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Course Content

Relativistic kinematics part

» Special relativity and frequently used reference
frames (laboratory & center-of-mass frame)

* Phase space integrals & cross section

» Two particle final states: two-particle decay and
scattering, Mandelstam variables

» Three- and multi-particle reactions

Phenomenology part

» Standard Model (SM): theoretical framework,
principle of gauge invariance, quantum
electrodynamics (QED) and chromodynamics
(QCD), electroweak unification and Higgs
mechanism & Higgs boson

» Beyond SM (BSM): SM flaws, dark matter, basics
of BSM, Grand Unified Theories, supersymmetric
and extra dimensional models

« Hadron colliders: Deep inelastic scattering &
hadron collider physics

» LHC phenomenology: soft physics, QCD,
electroweak, top, Higgs and beyond SM.
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Recommended prerequisites

* Introduction to Particle Physics | & |l
* Quantum Field Theory | & Il / QM lla & lIb (beneficial)

Literature

Text books

M. Thomson: Modern Particle Physics, Cambridge
University Press 2013 (for the Standard model part)

Other resources
* W. von Schlippe: Lectures on relativistic kinematics,
St. Petersburg State University (see course homepage)

» A. Pich: The Standard Model of Electroweak
Interactions, arXiv:1201.0537

«_J. lliopoulus: Introduction to the Standard Model of
Electroweak Interactions, arXiv:1305.6779

» Particle Data Group Reviews, pdg.lbl.gov

Course Grading
 Exercises: max 24 points (weight 40 %)

* Presentation of experiment and/or physics subject:
max 9 points (weight 15 %) — a must if credit wanted

* Oral course exam: max 27 points (weight 45 %).

Course Exercises

* Exercises given latest Wed, returned next Wed 16.00
(first exercise paper will be given next week)
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Use of generative Al:

v Follow University of Helsinki general rules on Al usage:
https://studies.helsinki.fi/instructions/article/using-ai-
support-learning?

v Usage of Large Language Models (LLMs) encouraged.

v However: the usage of LLMs should be clearly
stated including how the LLMs were used.

v~ Recommendation: use Copilot provided by the
university (https://copilot.cloud.microsoft/).

v LLMs to be used as a tool (& NOT as a black box).

v Can help you with ideas & methods (= library),
coding & repetetive tasks (e.g. partial derivates).

v Always check yourself that the LLM suggestion
makes sense. Explore the capabilities of LLMs.

define the Mandelstam variables

@) copilot ©®

The Mandelstam variables are a set of three Lorentz-invariant quantities commonly used in particle physics
to describe the kinematics of scattering processes involving two incoming and two outgoing particles. They

are defined in terms of the four-momenta of the particles:

+ Let the incoming particles have four-momenta p; and py, and the outgoing particles have p3 and p4.

» The Mandelstam variables are:

s = (pl +p2)27
t= (Pl - P3)27
u=(p1 — P-1)2~

Interpretation
+ s:The square of the total energy in the center-of-mass frame (often called the "center-of-mass energy
squared").

+ t: The square of the momentum transfer between particle 1 and particle 3.

+ w: The square of the momentum transfer between particle 1 and particle 4.

Particle Physics Phenomenology 2026 1/4
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* In High Energy Physics (HEP) the particles (e.qg.
protons, pions, electrons) we are concerned with
usually move at speeds close to the speed of light.

 The classical relationship for kinetic energy of
particle in terms of its mass and velocity is not valid:

kinetic energy T # mv?4/2

* Thus we must use special relativity to describe
the energies and momenta of the particles.
 The total energy (E = rest + kinetic) of a particle

with rest mass, m,, is:
2

E= moc2+T<::>E mc” —\/ —j/moc2
1—

v/c

* Here v is its speed, ¢ = speed of Ilght, and m IS
sometimes called the relativistic mass. The total
momentum, p, of a particle with rest mass, m,, is:

:74/}/10]7

\/1—(1//0)2

* We can also relate the total energy, E, to a
particle's total momentum, p:

= (p0) +(mc")

