are searched

for. The three different criteria ’punish’ a bit differently from adding variables, but
all are quite good in practice. The BIC is perhaps commonly preferred over the
others.
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Chapter 4

Nonlinear model

4.1 Introduction

Nonlinear model (NLM, epälineaarinen malli) is an extension to linear model where
the systematic part of the model is no longer a linear functionXβ. Generally, NLM
is of form

Yi = f(xi1, . . . , xik; β1, . . . , βp) + ϵi = f(xi;β) + ϵi (4.1)

for i = 1, . . . , n observations, k variables and p parameters. Note that for LM k = p,
but this is not requirement in NLM. In vector form the NLM is

Y = f(X;β) + ϵ, (4.2)

where Y is n×1,X is n×k, β p×1, and ϵ n×1. Function f is vector-valued function
(f(x1;β), . . . , f(xn;β)). In what follows we might shorten f(xi;β) to fi(β) or even to
fi.

4.1.1 Some nonlinear models

Some nonlinear model types are introduced here, but because any (non)linear
function f will introduce NLM, the list is merely just a small set of examples. First
of all, multiplicative model is NLM if errors are additive, i.e.

Yi = β0x
β1

i1 · · · xβk

ik + ϵi (4.3)

Please note that if errors are also multiplicative, the model can be transformed into
linear:

Yi = β0x
β1

i1 · · · xβk

ik e
ϵi ⇒ (4.4)

log(Yi) = log(β0) + β1 log(xi1) + . . .+ βk log(xik) + ϵi (4.5)
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In modeling the degree of linear polarization in atmosphereless Solar System tar-
gets such as asteroids covered with regolith, or dust in comets coma, the so-called
trigonometric model is used. It is defined as

Yi = β1 sin(xi)
β2 cos(xi/2)

β3 sin(xi − β4) + ϵi, (4.6)

where xi is the phase angle and Yi is the degree of linear polarization. The function
is shown in Fig. 4.1(a).
A model for limited growth is shown in Fig. 4.1(b). The model is

Yi = β1 + β2

(
1− e−β3xi

)
+ ϵi, (4.7)

The growth starts from β1 and is limited by β1 + β2. The parameter β3 controls the
speed of growth.
A growth curve can be defined so that it will reach itsmaximum, but slowly decline
after that. A model that is shown in Fig. 4.1(c) is

Yi = β1 +
β2xi

β3 + xi + β4x2
i

+ ϵi, (4.8)

The growth starts from β1 and reaches its maximum at
√

β3/β4, but will then de-
crease.
One more type of growth curves is the S-type curves such as the logistic function
in Fig. 4.1(d):

Yi =
β1

1 + e−β2(xi−β3)
+ ϵi, (4.9)

where β1 controls the limiting value of the growth, β2 its steepness, and β3 the
location where positive derivative turns into negative.
Many of the NLM’s can be derived as a solution for differential equation, for exam-
ple the growth curves (b) and (d).

4.2 Model estimation

Most of the model estimation and diagnostics are done more or less the same way
as in linear model. The main difference is, that results regarding the distribution
of parameters, i.e. parameter errors, are always asymptotic, and that the model
estimation is a numerical optimization problem. With LM the model estimate is
given in closed form, and results regarding parameter distributions are exact under
the normal assumption.
Let us derive theNLMparameter estimate from themaximum likelihood principle,
although the same result can be reached from the ’minimal least squares’ principle.
Our model, now with normal assumption, is that

ϵi ⊥⊥ ϵj, ϵi ∼ N (0, σ2) , or alternatively (4.10)
Yi ⊥⊥ Yj, Yi ∼ N (fi(β), σ

2)
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Figure 4.1: Four examples of different models in nonlinear regression.

Because the i.i.d observations, the likelihood function for the model is

L(β, σ2) = (2πσ2)−n/2 exp

(
− 1

2σ2

n∑
(yi − fi(β))

2

)
(4.11)

We will write the squared residual sum in a shorter form, S(β) =
∑n (yi − fi(β))

2,
and state that the log-likelihood function for the model is

l(β, σ2) = −n

2
log(σ2) − 1

2σ2
S(β) (4.12)

Themaximumof the log-likelihood gives theML estimates for theNLM.Regarding
to parameter vectorβ, we can easily see that estimate b = β̂mustminimize the sum
of squared residuals S(β). When inputting that back to log-likelihood, derivating
with respect to σ2, and searching for root, we find that s2 = σ̂2 = 1

n
S(b).

Contrary to linear model, the estimate b cannot (usually) be expressed in closed
form. Theminimization of S(β)must be done numerically. Quite generally Gauss-
Newton or Levenberg-Marquardt algorithms are used.

4.2.1 Parameter properties

The asymptotic properties of theNLMestimates b and s2 can be found by analyzing
the Hessian matrix of the MLE’s (see Eq. (2.6)). After some cumbersome calculus,
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we can find that for the residual variance we have

s2
as.∼ N

(
σ2,

2σ4

n

)
, (4.13)

and for the actual parameters

b
as.∼ Nn

(
β, σ2

(
F(β)TF(β)

)−1
)
. (4.14)

The matrix F(β) is short for the n×p partial derivative matrix with elements

F(β) =

[
∂fi(β)

∂βj

]
ij

. (4.15)

The tests regarding individual parameters inNLMare done in similarmanner than
with LM, only change being that instead of matrix M−1 = (XTX)−1 in LM (see
Eqs. (3.33)–(3.35)) we have matrix M−1 = (F(β)TF(β))−1 in NLM. However, one
should note that the null hypothesis of H0 : βi = 0 is not always meaningful in
NLM.
The model diagnostics with e.g. residual plots are also done as with LM. The co-
variance matrix of b is even more important than with LM — highly correlated
parameters are hard to estimate with numerical methods. Moving to a different
parametrization might help.
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Chapter 5

Nonparametric regression anddistri-
bution estimation

Nonparametric methods in statistics refer to analysis methods which try to avoid
assuming any particular parametric distribution in the model. Usually, the as-
sumption to be avoided is the normal distribution assumption. As contrary to the
name nonparametric (epäparametrinen), these methods usually have a large num-
ber of parameters.

Nonparametric methods are used in all fields in data-analysis. For example, there
is a variety of nonparametric tests available. However, here we mention only two
nonparametric methods — spline regression and kernel density estimation.

5.1 Spline regression and other smoothing techni-
ques

Sometimes the functional form or dependence between explanatory variable(s)
and dependent variable is not interesting in such, but only some kind of smooth
description of the behavior. In these cases either direct smoothing of the data or
regression smoothing is searched for.

There are many different data smoothing techniques, from which moving aver-
age or moving median are the most simple ones. In these, the values yi are re-
placed by average (ormedian) over a smoothingwindow that holds k observations
around the i’th observation. An example of such smoothings are shown in Fig. 5.1
with window size of 10. Other, more advanced methods include, e.g., LOESS or
LOWESS smoothing.

Onemore interesting smoothing or nonparametric regression technique is the spline
regression. This method should not be mixed with spline interpolation where all
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Figure 5.1: Moving average and moving median smoothing to the data.

the variability of the observations is reproduced. In spline regression, a small num-
ber of so-called cubic B-splines that are local third-order polynomials are used as a
basis for linear regression. When the spline basisBj(x) is formed, the sum of these,∑

j βjBj(x) is fitted to the data in least-square sense.

The spline basis functions are distributed to the range of explanatory variables xi

evenly, or preferably to the quantiles of the data. Wewill not go into details with B-
spline basis derivation, there are suitablematerial in e.g. Wikipedia or inNumerical
Recipies. A spline regression for the data in the previous moving average/median
example is shown in Fig. 5.2, together with the cubic spline basis that is distributed
along x to 7 quantiles of the data plus the end-points, 0%, 12.5%, 25%, 37.5%, 50%,
62.5%, 75%, 87.5%, 100%.

For technical reasons, the spline basis if formed with knots where the end-points
are repeated four times in the knot list, so with k quantiles there are k+2× 4 knots
in the basis. With those knots, total of k + 4 splines are available.
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Figure 5.2: Spline basis for 7 quantiles and end-points of the data (left) and fitted
regression spline of the basis functions (right).
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5.2 Kernel estimation

Kernel estimation (ydinestimointi) is a nonparametric method for estimating (con-
tinuous) distribution (pdf) of the data. Themethodsworks for both one-dimensional
or multidimensional data. The result of kernel estimation is not a parametrized,
close-formed distribution, but a numerical function that can be used to compute
values of the distribution estimate.
The idea of kernel estimation is quite simple. Every observation xi in the data is
replaced by a kernel functionKi(x; xi, h), and the total kernel estimate is the scaled
sum of kernels:

K(x;x, h) =
1

n

n∑
i

Ki(x; xi, h), (5.1)

where x is the data vector, x the value where the distribution is evaluated, and h is
the smoothing parameter (siloitusparametri).
The choice of the kernel function should not be too critical, any non-negative func-
tion that is symmetric around its maximum and integrates to one should do. One
suitable choice is to use the pdf of normal distribution, with expected value µ = xi

and variance σ2 = h2. So, kernel is

Ki(x; xi, h) =
1√
2πh

exp

(
−(x− xi)

2

2h2

)
. (5.2)

More important than the actual shape of the kernel should be the choice of the
smoothing parameter h. There are different advice, one of such is the method of
Silverman:

h = s

(
4

p+ 2

) 1
p+4

n− 1
p+4 , (5.3)

where p is the dimension of the data, and s the standard deviation of the data in
one-dimensional case. An example of kernel estimation of the density function for
three observations is shown in Fig. 5.3.
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Figure 5.3: Three observations, normal pdf kernels and the kernel density estimate
of the pdf.
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Kernel estimation suits quitewell formultidimensional cases, too. For these, amul-
tidimensional normal distribution pdf can be used as the kernel with covariance
matrixH (when following Silverman’s rule) as

H = S

(
4

p+ 2

) 2
p+4

n− 2
p+4 . (5.4)

Example for two-dimensional kernel estimate is shown in Fig. 5.4.

Figure 5.4: Two-dimensional observations and kernel estimate for the pdf. On left,
a contour plot of the estimate with the data, on right, 3-D surface plot of the kernel
estimate.
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Chapter 6

Multivariate methods

Multivariate methods in data-analysis refer to the vast collection of methods that
are applied to data with several variables. In principle, regression analysis (linear
or nonlinearmodels) withmultiple variable data is also amultivariatemethod, but
usually multivariate regression is treated separately. Different clustering, classifi-
cation, pattern recognition, and dimension reduction methods are in the core of
multivariate data-analysis.

6.1 Multivariate distributions

Multivariate distributions are distributions for vector-valued randomvariables, and
multivariate pdf’s and cdf’s are functions from Rn to positive real axis R+. Apart
from the fact that the variable ismultidimensional, they are just like one-dimensional
distributions.
With one-dimensional distributions, there are plenty of different choices available.
With multiple dimensions, the multivariate normal distribution governs the field
and other choices are rare. With independent variables this is not an issue, since the
joint distribution of independent components is the product of the one-dimensional
distributions. With just a few components these distributions are often called by
the names of the individual components, e.g., gamma-normal distribution for the
product distribution of gamma and normal distributed variables.

6.1.1 Multinormal distribution

Multinormal distribution for p-dimensional random vector Y ,Np, is parametrized
by p-dimensional vector of expected values µ and p×p-dimensional covariance ma-
trix Σ. The pdf is

f(y;µ,Σ) = (2π)−
p
2 det(Σ)−

1
2 exp

(
−1

2
(y − µ)TΣ−1(y − µ)

)
, (6.1)
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where det(·) is the determinant of a matrix.
The covariance matrix Σ has all the information about the dependencies between
multinormal variables. Two variables Yi and Yj are independent if [Σ]ij = σij =

σji = 0. In that case their correlation is also zero. Note that for other than multi-
normal variables it can be that the (linear) correlation between the variables is zero,
but that they are not independent. For normal distribution, however, correlation is
equivalent to dependency.
The possible dependency can be generalized to groups of variables. Let us say that
the random vector Y constitutes of k components A1, . . . , Ak, and m components
B1, . . . , Bm. The random vector, expected value vector, and the covariance matrix
can be partitioned into submatrices or subvectors:

Y = [AB]T = [A1 · · · Ak B1 · · · Bm]
T (6.2)

µ = [µA µB]
T = [µA1 · · · µAk

µB1 · · · µBm ]
T (6.3)

Σ =

[
ΣAA ΣAB

ΣAB ΣBB

]
(6.4)

Now, if the variables A are all independent of B, it means that ΣAB = 0. Further-
more, it holds now that A ∼ Nk(µA,ΣAA) and similarly for B. Two examples of
pdf’s of two-dimensional normal distribution are shown in Fig. 6.1. The variables
are independent in the first example, and dependent on the second.

