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Introduction

Course Content

Relativistic kinematics part
• Special relativity and frequently used reference 
frames (laboratory & center-of-mass frame)
• Phase space integrals & cross section
• Two particle final states: two-particle decay and 
scattering, Mandelstam variables
• Three- and multi-particle reactions 

Phenomenology part
• Standard Model (SM): theoretical framework, 
principle of gauge invariance, quantum 
electrodynamics (QED) and chromodynamics 
(QCD), electroweak unification and Higgs 
mechanism & Higgs boson
• Beyond SM (BSM): SM flaws, dark matter, basics 
of BSM, Grand Unified Theories, supersymmetric 
and extra dimensional models
• Hadron colliders: Deep inelastic scattering & 
hadron collider physics
• LHC phenomenology: soft physics, QCD, 
electroweak, top, Higgs and beyond SM.
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Introduction

Recommended prerequisites
• Introduction to Particle Physics I & II
• Quantum Field Theory I & II / QM IIa & IIb (beneficial) 
Literature
Text books
M. Thomson: Modern Particle Physics, Cambridge 
University Press 2013 (for the Standard model part)
  

Other resources
• W. von Schlippe: Lectures on relativistic kinematics,    
St. Petersburg State University (see course homepage)
•  A. Pich: The Standard Model of Electroweak 
Interactions, arXiv:1201.0537 
• J. Iliopoulus: Introduction to the Standard Model of 
Electroweak Interactions, arXiv:1305.6779
• Particle Data Group Reviews, pdg.lbl.gov

Course Grading
• Exercises: max 24 points (weight 40 %)
• Presentation of experiment and/or physics subject:           
max 9 points (weight 15 %) – a must if credit wanted
• Oral course exam: max 27 points (weight 45 %).
   

Course Exercises 
• Exercises given latest Wed, returned next Wed 16.00                                                   
(first exercise paper will be given next week)
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  Use of generative AI:
ü Follow University of Helsinki general rules on AI usage:                                                  

https://studies.helsinki.fi/instructions/article/using-ai-
support-learning?

ü Usage of Large Language Models (LLMs) encouraged.
ü However: the usage of LLMs should be clearly 

stated including how the LLMs were used.
ü Recommendation: use Copilot provided by the 

university (https://copilot.cloud.microsoft/).
ü LLMs to be used as a tool (& NOT as a black box). 
ü Can help you with ideas & methods (= library), 

coding & repetetive tasks (e.g. partial derivates).
ü Always check yourself that the LLM suggestion 

makes sense. Explore the capabilities of LLMs. 
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Relativistic kinematics

• In High Energy Physics (HEP) the particles (e.g. 
protons, pions, electrons) we are concerned with 
usually move at speeds close to the speed of light. 

• The classical relationship for kinetic energy of  
particle in terms of its mass and velocity is not valid:
     

       kinetic energy T  ≠ mv2/2 

• Thus we must use special relativity to describe   
the energies and momenta of the particles.
• The total energy (E = rest + kinetic) of a particle   
with rest mass, m0, is: 

( )
!

"!

!
"!

#$
!"

!#
!""!$ γ=

−
==

• Here v is its speed, c = speed of light, and m is 
sometimes called the relativistic mass. The total 
momentum, p, of a particle with rest mass, m0, is:
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• We can also relate the total energy, E, to a 
particle's total momentum, p:

!!
"

!! #$#$ !"!#$ +=

E=m0c2+T
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Natural units & 4 vectors
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Set c = 1 = [L] / [T] Þ [T] = [L] (e.g. in 4-vectors)
Also ħ = 1 = [E] × [T] Þ [L] = [T] = 1/ [E] (= GeV-1)
One degree-of-freedom left so choose [E] = GeV

3 fundamental units: length L, time T and energy E
2 constants: 

Þ [E] = [p] = [m] = GeV!!! !"# +=Now

Define

e.g. b = p/E, g = E/m & for unstable particles: 
<lifetime> =  𝛾𝜏! & <decay length> = 𝛽𝛾𝑐𝜏!
Convenient to describe a particle by a 4-vector.  
The components of the momentum and energy 
4-vector, p, are given by: 

!"#$%&'()*&'''( === !"#""""#" $%&

• The length of the 4-vector is given by:

True in ALL reference frames (lab, center 
of mass,…) due of Lorentz invariance 
4-vector with length L2 is:
• Time like if L2 > 0
• Space like if L2 < 0

Particle “on 
mass shell” 
if m = true 
rest mass, 
“virtual” in 
case not.

!"##$B#&'()*$(!+,-././ 0000 =+= !!""#$

special case: Light like if L2  = 
0 (m = 0 if P = E i.e. photon!)
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𝑚! = 𝐸! − 𝑃! = 𝐸! − 𝑝"! − 𝑝#! − 𝑝$!

𝑐 = 3.0 + 10% &
'
, ℏ = 6.6 + 10(!) GeVs

𝜏! = 
proper 
lifetime
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Lorentz transformation

Speed of light (c) same in all inertial reference frames
Þ Lorentz transformation i.e. time & distance between 
events may differ among frames but a scalar distance

between 2 events is the same in all inertial frames. If 
translations excluded, only transformations leaving s
invariant are rotations connected with t e.g. z-t plane
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Lorentz transformations:

S´ to S Lorentz trans-
formations obtained
by change of b to -b

x

z

y

x´

y´
z´

S
S´

v
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Four-vectors

Equations on previous page form a special class of 
Lorentz transformations but that’s all what is needed. 
The most general Lorentz transformation equations
have the simplest form in four-vector space x = (x0, x1, 
x2, x3) = (x0, x) = (ct, x, y, z). For any four-vector the
general Lorentz transformation is given as:
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, where L is a real matrix
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µν !!metric tensor:

scalar product: !"!"!"#!"!" ⋅−===⋅ ∑∑ !!