Kenneth Osterberg I/ 5
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E* =(pc)’ +(mc*)> NB!from now m = rest mass
3 fundamental units: length L, time T and energy E
2 constants: ¢ = 3.0- 108>, = 6.6 - 10725 GeVs

Setc=1=[L]/[T] = [T] =[L] (e.g. in 4-vectors)
Also h=1=[E]-[T] = [L] = [T] = 1/ [E] (= GeV"")
One degree-of-freedom left so choose [E] = GeV
Now E2:ﬁ2+m2:> [E] = [p] = [M] = GeV
% |
Define f=— (0<f6<1 = 1<y<w
ine f . ( p ) /4 W ( /4 ) _)

e.g. f=p/E, y= E/m & for unstable particles: p(;oper
<lifetime> = yt, & <decay length> = Bycty |itetime

Convenient to describe a particle by a 4-vector.
The components of the momentum and energy
4-vector, p, are given by:

p=(E,p.p,,p.)or p=(E,p)with c=1
« The length of the 4-vector is given by: | Particle “on

mass shell”
m? = E? — P2 = E? —p,? _pyz —p, % |if m=true
True in ALL reference frames (lab, center £e§t mass,

virtual” in

of mass,...) due of Lorentz invariance case not.

4-vector with length L7 is: | —
. TimelikeifZ2>0 Special case: Light like if L? =

« Spacelikeif 12<0 0 (m=0if P = Ei.e. photon!)

Particle Physics Phenomenology 2026
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Speed of light (¢) same in all inertial reference frames
= Lorentz transformation i.e. time & distance between
events may differ among frames but a scalar distance
2 2 2 2 2.
s =(r,—1,) +(x,—x) +(y,—y,) +(z,—2z)" ;T =ict
between 2 events is the same in all inertial frames. If
translations excluded, only transformations leaving s
invariant are rotations connected with 7 e.g. z—r plane
z=Zz'cosa—7'sma

, trivially x=x"and y =)'
T=z'sima+7'cosa

determine a by being in frame S & observing z'=0 of §~

z=—7'sinx z \% Y )
' ——=——=tana=i—=iff —
T=7'cosa T ic C
| | : tan o ,
coSa = = =y SINQ = =iyp

= =7
Vi+tan’ @ J1-5° \/1+tan2a

4 Lorentz transformations:
x/\ X ¥ = x' x! = X
y=y' y'=y
. S z=y(z'+fct") z'=y(z— fct)
Voot=y(+p o) = y(t- Pz/c)
S - S to S Lorentz trans-
4 : formations obtained

y by change of g to -

Particle Physics Phenomenology 2026 I/7
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Equations on previous page form a special class of
Lorentz transformations but that's all what is needed.
The most general Lorentz transformation equations
have the simplest form in four-vector space x = (x°, x!,
x?, x3) = (x%, %) = (ct, x, v, z). For any four-vector the
general Lorentz transformation is given as:

i[f‘av , where L is a real matrix

a'=La a"=
1 0 0 0
. o o (0100
metric tensor: g=(g,,)=(g" )= 00 -1 o =g
0 -1

scalar product: a-b= Za b”—ZgW =a'b’-a-b

A Lorentz transformatlon is a Ilnear transformation that
leaves scalar product a- b invariant (= L must satisfy

ol.-'g = LT). Can be expressed as a boost (see previous
page) followed by a 3-dimensional rotation. In addition,

Lorentz transformations satisfy following conditions:

detL =+1, 1.e.spatial reflections excluded
L, > 1, sign of 0-component of timelike vector invariant
a"=y(a’ - pa’)
ayl — al

12 2
a =dad

a"=y(a’ - fa’)

The specific Lorentz
transformation solution of
previous page would give:

Particle Physics Phenomenology 2026 I/8
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Example: Consider a proton with a momentum P of 10
GeV hitting a proton at rest in the lab frame

* What is the energy of incoming proton in lab frame?
For a proton m = 0.938 GeV. Since the rest energy

of a particle is a Lorentz invariant we get:

E =vVP2+m? =+102 4+ 0.9382 = 10.044 GeV
Thus at high energies (£ >> m) E = |p|.