Construction of multinormal distribution

Itmight be useful to understandhowmultinormally distributed variables are formed.
First of all, we need p randomvariablesZi that are independently and normally dis-
tributed. Without loss of generality, we can assume at this point that they all are
distributed as Zi ∼ N (0, 1).
Second, let us have a p×p matrix of coefficients cij , C. Third, we need a vector
µ = (µ1, . . . , µp). Now we can construct a new random vector Y as

Y1 = c11Z1 + . . .+ c1pZp + µ1 (6.5)
Y2 = c21Z1 + . . .+ c2pZp + µ2

...
Yp = cp1Z1 + . . .+ cppZp + µp

which can be written shorter as

Y = CZ + µ (6.6)

After this transform Y has multinormal distribution Y ∼ Np(µ,Σ), where Σ =

CCT .
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Figure 6.1: Contour plots (upper row) and 3D plots (lower row) of two-
dimensional normal distribution. Distribution on left has no dependence (ρ = 0)
between the variables, while distribution on the right has ρ = 0.75.

The construction of multinormal variables above can be used to create samples of
(pseudo)random numbers from multinormal distribution. The creation of stan-
dard (0, 1) normal random numbers is available in almost all software packages, so
it is easy to create sampleZ = (Z1, . . . , Zp). The required covariance matrix should
be decompositioned with Cholesky decomposition Σ = CCT , or preferably with
eigendecomposition (ominaisarvohajotelma) Σ = UΛUT , where Λ is the diagonal
matrix of eigenvalues. In the latter case, C = UΛ1/2. Now Eq. (6.6) can be directly
applied to Z to get the multivariate random sample:

Y = UΛ1/2Z + µ. (6.7)

BecauseΛ is diagonal matrix,Λ1/2 is simply
⌈√

Λ11 · · ·
√

Λpp

⌋
. Note that the equa-

tion above is for one sample vector Y . If you need to construct a matrix Y where
all the rows are from the same multinormal distribution, Yi· ∼ Np(µ,Σ) ∀i, then
the matrix version of the construction is as

Y = ZΛ1/2 UT + 1n,p diag(µ). (6.8)
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where 1n,p is n×p matrix full of ones, and diag(·) is an operator that constructs a
diagonal matrix of the values.

Mahalanobis distance

The Mahalanobis distance is a generalized distance measure that is suitable for
multinormal-distributed variables. Let us have an example of two-dimensional
sample frommultinormal distribution as in Fig. 6.2. The two variables might mea-
sure completely different quantities and thus have different scales. The expectancy
of the distribution is at (100, 1). Let us say that we have three interesting obser-
vations, the red, green and the blue dots in the figure. One might want to know
which one is furthest from the expected value.

70 80 90 100 110 120 130
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3

4

Y1

Y
2

Figure 6.2: Random multinormal sample and Mahalanobis distance.

The expected value (mean) has coordinate y = (y1, y2). The squared Euclidean
distance to mean would beD2

e = (y−y)T (y−y). In this case, the distances would
be about 10 (red), 14 (green), and 1.4 (blue) for the three colored dots. Euclidean
distance is clearly a bad measure in this case, since it assumes that both coordinate
axes Y1 and Y2 have the same scale.

An improved version of the distance measure could be constructed if the observa-
tions would be normalized (scaled with their standard deviations) before taking
the Euclidean distance. However, that procedure would not take into account the
evident strong correlation between the variables. After normalization the points
would all have approximately the same Euclidean distances to mean. Still, based
on the gray sample points from the distribution, it would seem that the red point
is ”more typical” and should have the smallest distance from the mean.

The Mahalanobis distance takes both the scales of the different axis and the corre-
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lation into account. The distance is defined as

Dm =
(
(y − y)T S−1 (y − y)

)1/2
, (6.9)

where S is the sample estimate of the covariance matrix. One can see that the Ma-
halanobis distance is Euclidean distance that is weighted by the inverse of the co-
variance matrix. For multinormal sample this is the correct distance measure to be
used.

Test of multinormality with Mahalanobis distance

There are a number of tests for multinormality, each focusing on different require-
ments for a multinormal sample. The Mahalanobis distance can also be used to
test multinormality. It can be shown that the squared Mahalanobis distances in
multinormal sample should have the χ2-distribution with p degrees of freedom.
The Q-Q plot, as described in Fig. 3.7 and the related text, can be used to graph-
ically check the distribution assumption. Sorted squared distances are plotted on
the vertical axis, and quantiles from the χ2(p)-distribution of the squared distances
on the horizontal axis. The points should lie close to diagonal line if the sample is
from multinormal distribution.

0 2 4 6 8

0

2

4

6

8

Figure 6.3: Q-Q-plot of the squared Mahalanobis distances against χ2-distribution
from the sample in Fig. 6.2

6.2 Dimension reduction

In multivariate analysis we often need to deal with data that has many (tens, hun-
dreds) properties (i.e., variables) measured or observed. However, even the visual
presentation of such data can be difficult, not evenmentioning the statistical analy-
sis. It is quite possible that there are underlying dependencies among the variables.
Finding these dependencies can be valuable in such, but it can also help to reduce
the number of variables.
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With reduced dimensions the visual data mining, clustering, classification etc. will
become easier. In this section we will go through two methods to analyze the un-
derlying linear dependencies in the data, the principle component analysis (PCA)
and the linear discriminant analysis (LDA). If correlated variables exist in the data,
both the methods can be used to find them, to create a set of new variables based
on these correlations, and to reduce the dimensionality of the data by dropping out
the non-important new variables.
The difference between PCA and LDA is that PCA is suitable for so-called unsuper-
vised analysiswherewehave noprior knowledge about the possible groups/clusters/classes
in the data, and LDA for supervised analysis wherewe have a ’training set’ for which
we already know the groups/clusters/classes of every observation.

6.2.1 Principle component analysis

Principle component analysis (PCA, pääkomponenttianalyysi) is one of the most im-
portant multivariate methods, especially in natural sciences. In social sciences Fac-
torAnalysis (faktorianalyysi) is similar and popularmethod, but PCA ismore ’phys-
ical’ while there are more possibilities to subjective judgment in factor analysis.
The importance of PCA comes from its wide applicability. PCA can be used in
visual analysis, clustering, pattern recognition, exploratory data analysis, variable
reduction, searching for dependency structures etc. Furthermore, PCA is quite
straightforward to implement and is ’objective’ in the sense that it does not need
any parameters to be set.
PCA can be understood perhaps the easiest way by a geometrical approach. In
Fig. 6.4 (a) there are contour ellipses from two-variate normal distribution. There is
correlation between the variables, so the axis of the ellipsoids are not parallel to the
coordinate axis. What the PCA does is that is searches for these axis of the contour
ellipses and then transforms the data so that the ellipse axis are the new coordinate
vectors. After PCA the new variables (coordinate axis) are uncorrelated, as shown
in Fig. 6.4 (b).

1 2 3
Y1

0.5

1.0

1.5

2.0

2.5

Y2

HaL

-2 -1 0 1 2
PCA1

-1.0

-0.5

0.0

0.5

1.0

PCA2

HbL

Figure 6.4: Sketch of the PCA in geometrical interpretation.
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Implementing principle component transform

The PCA can be implemented quite easily in a computing environmentwhere there
are tools for matrix algebra and for eigenvalue decomposition. The data matrix
Y has n rows, one for each observation, and p columns for the variables. First
the data matrix needs to be centered or standardized. If the data is only centered,
the method is based on the covariances, and if standardized, it is based on the
correlations.

The correct method can be chosen based on the quantities and scales the variables
are measuring. If all the variables measure the same quantity, and we want to
preserve the information that is in the variances of the variables, we should choose
the covariance method. The centering of the data is done using the mean vector y
which holds the mean values over the observations for each variable, i.e.

y = (y1, . . . , yp) =
1

n
(

n∑
i

yi1, . . . ,
n∑
i

yip). (6.10)

The centered data matrix X is computed from Y by:

X = Y − 1n,p diag(y), (6.11)

where 1n,p is n×p matrix full of ones, and diag(·) is an operator that constructs a
diagonal matrix of the values.

However, if the variables measure different quantities and their variances cannot
be compared with each other, we should choose the correlation method and use
the standardized data matrix. In standardization the centered data is further di-
vided by standard deviations, variable by variable. This can be formulated with
the diagonal matrix of inverses of standard deviations, [V]ii = 1/sii as

X∗ = XV (6.12)

The rest of the PCA procedure is identical for correlation and covariance methods,
so we use symbol X for both the cases. Next, the sample estimate to covariance
matrix S is needed. If (and only if) the data matrix is centered, as withX here, the
sample covariance matrix can be computed as

S =
1

n− 1
XT X, (6.13)

If X was standardized, S is actually correlation matrix.

Third step is to compute the eigenvalue decomposition of S. Eigenvalue decompo-
sition is such that

S = UΛUT , (6.14)
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where U is the p×p matrix of eigenvectors, and Λ is the diagonal matrix of eigen-
values∗. Finally, the data is transformed into PCA space by

Z = XU. (6.15)
An example of PCA transform in shown in Fig. 6.5.
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Figure 6.5: Example of PCA transform to 500 observations from two-dimensional
multinormal distribution. Original observations are in subfigure (a), and data in
PCA space in (b).

Interpretation of principal components

As can be seen from Eq. (6.15), PCA is a linear transform. If uj’s are the eigenvec-
tors in U = [u1 · · · up], and xi is the row in centered (standardized) data matrix,
the value of jth new PCA variable for observation i is

zij = xT
i uj = xi1u1j + . . .+ xipupj (6.16)

In that context, the eigenvectors uj are the new coordinate basis, andmap the orig-
inal variables to the PCA space. The eigenvectors are often called loadings. Large
absolute values in ukj mean that original variable k has large impact, loading, to
PCA variable j. Therefore by plotting eigenvectors one can visually inspect how
the original variables influence the PCA variables.
The eigenvalues, i.e. the diagonal values in Λ are the variances of the data in the
PCA space. The PCA will preserve the total variance of the data, i.e.

p∑
j

[Λ]jj =

p∑
j

[S]jj (6.17)

In PCA based on the standardized data matrix the total correlation is preserved, so∑p
j [Λ]jj = p.
∗Note that some numerical eigensystem algorithms might return the matrix of eigenvectors so

that the eigenvectors are the rows of U. In the equations here we assume that the eigenvectors
are the columns of U. You can easily check which way it is by checking if S − UΛUT = 0 or if
S − UT ΛU = 0. In the latter case the eigenvalues are the rows, and you need to compute Z as
Z = XUT .
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Principal component analysis in variable reduction

One of the applications of PCA is in variable or dimensionality reduction or data
compression. The fact that the PCA variables are uncorrelated makes this possi-
ble. Unnecessary PCA variables can be removed without affecting the remaining
variables. The variances of the PCA variables is used to judge which variables are
”unnecessary”.
Usually the procedure that computes eigenvalues and -vectors already sorts them
so that the first eigenvalue is the largest and so forth. The eigenvectors are also
sorted because the order of values and vectors must match. If this is not done by
the procedure, one should do this manually. So, eigenvalues must be sorted so that
Λ[1] ≥ Λ[2] ≥ · · · ≥ Λ[p]. The same ordering must then be applied for eigenvectors,
U = [u[1] u[2] · · · u[p]].
If there are correlations between the original variables, it is often so that the total
variance in the data is redistributed with PCA variables so that the first few PCA
variables make up almost all the total variance. The interpretation is that the first
few PCA variables with large variances are the ”real signal” and the rest of the
PCA variables with variances close to zero are ”random noise”. Variable reduction
is based on this.
The portion c of total variance that is reproduced with the first k PCA variables is
derived with

c =

∑k
j Λj∑p
j Λj

. (6.18)

Usually the limit for c is set close to 100 %, to 95 % or 99 % for example. When the
first k PCA variables can reproduce the required portion, the variable reduction
is done by forming U∗ = [u1 · · · uk], i.e. taking only the first k eigenvectors and
dropping out the rest. The reduced data Z∗ in PCA space is received by Z∗ = XU∗.
The reduced matrix has now only k variables. If the PCA variable reduction is
successful, the reduced number of variables k can be significantly smaller than the
original number of variables p.
One application for PCAvariable reduction is the visualization of high-dimensional
data. If the first two or three PCA variables can reproduce a large portion of the
total variance, the data can be visualized in 2D or 3D plots in the reduced PCA
space. Another is in classification or clustering problems. While PCA is not itself
optimized for classification, it can find structures in the data that can be both visu-
alized in low dimensions, and used in classification. An example of this is shown
in Fig. 6.6.