"νµ

νµ
µν

µ

µ
µ

A Lorentz transformation is a linear transformation that
leaves scalar product a× b invariant (Þ L must satisfy
gL-1g = LT). Can be expressed as a boost (see previous
page) followed by a 3-dimensional rotation. In addition, 
Lorentz transformations satisfy following conditions:

The specific Lorentz
transformation solution of 
previous page would give:

_

!"#$%&!&'()!*$!#+,-.'(/0+,0$',1!123&!+ +=!
!"#$%!$"&'#()&*%''&!+(,!-(*.)*+/*"("&'01'*.'2!3"451

1 ≥!
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Example: Consider a proton with a momentum P of 10 
GeV hitting a proton at rest in the lab frame
• What is the energy of incoming proton in lab frame?
For a proton m = 0.938 GeV. Since the rest energy 
of a particle is a Lorentz invariant we get:

Thus at high energies (E >> m) E » |p|.
• How fast is the proton moving in lab frame?
 We need to remember energy/momentum relation-
ship between rest frame of proton and the lab frame:

Thus v = 0.996c (very fast!)

Colliding beam vs fixed target collisions
• As discussed later cross sections & energy available 
for new particle production depend on total energy in 
center of mass (CM) frame (ECM). CM frame = frame 
where total momentum vector is zero. Define s = Spi,CM
CM frame: s = (p1+p2)2 = (E1+E2, p1+p2)2 = (E1+E2, 0)2 
If masses & E’s equal then s = (E1+ E2, 0)2 = 4E2

Yet for case above in lab frame: s = (E1+mp, p1+0)2

s = 20.6 GeV2 Þ ECM = 4.54 GeV
ECM ≈ Ö2mtargetEbeam for fixed target
ECM = 2Ebeam for colliding beam

colliding beams 
more efficient for
producing new & 
heavy particles

___________________
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Relativistic kinematics

2

E = 𝑃! +𝑚! = 10! + 0.938! = 10.044 GeV

⁄𝑃"#$ 𝐸"#$ = ⁄𝛾𝛽𝑚𝑐 𝛾𝑚𝑐 = 𝛽 = ⁄10 10.044 = 0.996
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Time dilation

Particle Physics Phenomenology 2026
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A muon (m = 0.106 GeV) with E = 1 GeV in lab frame.
• On average how long does muon live in lab?
In muon’s rest frame only lives (on average) t = 2 µs. 
But in lab frame lives (on average): 
• tlab= gt » 20 µs since g = E/m = 1/0.106 » 10 
• How far does muon travel in lab before decaying?
• Dxlab= gbct » (10)(3 ×108 m/s)(2 × 10-6 s) = 6 × 103 m

Large increase due to special relativity

Most HEP particles are not stable, i.e. they decay into 
other particles after a certain amount of time. E.g. 
Lepton  Mean Lifetime (s)
electron     stable
muon (µ)   » 2 x 10-6

Above table gives lepton average lifetime in their rest 
frame. However, often must know how long a particle 
will live (on average) in a frame where it is moving 
close to the speed of light (c). Use special relativity!
• Consider a particle moving with speed v in lab frame 
along the x-axis. Then:

lab x

y v cm
particle at 
rest in cm

In CM: 
x1,CM= x2,CMIn lab frame time between 

creation & decay of particle:

• tlab= g (tCM+ b xCM)
• xlab= g (xCM+ b tCM) 

tlab= t2,lab- t1,lab=g (t2,CM+b x2,CM) -g (t1,CM +b x1,CM) =
g (t2,CM -  t1,CM) = gt  NB! t = proper lifetime & t £ tlab 
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Minkowski metric, rapidity
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An alternative description, Minkowski metric,     
based on introducing an imaginary time x4 = it.       
Now the 4-vector components of space-time are:

Going back to imaginary time, rotations becomes:

βγγ == !! !"#$%&!$

( )βββ −+== !!"#$!%&'&()#*+*'#,' !!

NB! Rapidity is additive i.e. two rapidity transforma-
tions can be replaced by a single one  y3 = y1 +y2 

standard Lorenz 
transformation

since          
coshx = cos ix
sinhx = −isin(ix) 
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P

q pT
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q = 90o    ®  
h = 0
q = 10o    ®  
h » 2.4
q = 170o  ®  
h » -2.4

Pseudorapidity

rapidity y = ln[(E+pz)/(E-pz)]/2 becomes pseudorapidity 
h = -ln(tan(q/2)) if particle masses neglected (E, pz » m).

pz
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Useful frames for scattering processes

Let’s introduce some frames, defined by the initial state of 
a scattering process. In a two-particle process, particles a
and b with four-momenta &                 interact.( )!!! "#" != ( )!!! "#" !=

1. Laboratory frame (LF) is defined as the frame in  
which the experiment is carried out and all energies
and momenta measured. This is the primary frame
from which quantities (usually denoted by an index L 
or an index lab) are transformed to other systems.  

2. Centre-of-mass frame (CMF) is defined as the frame
in which 𝑝⃗! + 𝑝⃗" = 0. The CMF quantities are usually
denoted by an asterisk or an index CM. Many experi-
ments like at the LHC are colliding beam experiments. 
If the mass of particles a & b are the same then
Laboratory frame (LF) = Centre-of-mass frame (CMF) 

3. Target frame (TF) defined as the frame in which
𝑝⃗"# = 0. The TF quantities are usually denoted by an 
index T.  Some experiments are fixed target ones, i.e. 
Laboratory frame (LF) = Target frame (TF).