* How fast is the proton moving in lab frame?
We need to remember energy/momentum relation-
ship between rest frame of proton and the lab frame

Plab/Elab = yﬁmc/ymc = ,B = 10/10044‘ =0.996
Thus v = 0.996¢ (very fast!)

Colliding beam vs fixed target collisions

* As discussed later cross sections & energy available
for new particle production depend on total energy in
center of mass (CM) frame (E¢gy). CM frame = frame
where total momentum vector is zero. Define s = Zpl cM
CM frame: s = (p1+p2)* = (E1+E;, p1+P2)* = (E4+E,, 0)

If masses & E’s equal then s = (E4+ E,, 0)? = 4F?

Yet for case above in lab frame: s = (E4+m,, p;+0)?
s =20.6 GeV2 = Egy = 4.54 GeV colliding beams

Ecm & V2migrgetEveam TOT fixed target | more efficient for

Ecm = 2Epeam for colliding beam producing new &
heavy particles
Particle Physics Phenomeno logy 2026
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Most HEP particles are not stable, i.e. they decay into
other particles after a certain amount of time. E.g.

Lepton Mean Lifetime (s)
electron stable
muon () ~2x10°

Above table gives lepton average lifetime in their rest
frame. However, often must know how long a particle
will live (on average) in a frame where it is moving
close to the speed of light (c¢). Use special relativity!

« Consider a particle moving with speed v in lab frame

along the x-axis. Then:
* =7 (tcm+ B Xcm)
* Xiab= ¥ (xem+ Bicm)

In lab frame time between
creation & decay of particle:

Tiab™ 12 |ab™ f1,|ab=7/(fz,0|v|+ﬁx2,CM) -y (4 CM +,3x1,CM) =
y(t2.cm- t1,cm) = yz NB! 7= proper lifetime & 7< gy

A muon (m = 0.106 GeV) with £ =1 GeV in lab frame.
* On average how long does muon live in lab?
In muon’s rest frame only lives (on average) r= 2 us.

y

\/
— >

cm

® particle at
restincm

In CM:;

X1,cM= X2.cM

But in lab frame lives (on average):

* = yr=~ 20 us since y= E/m = 1/0.106 = 10
* How far does muon travel in lab before decaying?
o Axpp= yfcr~(10)(3-108m/s)(2 - 10°s)=6-103m

lab

X

Large increase due to special relativity

Particle Physics Phenomeno logy 2026
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An alternative description, Minkowski metric,
based on introducing an imaginary time x, = it.
Now the 4-vector components of space-time are:

Ly =x, Ty=Y, T3=2, Ig4= it.
and the Lorentz invariant square becomes
v¥ 4 15 4+ 25 + 2% = invariant.

The transformation, which leaves this expression invariant, is a rotation. Thus, for instance, a
rotation in the (xy,24) plane, leaving x5 and 3 unchanged, is of the form

¥y =xpcosa— xysina, ¥y = xysina + x4 cos a

Going back to imaginary time, rotations becomes:

' =zxcosa —itsina, it = xsina 4+ it cos a .
Since
and using the identities coshx = cos(ix)
isina = sinhia, cos a = cosh i sinhx = —isin(ix)

and setting y = iac we recover a completely real form of the Lorentz transformation, viz
, , , , standard Lorenz
@ = xcoshy+ tsinhy, t = wsinhy

+ tcoshy .
M transformation
For this to be equivalent with Eq. (4) We must demand that y be real, and hence a is

imaginary. Thus the price to pay for a familiar Euclidian form of the rotation in the (&, x4)
plane is an imaginary angle of rotation. The real quantity y defined above is called the rapidity
of the transformation; it is related to the relative velocity v between the two frames and to the

relativistic y factor by  cosh y=y sinh y = By
hence f = tanhy ie.y=1/2In(1+£/1- )

We can similarly write the Lorentz transformation of the 4-momentum as

p' =pcoshy + Esinhy, E' = psinhy + E cosh y

NB! Rapidity is additive i.e. two rapidity transforma-
tions can be replaced by a single one y; = y; +y,

Particle Physics Phenomenology 2026 R 1/12
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P