6.2.2 Linear discriminant analysis

The PCA is a highly popular method for data analysis and dimension reduction,
and is often used prior to clustering or classification analysis to produce (impor-
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Figure 6.6: PCA example from Wikipedia. A PCA scatterplot of haplotypes calcu-
lated for 37 Y-chromosomal STR markers from 354 individuals. PCA has success-
fully found linear combinations of the different markers, that separate out different
clusters corresponding to different lines of individuals’ Y-chromosomal genetic de-
scent.

tant) transformed variables that would be more optimal to be clustered. The PCA
usually succeeds quite well, but it fails to take into account any prior knowledge
about different classes of observations in the data. If these classes are actually
known for the data, usually then called the training data, the linear discriminant
analysis (LDA) is a very close relative to the PCA but with the ability to acknowl-
edge the classes in the data.
Avisual explanation about the difference between thesemethods is shown in Fig. 6.7.
The original data, quite similar as in Fig. 6.5, is shown in the uppermost subplot.
The data has two variables with evident linear correlation between them. In this
example, we actually know beforehand that the data has two distinct classes of
observations, the blue and the red dots.
As seen in the lower left subplot, the PCA will find the direction with the maximal
variability in the data, which is the vertical axis in the subplot. However, the vertical
axis is useless in classifying the blue and red dots from each other. Remember that
the new axis are ordered from themost important to the least important. With only
two variables, the second axis, which would separate the classes, is also the least
important and would probably be left out in the dimension reduction procedure.
However, as seen from the subplot on the right side, the LDA does the opposite
from the PCA and aligns the first and the most important axis along the direction
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Figure 6.7: The difference between the PCA and LDAwhen there are known classes
in the data.

which gives the most information for separating the classes. This is roughly what
the LDA aims to do — find new variables to maximize the separation between the
classes in the data.

Implementing linear discriminant analysis

Implementing LDA is somewhat similar to implementing the PCA, but it requires
taking into account the different classes in the data. We will need to have the same
standardizedmatrixX as in Eq. (6.11) or (6.12) for covariance or correlation-based
analysis. In addition, we will need the mean vectors xc and covariance matrices Sc

for the standardized observations xi for each group c = 1, . . . , k.

With these group-based mean vectors and covariances, we compute the within-
class covariance matrix

W =
∑
c

(nc − 1)Sc, (6.19)

where nc is the number of observations for group c, and the between-classes co-
variance matrix

B =
∑
c

nc(xc xc
T ). (6.20)

From these we can form the LDA projection matrix with the help of eigenvalue
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decomposition as†
LΛL−1 = W−1B, (6.21)

where the matrix L is not orthogonal anymore, because the matrix to be decom-
posed is not symmetric as with the PCA. Again, different algorithms might output
either L or LT , please check this before implementing.
Finally, the LDA-transformed new variables are given by

Z = XL. (6.22)

Similar to the PCA, the most important variables are ordered as the first columns
in the matrix Z, so the dimension reduction can be done by discarding the columns
after the most important ones.

6.3 Classification

Classification, also called supervised learning, is a set of techniques to assign new
observations into pre-defined classes. To have pre-defined classes one needs a
training data set where these classes are already known. The classifier is ’trained’
using this data, and then used for future observations without the knowledge of
the correct classification. In the ’training’ process the parameters of the classifier
are estimated.
For classification, a pre-treatment to the data is usually needed, especially if the
data has many variables. Dimension reduction such as PCA or LDA is recom-
mended before the classification, since it makes the task for the classification al-
gorithm easier. In an ideal case where the classes are known beforehand, LDA is
recommended over PCA which does not exploit the class structure in the data.
However, sometimes classification is done so that the classes are not known before-
hand. In the analysis PCA or similar is first applied to the training set without the
class information. From the result a visual and subjective analysis is done to define
the classes, and then the classifier is build upon these.
In what follows, three classification algorithms are introduced and applied for the
classical Iris flower data set of three Iris flower species and the measures of their
sepal andpedal flower dimensions. The datawith four variables is first treatedwith
LDA, and the two most important new variables are extracted, as seen in Fig. 6.8.
The first ’algorithm’ to be introduced is a heuristic division of the variable space,
often with some simple linear borders, to different class areas/volumes. This di-
vision is subjective and often done just ’by eye’ by the researcher. Still, this kind
of taxonomic systems are quite popularly used. An example of the variable space
division for the Iris data is shown in Fig. 6.9.

†Note on the matrix inversion W−1. If there are more variables than observations per class in
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Figure 6.8: The Iris dataset after LDA dimension reduction on the top panel. On
the lower left panel, a sketch of the k-nearest neighbor algorithm and on the right,
the naïve Bayesian classifier algorithm.

Figure 6.9: An example of a heuristic classification of the Iris data (after LDA trans-
form) and the resulting areas of the variable space for the three classes.

6.3.1 Nearest-neighbor method

The nearest-neighbor (N-N) method is also quite simple but also robust method
for classification. The simple procedure is to find n closest points in the training set
for the new observation (see Fig. 6.8). The class frequencies within these n points
are computed, and themost frequent class is assigned for the new observation. The
most simple version searches only for the one nearest neighbor and classifies to the
same class as this. This N-N method using only one point will actually create a
Voronoi division of the variable space, as shown in Fig. 6.10.
If some kind of dimension reduction / variable transform technique is used before
the N-N classification, the normal Euclidian distance should be a proper distance
measurewith this algorithm. However, if the original variables are used, onemight
want to apply more suitable distance measures such as the Mahalanobis or Man-

your data, the matrixW cannot be inverted. In that case, you can replace the matrix inversion with
the so-called pseudoinverse or Moore-Penrose inverse W+.
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Figure 6.10: The Iris data after the LDA transform and the Voronoi division in the
variable space corresponding to the one-nearest-neighbor classification areas.

hattan distances when searching for the nearest neighbors.

6.3.2 Naïve Bayes classifier

The probabilistic classifier is based on the probability distribution assumption on
the data, and if the a priori probabilities are also considered, this method is called
the naïve Bayesian classifier (NBC). In most cases, it is assumed that the data in
each class follows a multinormal distribution with class mean vectors µc and co-
variance matrices Sc. With new observation x, the probability pc to belong to class
c is computed simply from the assumed (multinormal) probability distribution

pc = fc(x;µc,Sc). (6.23)

If Bayesian classification is sought for, the a priori probabilities ac, which can be
computed for example from the training data frequencies, are also considered as

pc = ac fc(x;µc,Sc). (6.24)

Finally, the most probable class is selected, i.e., the class c with the highest value
of pc. This is the probabilistic or the naïve Bayesian classifier. The multinormal
distributions are shown in Fig. 6.8 for the Iris data, and the areas in the variable
space in Fig. 6.11.

Figure 6.11: The Iris data after the LDA transform and the variable space division
corresponding to the probabilistic classifier.
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6.4 Clustering

While classification is supervised learningwith pre-defined class information, clus-
tering is a non-supervised method without the prior knowledge of the possible
groups in the data. The clustering algorithms works by choosing groups for each
observation by minimizing a chosen measure of ”group conformance” while max-
imizing the difference between the groups in some sense. This is usually done for
different number of groups, and the recommended number of groups is chosen
so that it optimizes the ratio between ”within-group” and ”between-groups” vari-
ances. In clustering, as with classification, a pre-treatment to the data (PCA or
similar) is recommended, or the distance measure can be chosen to be some other
than the Euclidean distance. In Fig. 6.12, the Iris data is divided into 2 to 5 groups.

2 clusters

4 clusters 5 clusters

3 clusters

Figure 6.12: The Iris data after the LDA transform clustered into 2 to 5 groups. The
letters a–c mark the real groups, and the colors the clusters found by the algorithm.

With the example in Fig. 6.12 one can see that at least the default clustering al-
gorithm of the Mathematica software using the ’k-means’ method cannot find the
original flower subspecies from the data. The setosa species is found quite well
when dividing into 2 or 3 clusters, but versicolor and virginica cannot be separated
that well.
Clustering can be done in a tree-like structure where the observations are group to-
gether one-by-one and finally ending into one group. This structure can be plotted
into dendogram or clustering tree, as in Fig. 6.13.
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Figure 6.13: Clustering tree representation of the sequential grouping of the Iris
flower data observations. The grouping is started from the bottom of the tree, and
finally the two main groups are joined into one at the top of the tree. The colors of
the points are the same as in Fig. 6.8

6-16



Chapter 7

Bayesian inference

7.1 Introduction

Bayesian inference (BI) gives the theoretical basis to Bayesian (statistical) methods
the same way as frequentist (statistical) inference is the basis for frequentist (sta-
tistical) analysis. There are some philosophical and technical differences between
frequentist (i.e. classical) and Bayesian approaches, but actually many parts of the
inference are done similarly.
The philosophical difference is in theway the unknownparameters are interpreted.
In frequentist inference the parameter is an unknown but a fixed constant, while
in BI the parameter itself is a random variable. In what follows we do not concen-
trate on the philosophical differences that much, but give guidance on the technical
procedure and theory behind BI.
The one formula behind the whole Bayesian standpoint is, of course, the Bayes
formula as in Eq. (1.9). In parameter estimation, the idea is to use Bayes formula
as:

P(parameters|data) = P(parameters) P(data|parameters)

P(data)
(7.1)

Let us write it here for continuous variables using pdf’s:

fΘ|Y (θ|y) =
fΘ(θ) fY |Θ(y|θ)

fY (y)
=

fΘ(θ) fY |Θ(y|θ)∫
Ω
fΘ(θ) fY |Θ(y|θ) dθ

(7.2)

We explicitly write out here the random variables the different pdf’s are referring
to, but in what follows we will often shorten it, e.g. fY |Θ(y|θ) = f(y|θ).
From the way Eq. (7.2) is written, one can immediately recognize the application
to parameter estimation. The left side is the pdf of the unknown parameter vector
θ, given that we have observed the data y. The left side is called the posterior
distribution of the parameters. The numerator of the right side(s) is from the chain
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rule, it has both the prior distribution for the parameter, fΘ(θ) and the distribution
of data given the parameters, fY |Θ(y|θ).
An important point in BI is that the denominator of Eq. (7.2) is often unneces-
sary to be known. The denominator is the (unconditional) distribution of the data.
Definition fY (y) =

∫
Ω
fΘ(θ) fY |Θ(y|θ) dθ uses the formula of total probability and

integrates over the parameter space Ω. However, the denominator is constant with
respect to θ. In fact, the role of the denominator is only to scale the resulting formula
to a proper pdf, i.e., to ensure that the area of the pdf is one,

∫
fΘ|Y (θ|y)dθ = 1.

In many applications the knowledge of a properly scaled posterior distribution is
not important. If you compare to the task of maximum likelihood parameter es-
timation with frequentist approach, one is only interested of the maximization of
f(y;θ), i.e. the probability density of data with given parameter value θ (so, clas-
sical f(y;θ) equals Bayesian f(y|θ)). In comparable BI case it is enough to know
the unscaled posterior, fΘ(θ) fY |Θ(y|θ). There is even closer connection to classical
inference — if unscaled posterior is enough, we can use the likelihood function in-
stead of the pdf. So, the version of the Bayes formula that is usually applied in BI
is

f(θ|y) ∝ f(θ) f(y;θ) ∝ f(θ) L(θ;y) (7.3)

7.2 Prior distributions

When comparing Eq. (7.3) to traditional maximum likelihood problems, one can
see that themain difference is the presence of the prior distribution. Selecting a pri-
ori pdf is a subjective decision that should be somehow justified by the researcher.
In principle, any pdf can be used as a priori pdf, or the prior does not even need to
be a proper pdf, but there are some common approaches to the problem.