∗∗ −= !" ##

CMF:

!=!"
!
# $$

TF:

Particle Physics Phenomenology 2026
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Lorentz transformations between frames

Consider first Lorentz transformations between the CMF 
and TF frames. Initial state can be expressed as follows:

!"#"#"#$!#"#"#$
!#"#"#$!#"#"#$

!
"
!#!!

"
#

"
#

"
####

$%&'%
&'%&'%

=−=
==

∗∗∗

∗∗∗

where the direction of motion has been chosen as the z
axis. The Lorentz transformation equations are now: 

!"#$%C"'(F*
+,-'.#/M#1F*

!
"

#$!
"

#$
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#$!
"

#$!
"

#$
"

%CC
C%%

βγ
ββγ

−=
−=

∗

∗

need to determine bCM. If total energy and momentum of a 
group of particles in some reference frame: 𝐸$%$, 𝑝̅$%$ then

!"!!"!!"!!"!!"!!"!!"!!"!!"!!"! #$#%%$ !!! === βγγβ

Where 𝑚$%$ = 𝐸$%$& − 𝑝̅$%$& = 𝑠 is the invariant mass of 
the group of particle . For 2-particles in TF this becomes:

Now the CMF-TF relation can be expressed as: 
( ) ( ) !"!#$#$" %

C
'E'E

)
%
C

'E
)

%
C

%
C

'E =+=+= βγγβ

!
"##"

!
"#

!
"#"#""# $%%%&%$''$$EE !"#"#"#"# !!!!!! ++=−+=+−+=≡

inserting these into the Lorentz transformation equations
( ) !"##"!$#$ %

&'&&
%
&'& +== ∗∗ !

( ) !"##"$!$#$ %
&'''&

%
&'' +=== ∗∗∗

The Lorentz transformations can be done explicitly as 
above but in more complicated cases this becomes too 
tedious (and error prone) so instead noninvariants will be 
expressed in terms of invariants to make algebra easier.  
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E, P in terms of invariants: TF

For the target frame (TF) we have 𝑝̅"#= 𝑃"#= 0 and 𝐸"#= 𝑚"

{ }
!

!!!!!
!!!

!!

"
"#$#$#$

!
#$

!

!"!"
"

#
"

#
"

!

!"#
" $

$$$$%$&'
$
$$%& −−−

=−=
−−

=

To simplify we introduce a kinematical function l:
!"#!"#!#"#!!#"!#" !!!"#$#%%$ !!!! −−−++=−−−=λ

l is invariant under all permutations of its arguments (see
above). l is sometimes called the triangle function since

is the area of a triangle with sides!"#$$% !"#λ− !"# !"#$

!!"
#
" $$$%& !"#$$% !!λ=for TF momentum we get:

now: ( ){ } ( ){ }!!!! "##$ !"!"!" ##$##$##$ −−+−=λ
thus PaT is real if: !" ##$ +≥

Threshold value 𝑚! +𝑚" the smallest value Ös can attain. 

{ }{ }!! "#"# !"#!"# −−+−=

{ }{ }{ }{ }!"#!"#!"#!"# −++−++−−=

For the centre-of-mass frame (CMF):
⇒+=== ∗∗∗∗∗

!"!" ##$%%%

( ) ( ) !!!!
!" #$#$% +++= ∗∗

Ös is equal to the total energy in CMF. One obtains the 
following expression for CMF energy and momentum:

!""!# $% !"##$ !!λ=∗

!""!##!# $%$%$ !"# !! +−=⇒−= ∗∗∗

!""!# $%% !"# !! −+=∗
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Phase space

In the reaction , the final state is constrained
by the initial state via four-momentum conservation i.e.

!"# ++→+ !!!"

∑∑∑ ===
=+=+⇔=+

!

"
"#$

!

"
"#$

!

"
"#$ %%%&&&%%%

!!!
"µµµ

NB! For ”asymptotic” states, intermediate one can violate energy 
or momentum conversation (Heisenbergs uncertainty relation). 

Define the 3n dimensional space of the unconstrained 
final state momentum vectors     , the momentum 
space. The conditions above define in this space a 3n-4 
dimensional surface, which will be called phase space.

!"

Need to distinguish 2 types of reactions or measurements:

exclusive
!

!
!

!

!

The reaction channel is fixed in an exclusive reaction, whereas    
an inclusive is a sum over several different exclusive channels. 

inclusive

!

!

!!

!

} !"#$%&"'

...

...

Two types of exclusive processes encountered in practice:

a particle decay,                                                                
a collision of particles,                                                     
One can call the 1st a 1 ® m & the latter a 2  ® n process.      

!"# ++→+ !!!"
!++→ !!!"#

If m = n +1, pa = p0, pb = -pm, particle decay and particle collision 
are related by crossing, i.e. collision can be obtained from decay 
by moving one final state particles to initial state and vice-versa. 
Particle Physics Phenomenology 2026
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The concept of cross sections

Cross sections

Cross sections s or differential cross sections ds/dW 
are used to express the probability of interactions 
between elementary particles.  