Pt

o
<

0
P:
rapidity y = In[(E+p,)/(E—p,)]/2 becomes pseudorapidity
n = —In(tan(@2)) if particle masses neglected (£, p, » m)

100
90
80 0=90°> —

20 Theta vs eta

\
°

/

o0 LB n=0

5 =8 0=10° —
40 +5

30 -2 n=24

2 — 0=1700 —
pscudordpidity
0 T T T T T T T] ~ _2.4

0 0.5 1 1.5 2 25 3 3.5

Particle production

AN
dn

100 TeV
[ 1 | =
N=-Intg 6/2 3 5 n
| | |
3] 100 10 1 0.1 0.01 0.001 mrad
| l | l |
<p>_0.5 Gev 0.005 0.05 0.5 = 50 TeV
06
| | | |
L FrEcm 0.3 3 30 300 3000 m
%)
Particle Physics Phenomenology 2026 . I/l 3
Relativistic kinematics Kenneth Osterberg



HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET .
onvirsity or ne H&eful frames for scattering processes

Let’s introduce some frames, defined by the initial state of
a scattering process. In a two-particle process, particles a

and

1.

b with four-momenta p, =(E,.p.) & p, =(E;.p,) interact.

Laboratory frame (LF) is defined as the frame in
which the experiment is carried out and all energies
and momenta measured. This is the primary frame
from which quantities (usually denoted by an index L
or an index lab) are transformed to other systems.

Centre-of-mass frame (CMF) is defined as the frame
in which p, + p, = 0. The CMF quantities are usually
denoted by an asterisk or an index CM. Many experi-
ments like at the LHC are colliding beam experiments
If the mass of particles a & b are the same then
Laboratory frame (LF) = Centre-of-mass frame (CMF)

Target frame (TF) defined as the frame in which
pp = 0. The TF quantities are usually denoted by an

index T. Some experiments are fixed target ones, i.e.
Laboratory frame (LF) = Target frame (TF).

CMIf: TF:

>
> ©

D =—D, p, D=0

Particle Physics Phenomenology 2026
Relativistic kinematics
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Consider first Lorentz transformations between the CMF
and TF frames. Initial state can be expressed as follows:
p::(E:9O)O)BI*) pgz(EZSO)OQBZT)
p;=(E;,0,0,-P") py =(m,,0,0,0)
where the direction of motion has been chosen as the z
axis. The Lorentz transformation equations are now:
P =y -pME B is velocity
E =y"(E - BMP of CMF in TF
need to determine /M. If total energy and momentum of a
group of particles in some reference frame: E,¢, ptor then

IBtot — ptot /Etot ytot — Etot /mtot 7t0tﬂt0t — l_?tot /mtot

Where meo; = EZ, — P2, = /s is the invariant mass of
the group of particle . For 2-particles in TF this becomes:

s=5,=(E,+E,) —(p,+D,) =(E, +m,)* —(P/ ) =m; +m, +2m,E,
Now the CMF-TF relation can be expressed as:
A =P +m)  p M =(Eem )N g =P s
inserting these into the Lorentz transformation equations
P, = mbl)aT/‘/; E, = (mﬁ +myE, )/\/;
IDIJ*ZmbIDaT/‘/_ZIDa* EZ:mb(mb"‘EaT)/\/;
The Lorentz transformations can be done explicitly as
above but in more complicated cases this becomes too

tedious (and error prone) so instead noninvariants will be
expressed in terms of invariants to make algebra easier.

Particle Physics Phenomenology 2026 I/l 5
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For the target frame (TF) we have p,= P, =0 and E;, = m,,

Ej — (S_mj _mbz) (])aT)Z :(Ej")2 _mj _ {S_mj _m[f)zz —4ma2m§}
2m, 4m,

To simplify we introduce a kinematical function A:
A, v,2)=(x—y—z) ) —dyz=x"+y* +2" =2xp—2yz - 2zx

— {x—(\/;+\/;)2}{x—(\/;—‘/;)2}
SR B W o VA (Sl

Ais invariant under all permutations of its arguments (see
above). 1 is sometimes called the triangle function since
J-Ax,,2) /4 is the area of a triangle with sides Jx, y and Jz

for TF momentum we get: [P’ = \//I(s,mj,m,f) /2m,

Now:  A(s,m’, m;) = {S—(ma +mb)2}{s—(ma —mb)z}

thus P,7is real if: s > m, +m,
Threshold value m, + m,, the smallest value Vs can attain.
For the centre-of-mass frame (CMF):