7.2.1 Conjugate prior distributions

Especially in times before efficient computers and easy-to-use software, the con-
cept of conjugate prior (liitännäispriori) was important, since it allowed analytical,
closed-form formulas to be derived. In short, a conjugate prior f(θ) is such a distri-
bution that the posterior f(θ|y) has the same distribution family as the prior. The
selection of a conjugate prior is always related to the probability model of the data,
f(y|θ).
The attractive benefit in using conjugate prior is that the results can be easily com-
puted and interpreted, and the influence of both the data and the choice of pa-
rameters of prior distribution, i.e. hyperparameters, to the posterior parameters is
clear. For example, if we conduct n independent Bernoulli trials with parameter
(probability of success) π, and receive k positive outcomes, the likelihood model
for the data is L(π; k) = πk(1 − π)1−k. Now, the Beta distribution is the conjugate
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prior for Bernoulli data. That means that if π ∼ B(α, β), then the posterior is also
Beta-distribution but with some other parameters. Without calculating anything
ourselves we can check from literature that the posterior is

π | k ∼ B(α + k, β + n− k) (7.4)

The complete Bayesian analysis of the case is nowdone and the result is compressed
into the distribution and its parameters. With conjugate priors it can be straightfor-
ward to interpret the effect of data and hyperparameters in the prior distribution to
the properties of the posterior distributions. For example, the expected value a pri-
ori in the Bernoulli-Beta example is µprior =

α
α+β

. After the data has been collected,
the a posteriori expected value is µposterior =

α+k
α+β+n

.
The simpleness of the conjugate prior approach is at the same time its shortcoming.
The subjective choice of prior distribution is the key point in BI. In this era of effi-
cient computing tools a conjugate prior should be used only if the prior would suit
the case anyway, not just because the result is easy to derive and interpret. Lists of
likelihood models with their prior distributions can be found in the literature, for
example inWikipedia. For the most commonmodel of normal likelihood the prior
distribution for the expectation parameter µ is also the normal distribution, and for
variance σ2 it is the inverse gamma distribution.

7.2.2 Uninformative prior distributions

Another common approach, or rather a framework of approaches, is the use of
uninformative or vague priors. This means that if the researcher does not have any
particular information of the parameter a priori the observations, the uncertainty
should be described in the prior. The idea is straightforward, but the practicemight
not be so simple to implement.
It is easy to think that if there is no knowledge of the location parameter, µ for
normal model for example, all the values of µ should be equally probable, f(µ) ∝ c.
So, the uninformative prior for µ should be the uniform distribution.
The first immediate problem is that the uniform distribution over the real axis is
not a proper distribution since it does not integrate to one, it is a so-called improper
prior. If the prior distribution is improper, the posterior is often also an improper
distribution. However, in many BI analysis this problem can be avoided by using
the form in Eq. (7.3) and deriving computational results byMonte Carlo orMarkov
chain Monte Carlo sampling. The recommended uninformative prior for scale pa-
rameter (i.e., variance) is of the form f(σ2) ∝ 1/σ2

If the improper prior is not a problem, the reparametrization of the model might
arise new problems. Reparametrization means that the original parameter of the
model is transformed by some function. In many physical models it is possible to
change from one set of parameters to another. For example astronomical coordi-
nates can be defined in several ways. The reparametrizationwill also transform the
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shape of the prior distribution. It can easily happen that ’uniform’ distribution in
one parametrization will transform into something quite non-uniform in another
parametrization.

It can be thought that the prior information should be invariant under parameter
transformations. The prior that implements this principle is the Jeffreys prior. It
has the form

f(θ) ∝
√

det(I(θ)), (7.5)

where I(θ) is the so-called Fischer information matrix for the parameter θ. The
Fischer information is the expectancy of the Hessian matrix H of the models sec-
ond partial derivatives mentioned in Eq. (2.6). While Jeffreys prior solves the
reparametrization problem, it is not always evident if the Jeffreys prior will de-
scribe the uncertainty in a meaningful way. With normal distribution and location
parameter this is not the case, since the Jeffreys prior for that model is f(µ) ∝ c.

Other common choices for uninformative priors, or at least for priors with very
small amount of information, are proper distributions with very large variances
so that they are ’almost flat’ but still integrate to one. For example, with normal
likelihood model the normal distribution itself is a conjugate distribution for the
expectancy µ. If normal distribution has hyperparameter (i.e., parameter of the
distribution of the parameter) σ2

0 that is very large, the prior is almost flat but the
posterior is still a proper normal distribution.

7.2.3 Informative or subjective prior distributions

A criticism towards the use of uninformative priors is that, first, sometimes it can
be difficult to actually express the lack of information as seen above. Second, BI
with uninformative priors will actually give more or less the same result as the
traditional frequentist approach since the resultswill only depend on the likelihood
function of the data. Third, choosing an uninformative prior is also a subjective
choice. Therefore, the most rewarding case for BI is when there actually is a priori
information about the parameter and when that information can be represented in
the form of a (prior) distribution.

With the subjective choice of the prior distribution, a sensitivity analysis would
often be a good idea. If the variance of the prior pdf is small, a lot of observations
are needed to shift the posterior estimate away from the prior. The sensitivity of
the posterior to observations is weak. If the variance of the prior is large, already
a few observations can overdrive the prior information in the posterior, and the
sensitivity to observations is strong. Often it needs some numerical tests to assure
that the sensitivity is on the right level. An example of two priors, observations,
and posteriors is shown in Fig. 7.1.
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Figure 7.1: Three observations from normal distribution, normal prior (red dashed
line) and posterior (blue solid line) for the parameter µ. In (a) the prior variance
is large, and in (b) it is small.

7.3 Parameter estimation

Derivation of the point-estimates to the (unknown) model parameters θ within
Bayesian framework is based on either Eq. (7.2) or Eq. (7.3). There are three com-
mon choices for parameter estimate θ̂: the posterior median, the posterior mean,
and the maximum a posteriori (MAP) estimates. The analytical derivation of pos-
terior median and mean estimates require the knowledge of the proper posterior
distribution (Eq. (7.2)), because e.g. the posterior mean is calculated as

Posterior mean θ̂ =

∫
Ω

θ f(θ|y) dθ (7.6)

WithMarkov chainMonte Carlo (MCMC)methodswewill see that the explicit for-
mulation of the proper posterior distribution is not always necessary, and posterior
mean or median estimates can be computed from samples.
WithMAPestimate, however, the proper formof posterior distribution is not needed.
Maximization of Eq. (7.2) can be equally well done using only Eq. (7.3). Note the
similarities with the MLE estimate which is computed in the similar manner, only
without the prior distribution.
The fact that there are three equally justified and popular methods for parame-
ter estimation in Bayesian framework is somehow typical for BI. There is a certain
amount of subjectivity in every Bayesian analysis, and the best practice is to write
out all the choices made, so that other researchers can reproduce the results and
follow the formulations if needed.

7.3.1 Bayesian interval estimation

With frequentist ML inference the uncertainty about the ML estimate is described
with confidence intervals. The similar construction in BI is the credible interval.
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Because in BI it is natural to speak about probability of the parameter, the credible
interval is defined as

P(Θ ∈ (θ1, θ2) |y) =
∫ θ2

θ1

f(θ|y) dθ = 1− α (7.7)

The problem with the equation above is that it does not define the limits θ1 and θ2
unambiguously. There are two different extra conditions that can be used to define
the interval properly. The first one is the equal tail credible intervalwhere we require
that the tail probabilities are the same:∫ θ1

−∞
f(θ|y) dθ =

∫ ∞

θ2

f(θ|y) dθ =
α

2
(7.8)

The second possibility is that we require the posterior densities inside the credible
interval to be larger than any density value outside the interval. This is called the
highest posterior density region:

θ1 and θ2 so that f(θ|y) ≥ f(θ∗|y), (7.9)
when θ1 ≤ θ ≤ θ2 , and θ∗ < θ1 or θ2 < θ∗

For symmetric unimodal distribution these intervals will coincide.
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Figure 7.2: Equal-tail (on the left) and highest posterior density (on the right) 90
% credible intervals for parameter µ when its posterior density is log-normal.
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Chapter 8

Monte Carlo methods

Monte Carlo (MC)methods are statisticalmethods that are based on the computer-
generated random numbers. Random numbers can be used directly to asses some
features of complicated randommodel, or they can be used in drawing randomized
samples of existing data. The latter case is called resampling. When Monte Carlo
is used to create the so-called Markov chains, the method is called MCMC and
is presented in next chapter. In any case, the inference with MC (or MCMC) is
based on the averaged descriptive statistics of the data that results from the MC
procedure.

8.1 Random number generation

Before MC methods can be used, we must have procedure that can generate ran-
dom numbers from the desired distribution. In some cases the probability model
can consist of an algorithm that is difficult to describe with parametric distribu-
tion. In that case, the algorithm itself can be used to create samples that obey the
unknown distribution with some random input to the algorithm. In the common
case, however, we know the parametric distribution from which we want to create
random numbers.
Even the creation of uniform random integers is somewhat complicated if we want
the pseudorandom numbers to come from a sequence that will seem random. First of
all, the length of the period, i.e. the length of unique sequence of integers, should be
large. Second, the integers should pass any test of uniformity. Third, there should
not be detectable autocorrelation in the sequence. All the uniform number gen-
erators in modern computing environments should be reliable nowadays. For ex-
ample, the Mersenne twister algorithm was developed in 1997 and has very good
randomproperties. However, the rise of parallel computing has new challenges for
random number generators, since also the parallel threads of the code should have
random sequences that are uncorrelated with the other threads.
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The pseudorandomnumber generators always generate random integers. The con-
version to uniform real numbers between 0 and 1, U ∼ U(0, 1), is done by dividing
the random integer by the largest possible integer (plus one) in the random se-
quence. Usually the generators can return the lower limit of 0.0 (naturally, with
very low probability), but not the upper limit of 1.0.
Since the uniform distribution should be well implemented in almost all systems,
and it is hard to improve the implementation yourself, we will concentrate on the
creation of continuous random numbers from more complicated distributions us-
ing the uniform numbers as an input.

8.1.1 Inversion method

The most general algorithm for random numbers is the inversion method or in-
verse transform method. It is based on the following deduction. Let U be random
number from U(0, 1). Let us compute F−1(U), where F−1(·) is the inverse cumula-
tive probability function of the desired distribution. If we compute the cumulative
probability of F−1(U) being less than x, we can see that

P
(
F−1(U) ≤ x

)
= P

(
F
(
F−1(U)

)
≤ F(x)

)
[by applyingF to both sides]

= P (U ≤ F(x)) = F(x) (8.1)

because U is uniform, so the probability of U ≤ y is y when y is between zero and
one. A graphical example is shown in Fig. 8.1.
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Figure 8.1: Example of the inverse transform method with Beta(3,5)-distribution.

The inverse transformmethod is valid, in theory, for all distributions. The problem
is that the inverse cdf does not exist in closed from for all the distributions, for
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example the cdf and the inverse cdf for normal distribution are not closed-form
functions.

8.1.2 Normal distribution

Randomnumbers from the standard normal distribution can be generatedwith the
special transformation, the Box-Muller algorithm. For two uniform numbersU1, U2

it holds that the transformation

X1 =
√

−2 log(U1) cos(2πU2), X2 =
√

−2 log(U1) sin(2πU2) (8.2)

produces X1 and X2 that are independent and have standard normal distribution.
In Sec. 6.1.1we introduced how to create correlated values frommultinormal distri-
bution, but for two-dimensional multinormal distribution there is a shortcut with
the Seppo Mustonen -algorithm. It is the same transform to X1 as the Box-Muller,
but X2 is computed by

X2 =
√

−2 log(U1) sin(2πU2 + arcsin(ρ)), (8.3)

where ρ is the correlation coefficient between X1 and X2.
Other special transforms exists, and some of them are based on the way the distri-
bution is originally derived. For example, as we know that sum of squared normal
variables has χ2-distribution, random numbers from χ2 can be derived simply just
by first creating normal random numbers and the summing their squares. Often
these kind of transformations are inefficient when the parameters require a lot of
source variables per one outcome.

8.1.3 Accept-Reject method

The Accept-Reject method is based on the creation of random coordinates uni-
formly inside an area (in 2-D) that bounds the pdf of the target distribution. If
the coordinate is inside the area bounded by the target pdf, it’s x-coordinate is ac-
cepted as a random number from the distribution. If not, it is rejected and a new
coordinate is created.
The most simple application of the accept-reject method is the ’box-counting’ ver-
sion where random coordinates are created inside the rectangular area that holds
the target pdf inside. For this to work, the target pdf must have finite support.
For example, the Beta distribution is defined between 0 and 1 — example of box-
counting accept-reject algorithm for Beta distribution is shown in Fig. 8.2.
The box-counting comes less effective in multiple dimensions and in cases where
the support of the distribution is very wide, because the number of the rejected
point grows. The effectiveness can be improved by finding an envelope that has
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Figure 8.2: Beta(3,5)-distribution and box-counting accept-reject algorithm. The
x-coordinates of the blue points have the desired distribution.

smaller reject-area outside the target pdf than the rectangle. In general, any ’enve-
lope pdf’ g(·) can be used in accept-reject method, if only we can find constant c so
that

f(x) ≤ c g(x) ∀x (8.4)

If this condition can be fulfilled, the X that is generated from the envelope pdf g
can be accepted if

U ≤ f(X)

c g(X)
, (8.5)

where U is from U(0, 1), and rejected otherwise. The box-counting is a simple ver-
sion of this where the envelope is also a uniform distribution, so that c g(x) = c.
If the envelope is very close to the target distribution, only a small fraction of the
random numbers must be rejected. For the envelope method to work we naturally
need to have such a distribution g that it is easy to create random numbers from it.