Example two colliding particle beams

N1 N2

What is the interaction rate Rint. ?

beam spot area A

Rint µ f N1 N2 / A  = s · L

Luminosity L  [cm-2 s-1]

Example: Scattering from target

q

solid angle 
element dW

incident 
beam

scattered 
beamtarget

Nscat(q) µ Ninc· nA · dW 

            = ds/dW (q) · Ninc·nA· dW

s has dimension area !
Practical unit: 

1 barn (b) = 10-24 cm2

.nA = area density 
of scattering 

centers in target

f = collision frequency

Nint = Rint t

Particle Physics Phenomenology 2026
Relativistic kinematics

assumption: 
target area >> 
beam spot area
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Ultimate challenge to 
high energy colliders:  
the production rate of 
”interesting” interactions
fall as 1/s (µ 1/ECM

2), 
hence need to improve
luminosity a factor 100 
for each factor 10 
energy increase to 
benefit from energy
increase (distances
at which structures
probed µ 1/Ös).

(E.Wilson)

!" #A%&'()*+ !⋅σ

for Npart/bunch particles in both beams !" #A%&'()*+
!

"⋅σ
and finally take into account the bunch crossing frequency 
fb = # of bunches multiplied by the revolution frequency.

!
"

## A%&'()*+,
!

"#$%&'E')E*+',-'.+ =⋅= σ (= luminosity)

Luminosity

Define luminosity precisely: 

imagine a particle colliding with a bunch of cross section 
area – A. Probability of collision is: (E.Wilson)

Particle Physics Phenomenology 2026
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Cross section, partial decay width & lifetime

Transition probability from initial to final state defined as:      
the ”matrix element”.

Matrix M contains all ”physics” of the reaction and will not 
be discussed more in detail here. Simply noted to be an 
unknown function of -𝑝'’s. To obtain measurable quantities,                 
must integrate M(-𝑝') & over an allowed set of -𝑝' values. 

!"#$$$##% !"#$ %%%%% Μ≡Μ

∫Π ΜΣ−+=
==

!

"

#
$

"
%&%&

!
%& !!

"

!#$
!

!
"

!" %%%%
&
%'E) δ

Cross section: 𝜎( ≡ 𝜎( 𝑠,𝑚' = ⁄𝐼( 𝐹, where
is the flux factor & !!!"# $%$!%" !"!"

# $$%%& −⋅= −π

contains the 

integration over phase space. NB! definition a convention.

Partial cross section obtained by integrating over 3n-4 
dimensional phase space for an allowed set of -𝑝' values. 
Corresponding quantity for decay is partial decay width.

The lifetime t of an unstable particle is the inverse of Gtot,
the sum of the partial decay widths of all possible decays, 

∑∑ =Γ=Γ=
! !! ! σστ !"!!"! #$%$&'(&)*+

differential cross section: integration restricted to subset 
of the allowed phase space. Done by inserting d functions.

∫Π Μ−Σ−+=
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!

"

#
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"
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!
"

!!!

"

!#$
!

!
"

!

" %%&&%%%
'
%E

FE&
E δδσ

required . Satisfies . Higher-order
etc... obtained by inserting just more d functions.

!" !"## = !! "#""# σσ =∫ !"#
!"!#! $ !

"σ
!"#$#"$ %&# −=Γ !

!! "!# π

!!!!""#$
%

#$
%

&&

'
(

&

% ∫Π ΜΣ−=
==

!!!!!
"
!#$% $&

$

&
&

&
$

&
$ δ

Partial decay width: where

Particle Physics Phenomenology 2026
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Phase space integration

Let’s return to the integral , which includes factors
. They are Lorentz invariant as can be seen by

differentiating the 4-momentum transformation formulas.  

!"!"#
!! "#$ !"

!!"#!"$"#!$#"##""##" %%%%%&'&' ′′=′′+′=′+′=′= !"!#$"$"$"$ γγ
since                  and . The volume  
element thus satisfies   
so is invariant (for exact proof see next page). 
Rewritten into integral form for a timelike p: 

!"" !""#!# $$ ′=′′ !" !"#$$ ′+′= γ

!"# $%$%$%%$ =! !"#!"# ′′= !! ""

!"# !"

∫ Θ−= !"!"#$ %##&' !"!!#$!# δ

where Q(p0) is a step function that is zero for p0 < 0 and 1 
for p0 > 0. The d function integration has following property

!"#$%&'&()"#("#""## !!! =′−= !"!"!!!" δδ

∫∫ Θ−=Θ− !"!"
#

!"!" $$$
%

$##& !"!#!
"
!#!$!!# δδ

so

Now the factor 2 that is conventially added gets an 
explaination. Note that the Q function is usually omitted.

So now the integral over the phase space is:

∫Π ΜΣ−+Θ−=
==

!

"

#$!!#
" %&%&%&%&%& !!

"

!#$!!
"
!" %%%%%&%%'() δδ

d -function, singular function, eliminated in numerical 
calculations. After, 3n-4 variables only constrained 
by limits of integration, defined as variables F.

∫ ΦΜΦΦ=
!"#"#"# !! "#$ ρ rn(F) phase space density

Particle Physics Phenomenology 2026
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Proof of Lorentz invariance

Particle Physics Phenomenology 2026
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Two-particle phase space integral

Let’s consider the simplest possible process: one particle
going into two, thus study two-particle final state without
specifying initial state except that 4-momentum 
conserved. Then the two-particle phase space integral is:

!"# !"! =

∫ −−−−= !"!"!"!##" $%
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Note that R2 can only be a function of s (= p2), m1 and m2. 
First integrate over p2 in the four-dimensional d function
imposing p2 = p - p1 and then go to the CMF 𝑝 = ( 𝑠, 60)
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The special d function property is used here.  In addition, 
that (invariant) & 
is used. Note further that the last d integration defines
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From decay kinematics: ∗∗ == !
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!
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When M is set to 1, we define the phase space integral
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This integral has no physical meaning but is technically 
useful since e.g. rn(F) & physical region of F independent 
of M. Thus most kinematics can be done without knowing 
M. Rest of chapter largely deal with transformations of Rn. 
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Two-particle phase space

The condition for the process p ® p1 + p2 to be physical, 
derived from expressions for the phase space integral, is
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'
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' ≥−−+−= !!!!!!!!!λ

If all four-vectors are timelike, the condition requires:
!"#$%"&'()*

) =+≥ !!"
that is a natural condition for a decay

Define symmetric Gram determinants Dn(p1,..., pn):

⇒

⋅⋅

⋅⋅⋅

⋅⋅

≡∆
⋅

⋅

⋅

⋅

⋅

⋅
!