P=p =P s=E+E =

Js = \/(P)2 +m’ +\/(P*)2 +m;
Vs is equal to the total energy in CMF. One obtains the
following expression for CMF energy and momentum:

E,=(s+m}—m})[2]s
P*z\//i(s,mﬁ,mg)/Z\/;
E =\s—E = E =(s—-m>+m})/2Js

Particle Physics Phenomenology 2026
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In the reaction a+b—1+..+n, the final state is constrained
by the initial state via four-momentum conservation i.e.

R :lelﬂ & E+E = ‘E;i , DatDy= _ﬁli
i= i= =
NB! For "asymptotic” states, intermediate one can violate energy

or momentum conversation (Heisenbergs uncertainty relation).

Define the 3n dimensional space of the unconstrained
final state momentum vectors p;, the momentum
space. The conditions above define in this space a 3n—4
dimensional surface, which will be called phase space.

Need to distinguish 2 types of reactions or measurements:

} anything

exclusive inclusive

The reaction channel is fixed in an exclusive reaction, whereas
an inclusive is a sum over several different exclusive channels.

Two types of exclusive processes encountered in practice]

a particle decay, 00— l+..+m
a collision of particles, a+b—>1+..+n
One can call the 1sta 1 — m & the lattera 2 — n process

If m=n+1, p, = po, p» = —pm, particle decay and particle collision
are related by crossing, i.e. collision can be obtained from decay
by moving one final state particles to initial state and vice-versa.

Particle Physics Phenomenology 2026 R I/l 8
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The concept of cross sections

Cross sections o or differential cross sections do/dQ

are used to express the probability of interactions
between elementary particles.

Example two colliding particle beams peam spot area A

aoaas- e

N, f=collision frequency N,
What is the interaction rate R, ?
: . |
R ocfN,N,/A =c-L c has dimension area !

- Practical unit:
Luminosity L [cm=s™ 1 parn (b) = 102 cm?

Example: Scattering from target Nint =R t

scattered

solid angle
element dQ

assumption:
target area >>

incident beam spot area

beam
N = arca dens_ity Nscat(e) o€ Niper p - dQ
of scattering = do/dQ (0) - N 'n,- dQ

centers 1n target

Particle Physics Phenomenology 2026 . I/l 9
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Define luminosity precisely:

imagine a particle colliding with a bunch of cross section
area — A. Probability of collision is: i E.Wilson)

O Npart/bunch /A

Fig. 11.3 A probe particle encounters a target—a beam of particles with cross
sectional area A travelling in the opposite sense.

. : 2
for N,upuncn PArticles in both beams o - N part! bunch / A

and finally take into account the bunch crossing frequency
f, = # of bunches multiplied by the revolution frequency.

2
Event rate = L - o, where L = FoN st e (= luminosity)
(E.Wilson)
Ultimate challenge to s
high energy colliders: e
the production rate of 1 ot prssussttererr S S it |
"interesting” interactions I i
fall as 1/s (< 1/Ecy?), % A s L e
hence need to improve s T L
luminosity a factor 100 ;™ G
for each factor 10 oo i o i
energy increase to 1o | %07 20 Norish e
benefit from energy E 4 e
increase (distances 109 |- N
at which structures i o
el 10 10 10 10 10
probed oc 1/\s). L
Relativisic knematies Kenneth Osterberg 120
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Transition probability from initial to final state defined as:
(Dps-s 2,|M| P, P,)=M(p;)  the "matrix element’”.
Matrix M contains all "physics” of the reaction and will not

be discussed more in detail here. Simply noted to be an
unknown function of p;’s. To obtain measurable quantities,
must integrate |M(p;)|? over an allowed set of p; values.
Partial cross section obtained by integrating over 3n—4
dimensional phase space for an allowed set of p; values.