The Gamma distribution is one example of a distribution that can be simulated
by the envelope accpet-reject algorithm efficiently. The trick is that Gamma(α,β)-
variables are easy and fast to create if α is an integer. For other α, the Gamma
distribution with integer α can be used as an envelope with suitable choice of β
and constant c. Example is shown in Fig. 8.3.

8.2 Resampling methods

The resampling methods are procedures that recycle the existing data in some ran-
dom manner, i.e. draw random (re)samples of the data. If the original sample is
a good representation of the unknown sample space, then the random resamples
also estimate the properties of the sample space well. Resampling methods have
troubles with small and biased samples, but then again, this is true for more or
less all the statistical methods. We will introduce bootstrap, permutation tests and
cross-validation here. The so-called jackknife is also a resampling method for vari-
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Figure 8.3: Gamma(2.5,1) distribution and a suitable envelope for envelope accept-
reject algorithm.

ance estimation, but the bootstrap is more general and preferable in many cases, so
the jackknife method is not dealt here.

8.2.1 Bootstrap

The bootstrap method was developed by Bradley Efron in 1979 as an extension to
jackknife. The name refers to phrase ”pull oneself up from one’s bootstraps”, and
suits the method quite well. The initial situation for bootstrap is that we have only
one random sample of the interesting phenomena, y, and no other information.
However, the sample should represent the total sample space. If so, we could draw
new samples y∗

i from y, and they should also represent the sample space. These
resamples should be drawnwith replacement from the original sample, and have the
same size.
From the original sample we can compute a value for an estimator of interest, θ̂.
With bootstrap we can asses the uncertainty, e.g. the variance or the confidence
intervals, of the estimator. If we compute the same estimator value for every boot-
strap sample, θ∗i , the empirical distribution of θ∗i ’s should estimate the true distri-
bution of θ̂. The inference about θ̂ can be made based on the empirical distribution
by descriptive statistics.
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7 1 9 5 10 8 4 10 10 3

4 1 8 3 8 1 3 7 5 8

8 3 9 3 7 2 9 3 3 6

...

y

*y 1

*y 2

*y 3

Figure 8.4: Sample with return.

For example, we have a sample of 10 numbers from the exponential distribution
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in Fig. 8.5. The mean y is 1.09. Without knowing that the underlying distribution
is exponential, one could compute the variance or the confidence interval to the
mean using normal approximation. The resulting CI will be symmetrical about
the mean. However, exponential distribution is skewed to right, and thus the real
CI is not symmetrical.
The histogram in Fig. 8.5 is drawn from the 40,000 means computed from 40,000
bootstrap samples of y. Their distribution is slightly skewed to right, as it should
be. The bootstrap CI can be computed from the ordered values of y∗i . For 95 %
CI we will take the 1,000th (2.5 %) value and the 39,000th (97.5 %) value of sorted
bootstrapmeans, and end upwith a CI of (y∗[1000], y∗[39000]) = (0.507, 1.879). This CI is
shown in the figure with gray vertical lines, and it is clearly nonsymmetric around
the mean with red vertical line.
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Figure 8.5: Ten samples (gray dots), their mean (red line), histogram of 40,000
bootstrap means and bootstrap CI for the mean (gray lines).

The great advantage with bootstrap is that variances or CI’s can be derived for any
estimator as easily as for mean, for example for median. The number of bootstrap
samples should be large in order to smooth out the finite sampling effects. What
is ’large’ depends on the problem, but with modern computers the speed is usu-
ally not an issue, so 10,000, 50,000 or even 100,000 could be used as the number of
bootstrap samples.
Bootstrap can be used also in regression problems (LM and NLM), but then the
bootstrap sampling should be used for residuals instead of the original data. The
procedure is such that first the standard LM or NLM is fitted, and estimates b,
fitted values ŷi and residuals ei are received. Then, bootstrap dataset is formed by
adding randomly chosen residual value ej to each ŷi, thus creating new dataset
with (xi, ŷi + ej). The same regression analysis is computed, and bootstrap values
b∗k are received. This is repeated, and inference is based on the distribution of b∗k’s.

8.2.2 Cross-validation

Resamplingmethods are often quite simple and straightforward ideas that are easy
to implement if only the computing power is not an issue. This is true with the
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bootstrapping, and is especially true with the cross-validation.

Cross-validation is practical with methods involving some kind of prediction, and
the accuracy of the prediction interest us. For example, LM or NLM can be used
to predict the values of the dependent variable for given explanatory variable. The
CI of the prediction can be computed using the residual variance of the model, i.e.
the observed errors. However, the residual variance gives too optimistic estimate.
The model is fitted to exactly the same observations from which the residuals are
computed, and this introduces overfitting if we consider new observations. Actu-
ally, this can be taken into account analytically in LM, but in NLM or in general
linear models this is not possible.

Another example is a classification procedure. Let us say thatwe have a dataset and
we use that to form (i.e. train) our classification scheme. We can try to estimate
the error rate the classifier does by letting it classify our training data, but again,
the estimate will be too optimistic because the classification is tuned with exactly
these data.

The solution is to leave out one part of the data from the model estimation, and use
the model to predict the values for the left-out data. The prediction error is then
computed using the errors computed with the left-out data. The usual problem
is, of course, that we seldom have huge amounts of data available, and the fitted
model will perform worse when estimated with smaller training data than with
all the available data. The cross-validation, especially with the so-called leave-one-
out procedure, is the best compromise between large training set and realistic error
estimation. In leave-one-out, one repeatedly leaves one observation out from the
training set, estimates the model, and computes the prediction error for the one
left-out observation. This is then repeated for all the observations, or at least for a
large number, and the mean prediction error is computed from these numbers.
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Figure 8.6: Leave-one-out crossvalidation.

Cross-validation can bedone for larger dedicateddata than one (k-fold cross-validation),
but usually the leave-one-out is the most accurate estimate.
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8.2.3 Permutation tests

Permutation tests can be used in cases where we have two or more datasets, and
the null hypothesis claims that these should come from the same distribution. A
test for medians can be used as an example. Let us have two sets, y and x, and
we want to test if the medians of the groups are the same with certain statistical
significance. The null hypothesis for this test is that the medians are the same.
If the null hypothesis is correct, we could divide the data randomly into newgroups
y∗
i and x∗

i with the sizes nyand nx. The difference between themedians is recorded.
Again, if the null hypothesis is correct, the difference between themedians between
the original sets, d̂ = my −mx, should be ’common’ in the set of all median differ-
ences d∗i computed from the randomly divided groups. If not, the original divi-
sion was somehow ’special’ and the probability of receiving such groups and such
difference in median is very small. In the latter case, the null hypothesis can be
rejected.
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Figure 8.7: Random groupings.

The decision between ’common’ and ’special’ can be based on the distribution of
d∗i ’s in similar manner as in traditional test theory. The p-value of the test is the
proportion of d∗i ’s that are as large or larger than our d̂. If the p-value is small, i.e.
less than 5 %, the null hypothesis can be rejected.
An example of this kind of permutation test for themedians of two groups is shown
in Fig. 8.8. The two datasets have both sizes of 30, and they come from exponential
distributions with intensity λ of 1.0 (group 1) or 2.0 (group 2). The difference
between the medians is 0.353. With 40,000 random permutations of the groups we
can find that only 2.16 % of the median differences in randomly divided groups
have values larger than 0.353. Therefore, the p-value for one-sided test (H1 : m1 >

m2) is 2.16 % and for two-sided test (H1 : m1 ̸= m2) 4.32 %. In both cases, the null
hypothesis can be rejected — the groups do not have equal medians.
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Figure 8.8: Permutation test for equal medians. Box-and-whiskers plot of the two
groups in (a), and histogram of the permutedmedian differences in (b), where red
vertical line show the observed median difference.
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Chapter 9

Markov chain Monte Carlo methods

In this chapter we will continue with the Monte Carlo methods, but with a par-
ticulate family of MC metohds, that is, Monte Carlo Markov chain (MCMC). The
MCMC methods have become very popular over the few recent decades with the
improved power of computers, and because they offer a quite generic tool that is
especially suitable for Bayesian estimation problems with no closed-form solution.

The material in this chapter is based mainly on two references, first, the book by
Robert & Casella, Monte Carlo statistical methods (1999, Springer texts in statistics),
and second, the lecture notes by Solonen, Haario, and Laine for the course Statistical
Analysis in Modeling (2014, Lappeenranta University of Technology).

Note that in this chapter we deal quite often with some non-specified distribution,
which I try to mark with the letter ’f’, so the distribution is F and its probability
density function is f. Furthermore, in most of the methods we need an auxiliary
(often called instrumental/proposal) distribution marked with ’g’, so distribution
G and pdf g. And, because these distributions appear in the algorithms a lot, it is
sometimes more convenient to write shortly something like f(x|y), which should
be understood as the pdf of the conditional distribution, fX|Y (x, y), or as the distri-
bution X|Y ∼ F(X,Y ).

Before actually going to MCMC, I will introduce two ’regular’ MC methods that
have lead the way towards the MCMC and the Metropolis-Hastings algorithm.

9.1 Monte Carlo towards MCMC

Importance sampling is a technique which allows us to sample from a distribution
F without actually being able to simulate F directly. The second example, the
simulated annealing algorithm, is leading us to theMetropolis-Hastings algorithm
in MCMC.
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9.2 Importance sampling

Importance sampling is related to the accept-reject method of creating random
numbers from a distribution F with the help of an envelope distribution G (see
Sec. 8.1.3), but in this technique, all the proposed random numbers are accepted,
only with different weights.
The algorithm is based on the fact that for any function h of the random variable
X , the expected value can be computed as

Ef [h(x)] =

∫
h(x)f(x)dx =

∫
h(x)

f(x)

g(x)
g(x)dx. (9.1)

In the last formwe have simply multiplied and divided with the pdf g of an instru-
mental distribution G. For the equality to hold, the support of g (set X of values
x ∈ X where g(x) > 0) has to be at least the support of f.
Now the last form in the previous equation means that we can simulate a sample
x1, . . . , xn from distribution G, and estimate

Ef [h(x)] ≈
1

n

n∑
i=1

h(xi)
f(xi)

g(xi)
. (9.2)

Especially if h(x) = x, we are estimating the mean of the distribution F .
The importance sampling is useful when the distribution F is impossible or very
costly to simulate from, but the distribution G is not. There is a practical limitation
to G, the pdf g should have ’heavier’ tails than f, that is, the ratio f/g should not
approach to ∞. If the tails of g would be ’lighter’ than of f, then with rare cases of
large |xi|, the weights f(xi)/g(xi)would be very large, and the variance of the mean
estimator would behave badly.
An example of the importance sampling is shown here with the distribution F be-
ing the Fisher’s z-distribution, which is the the distribution of a logarithm-transfor-
med F-distribution (the distribution of the ratio of two independent χ2-variables)
variable. The pdf of Fisher’s z-distribution is already a bit complicated:

f(x;n,m) =
2nn/2 mm/2

B(n/2,m/2)

enx

(ne2x +m)(n+m)/2
, (9.3)

where B is the Beta function. The inverse cdf needed for the general method for
creating random numbers involves the inverse of the regularized Beta function,
which is not a closed-form function. Even the expected value of the distribution
involves special functions.
To approximate the mean and pdf of F , we use Cauchy distribution as the in-
strumental distribution G. The inverse of the Cauchy cdf with parameters a, b is
F−1(u; a, b) = a+ b tan(π(u− 1/2)), so it is easy to simulate. Furthermore, the tails
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of the Cauchy distribution are heavy, so we can trust that f(xi)/g(xi) is limited to a
finite value.
The target pdf and the instrumental pdf are shown in Fig. 9.1 for Fisher’s z with
n = 2,m = 10, and for Cauchy with a = 0, b = 1/2. In the same figure, the sample
mean 1

n

∑
xi

f(xi)
g(xi)

withCauchy instrumental distribution is computed for five chains
of simulations with n from 10 to 10,000.
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Figure 9.1: In the left, the target distribution Fisher z with n = 2,m = 10 and the
instrumental distribution Cauchywith a = 0, b = 1/2. In the right, the convergence
of the mean of the Fisher z-distribution estimated with the importance sampling
algorithm. The correct mean value (-0.237) ismarkedwith the horizontal gray line.

By choosing different functions h, quite many different properties can be estimated
with importance sampling. For example, probabilities such as P(X < c) (so, cfd
values) can be estimated by choosing h(x) = Ix<c (indicator function).
The usability of importance sampling is, however, a bit hindered by the fact that the
full f needs to be known, up to any normalizing constant. And, the instrumental
distribution g should be chosen so that the tails are heavier compared to f, which
is not always a straightforward task.