!"

"!"
!
"

"

###

###

$%###%&

!!!

!

!!

"""""

"""""

""

The process p ® p1 + p2 physical if (and only if):

!"#$ %&% ≤∆ !!
The boundary of the physical region in terms of 
invariants obtained from the condition D2(p1,p2) = 0.    
Now also the l function reveals its true significance, as  
an expanded form of D2. One can call l the basic three 
particle kinematic function. This follows from the fact 
that D2 is relevant for reactions, where the total number 
of four-momenta is three (e.g. a 1 ® 2 decay).
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especially: Δ2 𝑝0, 𝑝2 = − ⁄𝜆 𝑝0 + 𝑝2 2, 𝑝02, 𝑝22 4 
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Mandelstam variables

Let’s now introduce a whole set of invariant variables for 
2 ® 2 scattering, the ”Mandelstam variables”, though we
have already used one of them, s. For reasons related to 
”crossing” one usually defines 2 more invariants t and u. 
The definitions of the invariants for pa + pb ® p1 + p2 are:
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tThere are only two independent
variables so s, t and u must be
related. Infact, the relation is 

𝑠 + 𝑡 + 𝑢 = 𝑚!
& +𝑚"

& +𝑚)
& +𝑚&

&

NB! 𝑠 ≥ 0 but 𝑡, 𝑢 ≤ 0

Crossing: We have sofar treated the reaction pa + pb
® p1 + p2 assuming all energies are positive: 
with . But the equation for four-
momentum conservation is also analytically valid for any
timelike p with a negative 0-component: 𝑝 = (𝐸, 𝑝̅) with 

!"# !"! =
!"" ≥≥++= !!"#

!"" ≤+−= !"# . These negative energy states will in QM 
be seen as the positive energy states of the anti-particle.

(E.Byckling 
& K.Kajantie)
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Mandelstam variables

4-momentum conservation & antiparticle definition give:

!"

!"

!"

!"

!"

!"

####
####
####

####
####

####

+=+
+=+
+=+

⇒
−+=−+
+−=−+

+=+

!"

"!

"!

!"

"!

"!

#$%&''()*+,
#$%&''()*-+
#$%&''()*+.

/0/0
/0/0

where the ”bar” denotes an antiparticle & all 4-momenta 
now have positive E’s. For the kinematics, irrelevant
whether a particle is an antiparticle or not but when
examing dynamical properties the particle-antiparticle
distinction has to be taken into account when a particle
is moved from initial state to final state and vice versa. 

(E.Byckling
& K.Kajantie)

In addition to scattering channels, there may also exist
decay channels. 

E.g. if the following decay is possible!" !!!! "# ++≥

!" !!!! "# ++→
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Cross section formulas

Doing the integration over phase space partly, one gets:
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Similar formulas for ds/dW2* obtained by inter-changing
1 « 2. In many cases, more convient with an invariant 
cross section like ds/dt than the expression above:
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The reaction cross section for pa + pb ® p1 + p2  is:
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The matrix element M depends here on two independent
variables (e.g. an invariant and an angle). If a differential
cross section ds/dx computed, no further integration over
M necessary (since one independent variable still left). 
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Optical theorem

⇒= !""#$%&'()* +++
!" ##$%&% πλσ

The optical theorem relates the total cross section for 
the process pa + pb ® anything with the forward scatter-
ing amplitude of the corresponding elastic process (see 
e.g. G. Källen: Elementary particle physics, Addison-Wesley, 1964):

!"!##"!$%#"&'() **
+I-./M1 !""!#! #$#%& σλ==

( )!"#$!%%"!&!'%"(")*+ ,
'

,,,
*-./M12 !""!#! #$##%#

%
&' σπλ σ −==

=

!"
#$
# %

&

!
"#

"
#$#

#

%&'!#() σ
π

σ
≥

=

Implies that the ”optical point” is 
related to the total cross section: 

The TOTEM experiment at LHC uses the optical theorem 
to determine the total pp cross section using the elastic
differential distribution or cross section dNel /dt or ⁄𝑑𝜎*+ 𝑑𝑡
at t = 0 (very forward scattering). The dNel /dt at t = 0 is 
determined from extrapolating the measured distribution
at small t (~ 10-3 GeV2) to t = 0. TOTEM does it in several
ways, relying or not relying on luminosity (L) measuement
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» 0.10 at LHC energies (13 TeV)

NB! QM predicts: 𝐼𝑚 M,-./012 ≫ 𝑅𝑒 M,-./012  @ t = 0
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Total pp cross-section

Particle Physics Phenomenology 2026
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Inelastic acceptance:
•T1: 3.1 < |h| < 4.7
•T2: 5.3 < |h| < 6.5
with low transverse 
momentum  (PT) 
threshold (40 MeV  
(T2) & 100 MeV (T1)) 
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Total cross-section & elastic scattering