Corresponding quantity for decay is partial decay width.
Cross section: g, = 0,,(s,m;) = I,,/F, where

F = 4(27;)3" 4\/(Pa Pb) _ 2 2 is the flux factor &

I .(s)= j H d’p, 5*(p, + p, - _;1 p)IM(B,)[ contains the
integration over phase space. NB! definition a convention.
differential cross section: integration restricted to subset
of the allowed phase space. Done by inserting ¢ functions|

do, 1 ndp; ; M)
dx _FJHZ -1 2F, 0 (P, + Py~ Zpl.)é(x—x(p,-))|M(p,-)|

x=x(p,) required . Satisfies fa’x(da /dx)=0,. Higher-order
d*c,/dxdy €tc... obtained by inserting just more & functions.

Partial decay width: T —Im(mz)/ s (27z)3m_4,wh2ere
d’ m - _
1) = [T 520"~ & pofficsBuMIF)

The lifetime 7 of an unstable particle is the inverse of ',
the sum of the partial decay widths of all possible decays,

/t=T,, = Zj [, similaly o, =) o,

Particle Physics Phenomenology 2026 R 1/21
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Let’s return to the integral I (s), which includes factors
d’p,/2E, . They are Lorentz invariant as can be seen by
differentiating the 4—-momentum transformation formulas.

ap.,y =apy,, dp.=y(dp,+VvdE")=ydp.(1+vp./E") =dp E/E
since dE'/dp. = p! /E' and E=y(E'+wp!). The volume
element ¢°p=dp dp dp, thus satisfies a°p/E=d’p'/E’

so d’p/E is invariant (for exact proof see next page).
Rewritten into integral form for a timelike p:

4 pI2E j d* p3(p* —m)O(p)

where ©(p°) is a step function that is zero for p< 0 and 1
for p*> 0. The ¢ function integration has following propertyf

() =8(r=)/ £l where f(1) =0 so
[@'ps(p* -m0(") = L[ dp's(p" - Yo"

Now the factor 2 that is conventially added gets an
explaination. Note that the ® function is usually omitted.

So now the integral over the phase space is:
n " — 2
1,5)= [T, d"p,8(p} =m")O(p")5*(p, + P, ~ X p)M(P)

o -function, singular function, eliminated in numerical
calculations. After, 3n—4 variables only constrained
by limits of integration, defined as variables ®.

1,(s)= qu)Pn(q))|M((D)| @) phase space density
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| N _RED e |
dP%Q&) (3/ Pi’ &2) = 5 (PQ—\-?b—P{L\ EZB agiqég |

e Had S| \%)%Q? RN oent> AN Q\J\JY
5”(&}*— @b——@i‘ @32) lorentz Qﬁ\\&f\h}\&( %ﬁ\ﬁ%\\%

%Q?{\QQ J}OD( ‘MQM%&UM T QQ)U\&QJ\/QQ\

d3F 5 IF - dpedpia

= dpn -
(~osrent ’HQJ\&‘;MMQ{%)@"\: dPK: d?s \
C‘-PZ =R (3&% —i-VéE),
= ¢ dp (L vp/E)
[”E( SR N R
= P’l‘ +§>ig -+PZ 2 /
= X p= _ P

P, -Zﬂlﬁ ngér@!zi#mi‘\ —ETFJ

3 dgbzz C}f—\z\ Y(E“VV@Q) _ éﬁ_&jE
& - ) =
pece SR L IpxPyIPe _ dpidpidpe d3p
= = ' \

= E
= d@?ﬁ lofentz. Drvyastant
So we <an choote o do Mre Shtegalfon
TO emy reme (etls dhemse CMEM
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When M is set to 1, we define the phase space integral

n d3 n
1’%(5‘)=J‘1_[,1 L5 (b, + Py~ 2 1)

This integral has no phyS|caI meaning but is technically
useful since e.g. p,(®) & physical region of ® independen{
of M. Thus most kinematics can be done without knowing
M. Rest of chapter largely deal with transformations of R,

Let's consider the simplest possible process: one particle
going into two, thus study two-particle final state without
specifying initial state p=(E, p) except that 4-momentum
conserved. Then the two-particle phase space integral is:

Ry(pom,m?) = j 4 pyd’ o5 (92 =m2)3 (02 = m)5* (p = pr - py)