9.3 Simulated annealing

Importance sampling can be thought as Monte Carlo integration, but simulated
annealing is a method for Monte Carlo optimization. The algorithm is interesting
for MCMC, since Metropolis-Hastings MCMC algorithm was developed from the
simulated annealing algorithm.
Simulated annealing optimization fits well for large-dimensional global optimiza-
tion problems, and does not require any information about the derivatives of the
function to be optimized. The algorithm is the following:

• With the target function h to be minimized, choose x0

• At round i, i = 1, . . .

– generate x from symmetric instrumental distribution G(xi−1)
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– Take

xi =

{
x with probability min (exp(−∆hi/Ti), 1)

xi−1 otherwise
(9.4)

• Repeat

The symmetric instrumental distribution G(xi−1)will give us a randommovement
from the previous chain value xi−1. The symmetry means that both directions x
and −x are equally probable, e.g., g(x; xi−1) = g(−x; xi−1). A simple choice is the
uniform distribution around the previous value, [xi−1 − c, xi−1 + c]. The width of
the instrumental distribution must be large enough for the chain to easily move
around the realistic search area, but not too large so that it will not ’shoot off’ too
often, which would lead to inefficiency of the algorithm.
The function Ti := T (i) is the ’temperature’ of the system. It must be decreasing as
the simulation goes forward. It has been shown that a choice of T (i) = k/ log(1+ i)

with sufficiently large k will guarantee good properties for the algorithm.
Finally, as the ’time’ i goes forward and the ’temperature’ Ti is decreasing, the prob-
ability of ’bad’ moves xi away from the (local or global)minimum of hwill bemore
and more difficult, because ∆hi = h(x) − h(xi−1) are scaled with Ti, so the proba-
bility limit exp(−∆hi/Ti) → 0.
The global optimization is achieved by the ability of the algorithm to make ’bad’
moves from time to time, making sure it can escape local minima and converge
into global minimum. However, one can try to run the algorithm a few times with
different starting points x0 to make sure that the global minimum is really found.
In the example shown in Fig. 9.2 there is a quite nasty function

h(x, y) = (y sin(20x) + x sin(20y))2 cosh(x sin(10x))+

cosh(y cos(20y))(x cos(10y)− y sin(10x))2 (9.5)

with several local minima that is optimized using the simulated annealing algo-
rithm. Two step sizes for the instrumental uniform distribution are tested, and two
values for the temperature T (i) = k/ log(1+ i). We can see how the chain of succes-
sive values in the optimization either concentrate around the valley with the global
minima, or explore more the narrow valleys away from the center, depending on
the choice of parameters.

9.4 The Metropolis-Hastings algorithm for MCMC

TheMCMCmethod is quite generally defined inRobert&Casella (1999): ”AMarkov
chainMonte Carlomethod for the simulation of a distributionF is anymethod pro-
ducing an ergodic Markov chain (X(t))whose stationary distribution is F .” Before
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Figure 9.2: A complex function and the simulated annealing minimization chain
on gray with four different combinations of step size c and temperature decrease
function T (i).

moving to the most popular MCMC algorithm, the Metropolis-Hastings (M-H),
we will shortly introduce what is Markov chain so that we can understand a bit the
definition above.

9.4.1 Markov chain

Themathematics behindMarkov chains are quite involved, so to our purposes they
just work, like magic. But for them to work they need to have some properties such
as ergodicy, so let us try to list these required properties. First, Markov chains in
MCMC are discrete random processes (X(t)), t = 1, . . .. The markovian property of
the chain is that the next value of the chain,X(t+1) depends on the previous values
only by the current value X(t).
The chain is often associated with a transition kernel K where K(x, y) marks the
probability density to move from x to y in the chain. In another words, the kernel
is the conditional probability distribution G so that K(x, y) = g(y|x).
The ergodicy of the chainmeans that it will converge to a stationary distributionF .
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It can be proven that this requires the chain to beHarris recurrent, i.e., the expected
number of visits of the chain to a arbitrary set A is infinite. In practice, this means
that every possible value of F is accessible by the chain, regardless of the starting
value of the chain.
If we can construct a (Markov) chain such that the limiting stationary distribution
of (X(t)) is F , then we can estimate for any function h∫

h(x)f(x)dx = Ef [h(x)] ≈
1

T

T∑
1

h(x(t)). (9.6)

Note that the ’x’ here will usually be the unknown parameter (vector) θ of our
probabilitymodel or, in Bayesian analysis, of our posterior density f(θ|y) ∝ f(θ)L(θ;y).
From now on, we will use the symbol θ, not x.

9.4.2 General Metropolis-Hastings algorithm

To complete themagic in the previous sectionwe need away to construct aMarkov
chain that has the required properties and, most of all, has the ability to have an
arbitrary distribution F as the limiting distribution. Such a magic can be done
with the Metropolis-Hastings (M-H) algorithm. The general version of that is the
following:
Algorithm General Metropolis-Hastings

• Choose θ(0)

• At round t, t = 1, . . . , T

– Generate θ from distribution Gθ|θ(t−1)

– Take

θ(t) =

{
θ with probability min

(
f(θ)

f(θ(t−1))

g(θ(t−1)|θ)
g(θ|θ(t−1))

, 1
)

θ(t−1) otherwise

• Repeat

The popularity of theM-H algorithm, especially with Bayesian analysis, lies now in
the ratios of f’s and g’s, because any common normalizing factors not depending on
the parameter θ can be canceled from f(x)’s and from g(x|y)’s. So, in the Bayesian
framework, the pdf ’f’ of the target distribution can be the proportional part of the
posterior distribution, f(θ)L(θ;y), and the transition kernel pdf g can be anything
that produces an ergodic chain.
From this M-H algorithm description one can notice the relationship to the sim-
ulated annealing algorithm. In both algorithms the ’bad’ moves can be accepted
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with a positive probability. In M-H, this probability value is given by the ratio
f(θ)/f(θ(t−1)). If the proposed new value θ is ’more probable’, then the ratio is above
one andwill be accepted (well, the transition probability ratio g(θ(t−1)|θ)/g(θ|θ(t−1))

has to be taken also into account). But even if the ratio is below one and the pro-
posed value is ’less probable’, it can be accepted with a positive probability. The
reason why the simulated annealing is not strictly a MCMC algorithm is in the
decreasing temperature of the system, which makes the chain non-homogeneous,
which is needed for the ergodicy.

9.4.3 Independent Metropolis-Hastings algorithm

The MCMC in general form is presented above. It seems quite straightforward
with the only ambiguous part being the choice of distribution Gx|y. One particular
choice, leading to the so-called independent Metropolis-Hastings, is to have G so that
it is not conditional, i.e., Gx.

Algorithm Independent Metropolis-Hastings

• As general M-H, but select g(x|y) = g(x). This means that the acceptance
condition in general M-H simplifies into

θ(t) =

{
θ with probability min

(
f(θ)

f(θ(t−1))

g(θ(t−1))
g(θ)

, 1
)

θ(t−1) otherwise

This algorithm is particularly similar to the importance sampling (see Sec. 9.2).
The proposal (i.e., instrumental) distribution is the same, but the weights of the
accepted samples are a different. In independentM-H, there are noweights in such,
but some chain values are repeated (giving them larger weights) if the proposed
chain movement is not accepted.

Similar consideration for the proposal distribution G holds with independent M-H
— the g should be able to visit all the values from the support of f, and prefer-
ably with a reasonable probability (compare with tail weights f/g in importance
sampling).

As an example, we repeat the sampling from Fisher’s z-distribution with n = 2,
m = 10 as in Sec. 9.2, and use the Cauchy distribution with a = 0, b = 1/2 as the
proposal distribution. One important benefit of MCMC is that now the chain (θ(t))

should have the distribution F without any weights. This means that we can not
only estimate any function h(θ) with θ ∼ F , but also the distribution F itself.

To speed up the computation, we can clean f(x) for the Fisher z-distribution from
anything not depending on x, sowe canuse f(θ;n,m) ∝ exp(nθ) (m+exp(2θ)n)

1
2
(−n−m).
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Figure 9.3: In the left, the target distribution Fisher z with n = 2,m = 10 and a his-
togram of one 100,000 sample independent M-H chain using the Cauchy(0, 1/2) as
the proposal distribution. In the right, the convergence of the mean of the Fisher z-
distribution estimated with the independentM-H. The correct mean value (-0.237)
is marked with the horizontal gray line.

9.4.4 Random walk Metropolis-Hastings

Probably themost used version of theM-Halgorithms is the randomwalkMetropolis-
Hastings. This is because the construction of the algorithm does not require de-
tailed knowledge of the target distribution F . In fact, one basically needs only to
know the support of F , and the proportional form f(x) ∝ f∗(x).
Algorithm Random walk Metropolis-Hastings

• As general M-H, but with symmetric random-walk proposal distribution g:

g(θ|θ(t−1)) = g(θ − θ(t−1)) = g(θ(t−1) − θ) = g(θ(t−1)|θ)

• The acceptance probability simplifies to

min

(
f(θ)

f(θ(t−1))

g(θ(t−1)|θ)
g(θ|θ(t−1))

, 1

)
= min

(
f(θ)

f(θ(t−1))
, 1

)
In practice, the symmetric g can be implemented as a random movement from
the previous chain value, i.e., random walk. With a small random number ξ, the
random-walk g is such that

θ = θ(t−1) + ξ. (9.7)
The random number ξ can be drawn from, e.g., uniform distribution over [θ(t−1) −
c, θ(t−1) + c], or from Gaussian distribution N (0, σ2).
Let us go through the use of random walk M-H in Bayesian framework. Let us
model the photon count in a detector with an exponential distribution Exp(λ). The
parameter λ describes the number of events (i.e., photons arriving) on a unit time
interval. Furthermore, we have some previous knowledge saying that the distribu-
tion of λ could be modeled with the log-normal distribution LN (α, β)with α = 1.5

and β = 0.75.
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The posterior distribution f(λ|α, β) ∝ fp(λ;α, β)L(λ;x), where fp is the prior dis-
tribution (log-normal), and L is the likelihood function of exponential-distributed
data vector x. In this example the posterior could be solved analytically, but it is
not in the form of any ’common’ distribution. However, the estimates such as the
posterior mean cannot be solved analytically.

With datax = (0.254, 0.360, 0.0372, 0.340, 0.252, 0.105, 0.111, 0.222, 0.162, 0.0307) the
prior distribution and the likelihood-function (correctly scaled to a proper pdf)
are shown in Fig. 9.4. Now, using the random-walk M-H algorithm we can create
a chain of values (λ(t)) that should have the correct posterior distribution. One
example chain is shown in Fig. 9.5.
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Likelihood and prior distribution

prior

likelihood

Figure 9.4: The likelihood function for the exponential model, and the a priori pdf
with log-normal distribution for the parameter λ.

9.4.5 MCMC diagnostics

The M-H algorithmwith suitable proposal distribution should converge to the tar-
get distribution F if you have infinite time. However, with finite (computer) time,
you should somehow make sure that your results have already converged. There
is no definite proof for that, but some steps of checks that you should at least make.

First of all, you should try different starting values for the chain, i.e., run several
chains. There is a so-called burn-in period with the random chains when the chain
starts from an initial point and finds its way towards the target distribution. This
burn-in period should be discarded from the data when doing analysis based on
the chain values. In Fig. 9.6 there are three chains with different starting points.
One can see that the chains approach to same distribution only after some, say
3,000, steps.

The mixing of values is one interesting property to be followed with the conver-
gence. Itmeans that the chain should visit different values and ranges often enough.
This also means that the acceptance ratio, the ratio of accepted movements to all the
proposed movements, should not be too low (chain stuck) or too high (chain still
converging). In Fig. 9.7 one can see three chains with different random walk step
sizes c. The acceptance ratios are 99 % (c = 0.1), 97 % (c = 0.25), and 87 % (c = 1).
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Figure 9.5: On top, the random-walk M-H chain for the parameter λ with 300,000
samples. The correct mean of 5.23 is shown in the figure with the gray horizontal
line. On bottom, the histogramof the chain λ values as the estimate of the unknown
target distribution.
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Figure 9.6: Three chains with different starting points for random walk M-H.