Particle Physics Phenomenology 2026
Relativistic kinematics

EPJC 79 (2019) 103
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Elastic scattering & Odderon evidence
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Elastic scattering & more Odderon evidence
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Physical region in s,t,u
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From the determinant one obtains the basic four-particle 
kinematic function G(x, y, z, u, v, w), which corresponds 
to D3 in the same way as l(x, y, z) corresponds to D2 : 
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When the reaction pa + pb ® p1 + p2 is described by E1* & 
qa1*, then the physical region for the s-channel can be
defined by E1* ³ m1, –1 £ cosqa1* £ 1. In other words, the
reaction pa + pb ® p1 + p2 can experimentally have any
values satisfying these conditions. To extract the physical 
region for 2 ® 2 scattering, it is most convient to fix the 
boundary from the condition sinqa1* = 0 Û cosqa1* = ±1.
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Physical region for 2 ® 2 scattering in the st
plane has to satisfy the requirement:
where arguments may be any three linearly 
independent combinations of pa, pb, p1 and p2.
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Physical region in s,t,u

The algebraic expression for G(x, y, z, u, v, w) is:

!"#$##$"%%"!&&!#$%"&!' ++++++= !!!!!!"#####$
!" !"#$%&&#!&$"%#" +++−+++
!"!" !"#$%&&%#$"! +++−+++−

NB! The physical region of symmetric Gram determinants 
depends on the order, e.g. D2 £ 0 and D3 ³ 0. The rule is 
that odd orders ³ 0 and even £ 0. Implies e.g. that for 2  
® 3 scattering, the physical region is described by D4 £ 0.  

Considering a decay p ® pi + pj, it can be shown that

!"#$"%&'(# )
)*

) !!!!" #$ ++≥

Logically then in pa + pb ® p1 + p2, s = (p1+p2)2 = (pa+pb)2

has to be larger than both (m1+m2)2 & (ma+mb)2 or smaller 
than both (m1-m2)2 & (ma-mb)2. Same will be valid for other 
invariants so physical s, t & u in scattering have to satisfy:
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(E.Byckling & K.Kajantie)

An equivalent requirement based on G-function is: 
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NB! Valid even if some of the pi’s are groups of particles. 
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DIS kinematics

Lepton-hadron scattering at sufficiently high energies
create a large number of final state hadrons & such
reactions are called Deep Inelastic Scattering (DIS).  
The reaction can generally be written as a + N ® b + X, 
where X stands for a hadronic system with an arbitrary
number of particles, N a nucleon and a & b are leptons. 
An example is electro-
magnetic electron-proton
DIS shown in the figure. The
probe can either be electro-
magnetic (g), neutral (Z0) 
or charged (W±) current.

To describe DIS reactions, the 4-momentum of incoming
lepton is denoted k = (E,6𝑘), that of target nucleon P and 
those of the scattered lepton & hadronic system by k’ = 
(E’,-𝑘′), and P’, respectively. The exchanged boson has
the 4-momentum q = k – k’. 4-momentum conservation
gives k + P = k’ + P’. Since DIS energies are at least a  
few GeV, the lepton masses can safely be set to zero. 
Then the 4-momentum transfer squared q2 = (k-k’)2 »
-2EE’(1-cosq) £ 0, i.e. the exchanged boson spacelike.

Invariant W 2 = P’2 is a DIS-variable since the hadronic 
system can have variable multiplicity. The kinematics of    
a DIS reaction is therefore determined by 3 independent 
invariants rather than 2 as in the case in 2 ® 2 scattering. 
The reaction is called ”deep” since –q2 » mN2 & inelastic 
since final state X not just a nucleon (& usually W2 » mN2).

(von Schlippe)
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DIS kinematics

!"#"#"$#$ !"#!$%&#!'( ⋅⋅=⋅=

A natural choice of one of these invariants is S = (k + P)2

= mN2 + 2k × P, which defines the experimental setup.     
The 2nd invariant is usually chosen to be the negative (4-
momentum transfer)2, Q2 = -q2 = 4EE’sin2(q/2). The 3rd

independent invariant can be taken to be W or one of the
dimensionless variables
The invariant x is called Bjorken-x and gives the fraction
of the nucleon momentum carried by the involved parton.  
The variable y has a simple physical meaning in the TF:           
y = 1 – ET’/ET i.e. the relative energy loss of the lepton. 

In fixed target DIS, S = mN2 + 2mNEa, whereas in a lepton-
proton collider like HERA S = 4 EaEp. Note following useful
DIS variable relations Q2 » xyS & W2 » mN2 + Q2(1/x - 1). 
Within the parton model framework, the process can be
viewed as below with the lepton-quark collision as the
hard subprocess. If we think of the incoming lepton and 
nucleon as travelling in opposite directions, then at suffi-
ciently high momenta, 
the energy of the quark
is the same fraction of the
nucleon energy i.e. x. Then
the subprocess invariant 
s = (k + p)2 = xS, 
where p (= xP) 
is the 4-momentum of the incoming quark. 

One is naturally interested in the parton content of the
proton (to be able to describe e.g. proton-proton processes).

(von Schlippe)
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Parton distribution functions

The proton content is described by the parton distribution 
functions (pdf’s) that gives the momentum distribution in 
the proton separately for each partons species (e.g. for a 
valence quark flavour or gluons). The kinematics of the parton 
process is controlled by 2 variables, x & Q2 so then also  
the proton pdf’s qi(x, Q2) are functions of both x & Q2. 
Below is shown the underlying physics reasons for the 
experimentally observed shape of the valence quark pdf. 