The smallest step size causes too slow mixing and too high acceptance ratio, while
the largest step size is inefficient with too small acceptance ratio.
Other properties to follow include the chain autocorrelation, which should not be
too long. The autocorrelation ρ for distance t, ρt, can be computed as

ρt =

(∑T−t
i=1 (θ

(i) − θ)(θ(i+t) − θ)
)
/(T − t)(∑T

i=1(θ
(i) − θ)2

)
/T

(9.8)

and should approach 0 when the distance grows. The length of the chain should

9-10



Figure 9.7: Three different step sizes for random walk M-H.

be remarkably larger than the length where its autocorrelation approaches 0. For
the three chains above, the autocorrelation lengths are shown in Fig. 9.8. For step
size c = 0.1 the autocorrelation is above 0 for up to 8,000 samples, so the autocorre-
lation length is quite large. The chain with c = 1.0 has a very short autocorrelation
length, but also small acceptance ratio. The chain with c = 0.25 has quite reason-
able autocorrelation length of ∼1,000 samples and a large acceptance ratio.
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Figure 9.8: Chain autocorrelation with three different step sizes for random walk
M-H.
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9.4.6 Metropolis-Hastings with regression models

In regression models we have the systematic part of the regression model, let us
call that r(x;β) to distinguish from target distribution f. In linear regression the
function r is the linear matrix equation Xβ, and in nonlinear regression it is any
function r.
The random part for regression comes with the residuals ϵ. If we assume these
residuals to follow a normal distribution, our probability model is then

Y ∼ Nn(r(x;β),Σ), (9.9)

whereΣ is the (unknown) covariance matrix, usually assumed to be σ2I. The like-
lihood function for the model parameters β and σ2 is now

L(β, σ2) = (2πσ2)−n/2 exp

(
− 1

2σ2

n∑
i

(yi − r(xi;β))
2

)
(9.10)

The prior distributions for β and σ2 can be usually thought to be independent of
each other, so fp(β, σ

2) = fp(β)fp(σ
2). With this information we can write the pos-

terior distribution as
f(β, σ2|y) ∝ fp(β)fp(σ

2)L(β, σ2). (9.11)

In practice, the M-H update round for the vector (β, σ2) can be done component-
wise, updating only one coordinate at time. This increases the overall acceptance
ratio in problems with many coefficients βi.
Algorithm for component-wise regression random walk Metropolis-Hastings (but,
see forward for practical alternative version):

• Choose β(0) and (σ2)(0)

• At round t, t = 1, . . . , T

– Initialize vector β as β = β(t−1)

– Generate σ2 from random-walk proposal distribution
– Take

(σ2)(t) =

{
σ2 with probability min

(
fp(σ2) L(β,σ2)

fp((σ2)(t−1)) L(β,(σ2)(t−1))
, 1
)

(σ2)(t−1) otherwise

– For i = 1, . . . , k

∗ Copy current β to β′. Generate component β′
i from random-walk

proposal distribution
∗ Take

βi =

{
β′
i with probability min

(
fp(β

′) L(β′,(σ2)(t))

fp(β) L(β,(σ2)(t))
, 1
)

βi otherwise
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– Repeat
– Update β(t) = β

• Repeat

While the algorithm above is correct, the probabilities and their ratios in ’Take’
steps might suffer from some numerical instabilities due to very small numbers
being multiplied and divided. An alternative version would use log-likelihoods
and log-transformed priors. For step with (σ2)(t), let use define

a = log
(
fp(σ

2)
)
+ l(β, σ2), and b = log

(
fp((σ

2)(t−1))
)
+ l(β, (σ2)(t−1)). (9.12)

Then, testing with probability min (exp(a− b), 1) is equal to the original test. Simi-
larly for the step with βi, use

a = log (fp(β
′)) + l(β′, (σ2)(t)), and b = log (fp(β)) + l(β, (σ2)(t)), (9.13)

and the same test of min (exp(a− b), 1). For normal model, the log-likelihood is

l(β, σ2) = −n

2
log(2πσ2)− S(β)

2σ2
(9.14)

with S(β) as
∑n

i (yi − r(xi;β))
2 .

Advanced MCMC

There is a vast collection of different small improvements to the randomwalkM-H
algorithm for cases where the convergence is poor using the basic form of the algo-
rithm. Adaptive MCMC uses multidimensional normal distribution as the proposal
distribution. The adaptation is achieved by estimating the covariance matrix of the
proposal distribution from the previous values of the chain.
Other small tweaks to the proposal distribution include using a population of pos-
sible parameter values, and computing ’typical’ movements somehow from them.

9.5 Gibbs sampling for MCMC

Gibbs sampling (GS) can be treated as a special case of M-H algorithm. GS is suit-
able for MCMC simulation of multidimensional parameter vector θ in a stepwise
manner, similar to component-wise M-H. The distinct features of GS are, that the
proposed values are always accepted, and that the full conditional distributions of
F needs to be known. By full conditional distribution we mean the pdf’s

θi|θ1, . . . , θi−1, θi+1, . . . , θp ∼ f(θi|θ1, . . . , θi−1, θi+1, . . . , θp) = f(θi|θ\θi). (9.15)

If the full conditionals are known, the Gibbs sampling algorithm is:
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• Choose multivariate θ(0) = (θ
(0)
1 , . . . , θ

(0)
p )

• At round t, t = 1, . . . , T

– Update θ(t) = θ(t−1)

– Loop over i = 1, . . . , p

∗ Generate θ(t)i from f(θi|θ(t)\θ)
– Repeat

• Repeat

Gibbs sampling is quite suitable for Bayesian multivariate regression problems if
suitable prior distributions are selected for the parameters. For example, by se-
lecting (multivariate) normal prior to θ, the conditional posterior distributions are
(1D) normal distributions. Another typical application are the so-called hierarchical
models.
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Chapter 10

Artificial neural networks

In this section we will take a look at the quite recent field of artificial neural net-
works (ANNs). The rapid evolution has also led to many terms describing the
field, so let us try to define some of them first. The overall top concept is artifi-
cial intelligence (AI). Inside AI, one concept is machine learning (ML), where an
algorithm tries to learn features from the data. The field of ML includes many
’traditional’ statistical techniques such as classification, clustering, and dimension
reduction (see, e.g., PCA and LDA), but also artificial neural networks.
The ANNs have been around for already some time, but the recent advances in
computingpower (multi-core processors, highly parallel graphics processingunits)
have finallymade thempractical in real use. With the advances in computing, also a
new concept or term, deep learning (DL), has been invented. Typically, DL should
refer to the use of ANNs in the algorithm, and perhaps the word ’deep’ comes
from the fact that these ’deep neural networks’ can have several layers of artificial
neurons.
It is somewhat common that when new fields are discovered, they try to merge
also existing techniques under their umbrella. This can be seen with ML and DL,
largely driven by computer scientists. The traditional statistical methods are in-
cluded within the ML concept. This can sometimes be quite confusing, and it
might not be clear which kind of problems can be handled with ANNs. To my
understanding, ANNs can be used in supervised learning problems. In supervised
problems we need to have a set of learning data where the data has been labeled,
i.e., each case in the learning data has the correct label/category/output attached.
However, one can often encounter sources where ANNs are discussed together
with unsupervised problems, but when looking deeper, the unsupervised problems
are actually dealt with (traditional multivariate statistics) clustering techniques,
and not with ANNs. There are some semi-supervisedmethods using ANNs that are
between supervised and non-supervised, but in any case, ANNs need to get some
kind of feedback on their performance to tune their parameters and improve.
From a very general mathematical perspective, ANNs are very flexible non-linear
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function estimators. They can be tuned (i.e., taught) to mimic almost any kind of
linear or non-linear function with multidimensional input and one-dimensional
output.

10.1 Components of artificial neural networks

The main components of ANN are shown in Fig. 10.1. The figure presents a feed-
forward ANN with two actual (i.e., hidden) layers of neurons or nodes.
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Figure 10.1: A feed-forward artificial neural network architecture with two hidden
layers.

10.1.1 Nodes

The nodes or neurons in the ANN are, in general, non-linear functions with mul-
tiple input and single output. Typically, the nodes take all the outputs of the pre-
vious layers nodes as input, and produce a single, real-valued output. However,
in convolutional neural networks (CNN, see later), both the input and output can
be multi-dimensional tensors. But, in non-convolutional ANNs, the node is math-
ematically of form

ni(x⃗) = f(x⃗ · w⃗i + bi) , (10.1)
where x⃗ is the input from the previous layer, and f is the so-called activation or
propagation function (see later).
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The parameters of the ANN are theweights w⃗i and the bias parameters bi. Although
we are omitting the index for the layer, each node in each layer has its own weights
and bias parameters. The number of weights for individual node is the dimension
of the previous layer (in fully-connected network). For example, if we have input
vector of length 10 and two hidden layers with dimensions of 5 and 3, we have
5× 10+ 3× 5 = 65 unknown weights and 5+ 3 = 8 unknown bias parameters that
we need to fit (see about training the network). Since this example ANN would be
considered as a very small network, one can see that the amount of free parameters
in ANNs are easily very large.

Input and output nodes

The input and output layers do not really consist of nodes in the sense that there can
not be any free parameters with the input or output nodes that would need to be
estimated (i.e., trained). Both layers can, however, contain predefined operations
on the data if needed.
The input nodes are just the values of the input variables. So, the dimension of the
input layer is the dimension of the data vector for each case. The input nodes are
sometimes called features, since they can be different featuresmeasured or extracted
from the object to be classified. In typical ANNs, the dimension of the input vector
can be large, easily some tens or hundreds.
The output layer should usually contain only one value, either a predicted numeric
value (compare with regression) or a predicted class (compare with classical clas-
sification). A ’decoder’ can be used with the output value in case of classification
to map the numerical value into class label.

Convolutional neural networks

When dealing with images, for example, the data dimensions can get huge. In a
1024 × 1024 image with three color channels there are over 3 million values. If
one would use fully connected layer after this kind of input layer and use, say, 100
nodes, there would be over 300 million weight parameters to be estimated with the
first layer alone.
The convolutional neural networks (CNN’s) tackle this problem by introducing
limited ’views’ or receptive fields from the nodes to the earlier layer data. The spatial
structure of the data (e.g., image) is being exploited, and the view from a single
node can take, for example, a small rectangular area around one particular pixel in
the image and perform a simple operation on these pixel values. The convolution
here is when the same identical filter, operation on the view data, is moved across
the whole image to produce input for all the nodes in a layer. The CNN’s also
apply pooling operations which will combine multiple node/pixel values into one,
therefore reducing the dimensionality.
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The convolutional and pooling layers in the CNN are extracting different simpli-
fied ’features’ from the image. When the feature extraction phase is done, there is
typically a final, fully-connected traditional ANN layer before the classification.

10.1.2 Activation functions

In each node, there is the linear part with weights and bias parameters, and the ac-
tivation function f. The activation function can be any R1 → R1 function, but if f is
not non-linear, the network would actually just simplify into one large linear oper-
ation on the input data, and would not performwell. The other practical limitation
for the activation function is that it should be differentiable, i.e., have analytical
derivative. This limitation is needed when training the network (see later).

The activation functions are typically functions that take the input from the whole
real axis, and limit/suppress/compress the output. In this sense, the activation
function will regularize the behavior of the linear part in the node. Some of the
typical activation functions are presented in Table 10.1. The ReLU will clip out
all negative values, while sigmoid and tanh will compress R1 into (0, 1) or (−1, 1).
Usually, the choice of the activation function will not be crucial for the ANN per-
formance.

Table 10.1: Typical activation functions in ANNs’.

Rectified linear unit (ReLU) f(x) =

{
0, x < 0

x, x ≥ 0
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Logistic (sigmoid) f(x) = 1
1+e−x
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Hyperbolic tangent (tanh) f(x) = tanh(x) = ex−e−x

ex+e−x
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Special activation functions

In addition to the R1 → R1 activation functions applied to each individual node,
ANNs can have some special activation functions that are applied to all the nodes
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collectively. Namely, these are so-called softmax andmaxout functions. The purpose
of these functions is in classification. The softmax function for node i is of form

fi(x⃗) =
exi∑
j e

xj
, (10.2)

so the softmax scales the exponent of the output of node i with the sum of all the
exponents in the output. Effectively, this convertes the outputs into something that
can be treated as ’probability’ — all the values are in (0, 1) and they sum up to 1.

The maxout function simply outputs the maximum of all the node outputs. Alter-
natively, it can output the index of the node giving the maximum output.

In classification task, softmax andmaxout are typically used as the activation func-
tions of the last hidden layer before the output. If there are k classes, one should
have also k nodes in the last hidden layer. After softmax activation, the output val-
ues of these nodes can be interpreted as the probabilities of the classes with given
input. Then, maxout can be used to give the class with the highest probability.