(F.Halzen       
& A.Martin)
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Evolution of pdfs








 +
⊗







=







 +
∂
∂

−=
∂

−∂
∫

!
""

##
#$#

!
""

%&'"%&'"&#
&
(&""

FF

!!!"

"!*""+FF

' FF""
+FF

!"#
#

!"!"
$%

!!&'"!&'"!""
#

!"
$%

!"

#

#

( ##
#

#

π
µα

µ

π
µα

µ

qualitative
effects of 
DGLAP:

leads to softer
pdf’s & larger
number of partons. 
large-x: valence
quarks dominate, 
small-x: gluons.

Parton model: pdfs converge at fixed x when Q2 ® ¥
i.e. qi (x, Q2) ® qi (x), when Q2® ¥

Violated due to hard gluon radiation, perturbative QCD 
predicts dependence on scale µ via ”DGLAP”-equations:

where Pij(z) gives
the probability for a i  ® j
splitting with momentum
fraction z. NF = number
of flavours. NB! even if
QCD predicts the evolution
of pdf’s from a particular scale, µ0, it cannot predict them
at any µ without experimental measurements as input.
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valence
quarks

sea quarks

gluons

(Dokshitzer–Gribov–Lipatov–Altarelli–Parisi)
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Determination of pdfs
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pdf’s determined using
an iterative procedure
based on a functional
ansatz combined with
DGLAP evolution & 
experimental data. 
Some recent next-to-
next leading order
(NNLO) determinations: 
CTEQ, MSHT, NNPDF 
and ABMP. All use a 
wide range of data, x & Q2. 
typical list of processes used:

D-Y = Drell-Yan 𝑞+𝑞 → 𝑙!𝑙"
Tevatron = 𝑝𝑝̅ collider
HERA = 𝑒±𝑝 collider
LHC = 𝑝𝑝 collider

Fixed 
target

HERA

LHC           
& 

Teva-
tron
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Determination of pdfs

In hadron-hadron collisions, usually pdf’s are one
of the largest uncertainties in measurements of 
cross sections, etc … 

At best pdfs are known to a few % but in certain
corners of the Q2-x plane the uncertainty can be
much larger …

For more info see PDG structure function review

The output are pdf’s for different flavours of valence and 
sea quarks & gluons at specific x & Q2 as shown below. 
Note that the gluon pdf is shown divided by a factor 10.

Even if exact values & shape differs for different Q2 

(or 𝜇2 as in Fig.) the general trends are the same: 
valence quarks dominate at 𝑥 > 0.1, gluons
dominate at 𝑥 < 0.1. The higher Q2, the faster gluon
and sea quark distributions raise at low 𝑥
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Decay of one particle into three

As invariant variables, it is convient to choose s, t & u as 
in 2 ® 2 scattering. To avoid mixup let’s change notation

!
"

!
!

!
#"!#

!
!

!
#"""#

!
#

!
"!!!"

!
"

!
!###!

$%&'()*+,-.+//+,)0&*%-
1212
1212
1212

$*,3(%*(,)4,&5-

!!!""""
####""
####""
####""

+++=++









−=+=≡
−=+=≡
−=+=≡

Non-invariant variables are three-momenta & angles.    
To define them one has to specify a Lorentz frame. The 
most common one correspond to 2 ® 2 scattering CMF. 

The rest frame of the decaying 
particle or overall CMF is defined as 
the frame in which . 
This is the analogue of TF in 2 ® 2 
scattering in the sense that one of the 
external momenta is taken to be at 
rest. Quantities in this frame are 
denoted by an asterisk. 

(E.Byckling & K.Kajantie)

!"#$ =++= !!!!

Since a decay process p ® p1
+ p2 + p3 is related by crossing
to 2 ® 2 scattering, the number
of invariant variables must be
the same, namely two. Let’s
consider first the invariant 
variables for the process 1 ® 3.

(E.Byckling & K.Kajantie)
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1®3: non-invariant variables

Expressions for energies and momenta can immediately 
be derived using si (i = 1...3) definitions in frame p = (Ös, 0).
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Note the logic: E1* is obtained by considering the two-
particle decay p ® p1 + ( p2 + p3) with final state masses 
m1 & Ös2. The angles between the momentum vectors 
follow from expansions of the si (i = 1...3) definitions, e.g.
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Dalitz plot

The Dalitz plot is defined as the physical region of p ® p1
+ p2 + p3 in the s1s2 plane. More generally, can be defined 
as the physical region in terms of any variables related to 
s1 & s2 by a linear transformation with constant Jacobian 
e.g. any pair si, sj or any pair Ei*, Ej*, where i & j = 1...3.

The Dalitz plot is given by all points in the s1s2 plane that 
satisfies the following equation:

The G here is the same as in the expressions for sin q12*.
The equality gives the boundary in the Dalitz plot. This 
can be obtained e.g. by solving s1 in terms of s2.
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(E.Byckling & K.Kajantie)
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The equation giving s2 in terms of s1 is obtained from the 
above by the exchange p1 « p3; p, p2 unchanged. Both 
give, of course, the same curve. By requiring the Ö to be 
real, one gets the physical region in s2. Cyclic symmetry 
implies that also following conditions have to be satisfied:
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Dalitz plot

To determine the phase space density & obtain as well 
the condition for the boundary of the Dalitz plot directly, 
let’s consider the phase space integral:
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The d-function containing energies can be used to inte-
grate over cosq13* (dcosq13* = E2* dE2* / (P1*P3*)) giving:
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Here the Q-function 
restricts cosq13* to 
physical values only. 
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The variables E1* & E3* are linearly connected to s1 & s2
with the Jacobian ¶(E1*, E3*) / ¶(s2, s1) = 1 / 4s,  thus
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NB! the cosq13*-condition is exchanged to a G-function 
condition, obtained by algebra from the E2*-condition in 
the d-function. Analogous forms of R3(s) with the pairs   
s2, s3 & s3, s1 obtained by cyclic permutations of indices. 
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Dalitz plot