10.1.3 Connections

The ANNs are typically fully-connected networks, meaning that all the outputs
from the previous layer will be inputted to all the nodes of the next layer. The
weights w⃗i (see Eq. (10.1)) in the following layer can effectively discard/nullify
inputs that the ANN decides to be of no information. However, if one likes to
increase the robustness of the ANN in case of possible missing data in the input,
one can randomly break some connections between the nodes when training the
network.

Typically, ANNs are feed-forward networks, meaning that the flowof input/output
only go from the previous layer to the next layer. There are also recurrent neural
networkswhere there can be loops in the graph. These loops can introduce temporal
dynamic behavior, and some short-term ’memory’ in the network.

10.2 Training and operation of artificial neural net-
works

A typical ANN operates on high-dimensional input data, and has several hidden
layers between the input and output layers. As all the nodes in all the layers have
the linear operation (see Eq. (10.1)) with several unknown parameters, the ANN
will have a very large number of parameters to be estimated. In ML, the estimation
process is usually called learning or training.
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10.2.1 Training the network

The training phase of ANN is the one which consumes a lot of computations, and
requires preferably a lot of training data. The training is essentially a minimization
problem. The values of the unknown weight and bias parameters are estimated
so that the prediction error of the network is minimized. The training data with
existing labels on the cases is needed so that the prediction error can be computed.

Since the ANN is a complex non-linear system, the minimization needs to be done
numerically. In each round of the minimization process, the weights are updated
and the prediction error is computed. This process is accelerated with the use of
gradient-based optimization algorithms, which is the reason why the activation
functions need to be differentiable.

In ANNs, one round in the optimization algorithm is called epoch. One needs to
train the network with large enough number of epochs so that the network weight
and bias parameters are converged. On the other hand, training too long can result
in overfitting. Overfitting is especially a problem with ANNs, since there are so
many free parameters and the ANN is very flexible to fit almost anything.

As the training data can be large, the optimization round can be quite demanding
computationally. Some optimization algorithms, such as Adamwhich is a stochas-
tic gradient-based algorithm, are not using all the training data at each round of
optimization. Instead, they take smaller batches from the data, and evaluate the
gradient of the function adaptively based on earlier values and the value from the
batch. These algorithms have parameters such as the learning rate to control how
much the algorithms should trust on local (linear) gradients when moving to next
value.

Because of the large number of parameters, there should be enough training data
available. It is unrealistic to assume that hundreds or thousands of parameter val-
ues could be estimated very reliably with some tens of observations. This is es-
pecially the case with ANNs if one wants to gain better predictions with the use
of validation data. The prediction error can be computed using the training data.
However, this error rate is known to underestimate the true error, since the model
is fitted to exactly this particular data. If part of the training data is set aside on
each minimization round, the error rate when predicting this validation set can
be used as a more reliable estimate. Especially when the error rate for the valida-
tion data becomes much worse than the error rate in the training data, the model
might suffer from overfitting. The validation data is still different from the final test
data (see next), so having enough training data enables to have representative sets
of training, validation, and test sets. Validation data and the model performance
during training can be used to tune the size and shape of the network, and the pa-
rameters in the training process, such as the number of rounds (epochs) in training
algorithm and the value of the learning parameter.
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10.2.2 Evaluating the performance of the network

The final evaluation of the ANN accuracy should be done using the test data, a
part of the labeled training data that is put aside before starting the ANN learning
phase. In cases where one has limited amount of training data available, one can
also do k-fold cross-validation by repeatedly leaving a small part of the original
data for testing, and learning the ANN several times with random division of the
data.
The three possible scenarios of dividing the available data in ANN training and
evaluation are shown in Fig. 10.2. In the case a), there is enough data so that it
can be divided into training, validation, and testing. In the case b), the available
data set is not very large, so one might want to skip the division into training and
validation. Finally in the case c), there is serious lack of data. Therefore a k-fold
cross-validation is done with a small testing data on each round, and by averaging
the final accuracy over the runs. Please note that in the AI community, usually only
the case a) with data divided into training, validation, and testing is accepted as a
valid method for ANN training and use.
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Figure 10.2: Three cases of the division of the available data for ANNs.

The final accuracy of the ANN (in classification) is the fraction of cases in the test
data where the label (i.e., class) is predicted correctly by the network. However, in
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many cases it might be interesting to know if different classes are predicted equally
well, or if there are some problems with some particular classes. The confusion ma-
trix is a popular way to present the classification results class-by-class. In confu-
sion matrix, the correct classes are organized as rows, and the predicted classes as
columns of a rectangular matrix. In Fig. 10.3 there is an example plot of a confusion
matrix. One can use colors to highlight the more populated cells in the matrix. The
correctly-classified cases are in the diagonal of the matrix.
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Figure 10.3: An example of a confusion matrix plot for evaluating the result of a
classification task.

10.3 Computational issues with artificial neural net-
works

The trainingphase of theANNspresent a heavy task on the computing side. Gradient-
based optimization is done in a task with typically hundreds of parameters and
thousands of multi-dimensional data points. The computer science and hardware
advances enabling the recent rise of ANNs are the use of stochastic gradient-based
optimization algorithms that can be ran on graphics processing units (GPUs).

The stochastic gradient-based optimization can work with a smaller batch of the
data on each round instead of computing the gradient using all the training data
on each round. The gradient on each round will be a stochastic estimate of the true
gradient, but computed a lot faster because of the smaller amount of data in the
batch. One particularly popular and efficient recent algorithm for this is the Adam
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algorithm, which an adaptive version of stochastic gradient and weight updating
algorithm.

The GPUs come to the picture with the fact that during the network and gradient
value evaluation, a large number of relatively simple operations are done over a
fixed-sized batches of data. TheGPUs aremassively parallel but simple processors,
and are suitable for this kind of tasks.

The low-level computer implementation of the optimization algorithms and the
parallelization into heterogeneousCPU/GPUenvironment is not an easy task. There-
fore there is only a handful of lowest-level libraries that implement the ANNopera-
tions on the hardware. These include TensorFlow (Google), PyTorch, mlpack, and
implementations byMicrosoft and Amazon. Then there are several libraries on top
of these which offer an improved usability in different computing environments,
such as Keras for Python, or the toolboxes in Matlab.

10.4 An example of asteroid spectral classification
with artificial neural network

To further introduce the ANN field, let us have an example of the workflow of one
ANN classification task. The composition of asteroids is typically estimated from
their reflectance spectra in visual-near infrared wavelengths, since other methods
are generally not feasible. One can divide the spectral types very roughly into
silicate-rich S, carbonous C, and ’other’ X category. Typical spectra are shown in
Fig. 10.4.
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Figure 10.4: Examples of the reflectance spectra of a S-, C-, and X-type asteroids.

We have a dataset with 311 S-types, 62 C-types, and 52 X-types. The spectral reso-
lution is such that there is always 201 values between the wavelengths of 0.45 and
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2.45 µm. So, the input layer size is 201. Let us form an ANN with two hidden lay-
ers. The first layer will extract features from the spectral values, and the second
layer will evaluate the probabilities for each class from these features. We have
three classes, so the size of the second layer is three. Let us try having six features,
at maximum, computed from the spectra, so the size of the first layer is six.
The activation function of the first layer can be sigmoid, and the second classifica-
tion layer needs to have softmax activation function. The output layer might need
a ’decoder’ function to map the numerical labels back to class labels. The ANN
could be summarized as in Fig. 10.5. Even though the network is quite small, it has
201×6+6+6×3+3 = 1233 parameters (weights w⃗i and biases bi) to be estimated.

input layer, size 201
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linear + sigmoid ac�va�on

layer 2, size 3
linear + so�max ac�va�on
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class decoder

all-to-all forward connec�on

all-to-all forward connec�on

all-to-all forward connec�on
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Figure 10.5: The ANN for asteroid spectral classification.

The size of the data set with known labels (i.e., asteroid classes) available for us is
425 cases: 311 S-types, 62 C-types, and 52 X-types. Let us divide the data so that
15 % is left for testing, and also 15 % of the training data is left for validation. Next
step is the training of the network, which can take typically some tens of seconds
or few minutes, depending on your computer and environment speed. One possi-
ble output graph of the trained network is shown in Fig. 10.7 using Mathematica
software.
Finally, the trained network can be tested with the test data set. The overall accu-
racy, i.e., the percentage of the correctly classified cases of all the cases, is about
95 %, which is quite promising. We can look at the results by asteroid types from
the confusion matrix plot in Fig. 10.7. We can see that all the S-type asteroids are
correctly classified. From C-types, only 1 out of 11 is wrongly classified, but the
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NetTrain Results

summary batches: 50 000, rounds: 10 000,

time: 1.6min, examples s: 29 430

data training examples: 275, validation examples: 110,

processed examples: 2 750 000,

skipped examples: 0

method ADAMoptimizer , batch size 55, CPU

round loss: 7.34 10 2 , error: 2.55

validation loss: 5.69 10 2 , error: 0.909
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Figure 10.6: Mathematica output summarizing the training process of the network.

X-types are more challenging. Only 50 % of X-types are correctly classified. This is
understandable, since X-type here is a heterogeneous collection of types not really
fitting into S or C. All in all, the ANN seems to perform very well.
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Figure 10.7: The confusion matrix plot of the asteroid classification ANN result.
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Chapter 11

Appendix

11.1 Normal and related distributions

Pdf’s, cdf’s and inverse cdf’s for normal, t, χ2, and F-distributions, formulated us-
ing special functions.

Standard normal distribution

f(y) =
1√
2π

exp

(
−y2

2

)
(11.1)

F(y) =

∫ y

−∞
f(x)dx =

1

2

(
1− erfc

(
− y√

2

))
(11.2)

F−1(p) = {y : F(y) = p} = −
√
2 erfc−1(2p) (11.3)

where erfc is the complementary error function, and erfc−1 its inverse function.
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Standard normal distribution, pdf and cdf.
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t-distribution

f(y) =
1√

κB(κ/2, 1/2)

(
κ

κ+ y2

)κ+1
2

(11.4)

F(y) =

∫ y

−∞
f(x)dx =

1

2
I

(
κ

y2 + κ
,
κ

2
,
1

2

)
, if y ≤ 0, and (11.5)

1

2

(
1 + I

(
y2

y2 + κ
,
1

2
,
κ

2

))
, if y > 0

where κ is the degrees of freedom for the distribution, B is the Euler beta function,
and I(z, a, b) is the regularized incomplete beta function.
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Student’s t-distribution with 10 degrees of freedom, pdf and cdf.

χ2-distribution

f(y) =
2−κ/2 exp(−y/2)y

κ
2
−1

Γ
(
κ
2

) (11.6)

F(y) =

∫ y

−∞
f(x)dx = Q

(κ
2
, 0,

y

2

)
(11.7)

where κ is the degrees of freedom for the distribution, Γ is the Euler gamma func-
tion, and Q(a, z0, z1) is the generalized regularized incomplete gamma function.
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F-distribution

f(y) =
κ
κ1/2
1 κ

κ2/2
2 y

κ1
2
−1(κ2 + κ1y)

1
2
(−κ1−κ2)

B
(
κ1

2
, κ2

2

) (11.8)

F(y) =

∫ y

−∞
f(x)dx = I

(
yκ1

yκ1 + κ2

,
κ1

2
,
κ2

2

)
(11.9)

where κ1 and κ2 are the degrees of freedom for the distribution, B is the Euler beta
function, and I(z, a, b) is the regularized incomplete beta function.
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F-distribution with κ1 = 10, κ2 = 15, pdf and cdf.

11.2 Matrix algebra

In what follows we introduce some simple properties of matrix algebra that should
be useful with the material in this course. First, some rules regarding matrix trans-
pose:

(A+B)T = AT +BT (AB)T = BTAT (AT )T = A (11.10)
(A−1)T = (AT )−1 det(AT ) = det(A) (11.11)

IfA symmetric, then AT = A (11.12)
If A orthogonal, then AT = A−1 andAAT = I (11.13)

and matrix inverse:

AA−1 = I (AB)−1 = B−1A−1 det(A−1) = det(A)−1 (11.14)
If det(A) = 0, then A is singular and cannot be inverted (11.15)

If A is invertible, then columns of A are linearly independent (11.16)
If A is invertible, thenAT is invertible (11.17)
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If matrixA is diagonal, all the entries outside the diagonal [A]ii are zero. Diagonal
matrix can be noted by listing its diagonal elements, A = ⌈a11 a22 · · · ann⌋. For
diagonal matrices inverse and determinant are easy to calculate:

A−1 =

⌈
1

a11

1

a22
· · · 1

ann

⌋
(11.18)

det(A) =
∏
i

aii (11.19)

Basic rules regarding expectation and covariance operators with matrices:

E(AY ) = AE(Y ) cov(AY ) = A cov(Y )AT (11.20)
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