The solid angle W1* describes the p1-orientation in CMF 
& f3*, the rotation of the entire momentum configuration 
about some axis. Integrating over W1* & f3*, we obtain: 
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In other words, if data of a three-particle decay is shown  
as points in a Dalitz plot, the density of points µ (matrix 
element)2. Any structure is thus easily evident. This is   
why the Dalitz plot is so famous & used often. Note that 
this result is strictly only valid for three-particle decays. 
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For the total volume of the three-particle phase space:
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The  Ö-factor is 4th order in s2 & lead to elliptic functions. 
Explicit solutions exists only for some special cases. 

Especially interesting are the extremes, s ® threshold = 
(m1+m2+m3)2 (decay products non-relativistic, NR) or s ® ¥
(ultra-relativistic, UR). Latter is obtained by setting all mi = 0. 
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Multi-particle production

The process pa + pb ® p1 + ... + pn depends on 3n-4 
essential variables and can be described in numerous
ways. Let’s here concentrate on two methods that with 
some modifictions are the descriptions used in modern
HEP event generators. It is possible to visualize
a multi-particle reaction as 
taking place via resonance
formation & decay. In the 
intermediate state, there
are unstable particles, 
which successively decays
to others & eventually form
the final state particles. The 
alternative is to use a multi-
peripheral mechanism, 
implying the dominance of a diagram
of the type exhibited in the 2nd figure. 
Regardless of the actual validity of 
such dynamical ideas, we shall show            
that kinematically an n-particle final
state can always be subdivided into 
simpler processes. This means that
the phase space integral Rn can be
recursively expressed in terms of Rl’s, 

where l < n. The 2 methods needs to be seperated since
in the 1st one, all the intermediate systems occuring have
timelike total four-momenta & hence one can go to their
rest frames and parametrize vectors by spherical angles. 

(E.Byckling & 
K.Kajantie)

(E.Byckling & 
K.Kajantie)
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Multi-particle production

In the 2nd case, particles a & b do not join to the graph at 
the same vertex, and there is at least one line which is 
connected to one initial & one final state 4-momentum. 
Starting at one incoming momentum, the total energy s
can only be fixed when one has reached the other initial
state momentum in the graph, imposing a complicated
constraint on the variables between pa & pb. Also inter-
mediate state momenta may now be spacelike (see e.g. 
DIS) & some of the appropriate variables are now boosts.
The simplest possible recursion relation is based on the 
physical picture of sequential decay (see figure below):
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Rn-1 is only a function of 
Mn-1 is ofcourse the invariant mass of the system formed
by particles 1, ..., n-1. Since Rn-1 is a function of only 1 
variable, it is most natural to take Mn-1 as a variable of 
integration. When the following is inserted in integrand:
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(E.Byckling & 
K.Kajantie)
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Multi-particle production
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So Rn can be expressed as a product of R2 describing the
decay p ® pn + kn-1 & Rn-1 describing the decay kn-1 ®
p1 + .... + pn-1, integrated over all possible values of the
invariant mass Mn-1. To proceed, we iterate the above
steps to obtain a relation corresponding to the entire
chain. Let’s use Mi instead of Mi

2 as variable. Then
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The 3n-4 essential variables now consists of 2 types:    
(i) n-2 invariant masses Mi, Mi

2 = ki2, i = 2, .., n-1, 
defined the masses of the intermediate states.              
(ii) 2(n-1) angles q i, f i in W i = (cos q i, f i), i = 1, ..., n-1. 
These define the direction of in the rest frame

of the decay ki+1
® pi+1 + ki (see figure).
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(E.Byckling & 
K.Kajantie)
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Multi-particle production

The equation can be used as basis for a generator. Let’s
examine 2 special cases: (i) all mi = 0, equivalent with the
asymptotic limit, Mn (or s) ® ¥ (the ”ultrarelativistic” case):
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(ii) Mn (or s) ® µn = Smi (the ”non-relativistic” case):
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A radically different relation for Rn is obtained exploiting
the freedom of choosing the variables of intermediate
Ri’s in a ladder type diagram. If the direction of 𝑝̅! is 
chosen as the z-axis, then the scattering angle, qn-1,    
of the process pa + pb® kn-1 + pn can be replaced by
the corresponding momentum transfer (see figure below).
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(E.Byckling & 
K.Kajantie)
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Multi-particle production

When cosqn-1 is replaced by tn-1, the range -1 £ cosqn-1
£ 1 is transformed to a Mn-1–dependent range tn-1

- £ tn-1
£ tn-1

+, where the specific values of tn-1
± are solutions to 
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where Rn-1 has to be regarded as a function of tn-1, since 
tn-1 is the (mass)2 of one of the initial particles leading to 
Rn-1. To iterate, we must apply the same equation for Rn-1
remembering that mb2 º tn now has to be replaced by tn-1. 
If we also take Mn as a variable instead of Mn

2, we obtain
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In this equation, Rn can takes a 
form in which multiperipheral 
momentum transfers ti appear as 
variables. That might be a more 
convient starting point for Monte 
Carlos  than previous expression. 
One may also further replace the 
azimuthal angles f i in the above 
expression by invariants, which 
turns out to be equivalent to the 
2-particle subinvariant masses si.

(E.Byckling & K.Kajantie)
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