Note that R, can only be a function of s (= p?), m; and m..
First integrate over p, in the four-dimensional ¢ function
imposing p, = p — p, and then go to the CMF p = (V/s, 0)

d3
- jd“pﬁ(pf—mf)é{(p—poz—mi} | 21’1 §{s = 2SE} +m] —m}}
1
P'dQdE; B . B

The special 6 function property is used here. In addition,
that d’p, [2E, =d°p [2E (invariant) & E* = P* +m* = EdE = PdP
is used. Note further that the last o integration defines

S—2SE +m’—-m2>=0 = E =(s+m?>-m2)/2s
From decay kinematics: £ \/Z(S m, ,mz)/2xf =P
So finally: R,(s)=7 P’ /\f = 7z\//1(s,ml ,mz)/2s
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UNIVERSITY OF HELSINKI

The condition for the process p — p, + p, to be physical,
derived from expressions for the phase space integral, is

AP 2, =P — (Pt + P P~ (P} —p)'} 20
If all four-vectors are timelike, the condition requires:

P~ =m, +m, = threshold
that is a natural condition for a decay

Define symmetric Gram determinants A, (p,,..., p,):

pi DDy DD
A (pys-esP,) = f . f —

2

especially: A, (py, p2) = —M(py + p2)% pi p5}/4
The process p — p, + p, physical if (and only if):

A,(p,p,) <0

The boundary of the physical region in terms of
invariants obtained from the condition A,(p,,p,) = 0.
Now also the A function reveals its true significance, as
an expanded form of A,. One can call 4 the basic three
particle kinematic function. This follows from the fact
that A, is relevant for reactions, where the total number
of four-momenta is three (e.g. a 1 — 2 decay).
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Let’'s now introduce a whole set of invariant variables for
2 — 2 scattering, the "Mandelstam variables”, though we
have already used one of them, s. For reasons related to
"crossing” one usually defines 2 more invariants ¢ and w.
The definitions of the invariants for p, + p, = p, + p, are:

s=(p,+p,) =(p+p,)°
=(E'+E) =(E.+E) =m> +m? +2m,E"

_ 2 2 cos @, = scattering angle
L= (pa pl) - (pb ]92) between a and 1 in CMF

=m. +m; —2E E, +2P P cos8, =m, + m; —2m,E,
u=(p,—p,) =(p,— )

=m’+m; —2E E, +2P P, cos@.,=m, +m —2m,E/

There are only two independent '

variables so s, r and u must be
related. Infact, the relation is

(E.Byckling
& K.Kajantie)

s+t+u=m2+m;+m?+ms
NB!s>0butt,u <0

Crossing: We have sofar treated the reaction p, + p,

— p; + p, assuming all energies are positive: p=(E,p)
with E=+JP*+m? >m>0 . But the equation for four-
momentum conservation is also analytically valid for any
timelike p with a negative 0-component: p = (E, p) with

E =—vP*+m* <0. These negative energy states will in QM
be seen as the positive energy states of the anti-particle.
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‘ HELSINGFORS UNIVERSITET Mandelstam Variables
UNIVERSITY OF HELSINKI

4-momentum conservation & antiparticle definition give:

Pyt Dy =D+ D, s-channel: p, + p, = p; + p,
p.+(=p)=(py)+p, = t-channel:p, +p;=p;+p,
P, +(=p,)=p +(=py) u-channel: p, + p; = p, + p;

where the "bar” denotes an antiparticle & all 4-momenta
now have positive E’s. For the kinematics, irrelevant
whether a particle is an antiparticle or not but when
examing dynamical properties the particle—antiparticle
distinction has to be taken into account when a particle
is moved from initial state to final state and vice versa.

(E.Byckling
& K.Kajantie)
a 1
b 2 _ 2
s channel -1 channel u channel decay channel

Figure IV.4.2 Various channels for pP. + P, — P, + p;. The decay
channel shown is physical if my, > m; + m, + m,

In addition to scattering channels, there may also exist
decay channels.

E.g.if m, 2m,6+m, +m,the following decay is possible

Py ?>DP: 7D+ P
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The reaction cross section for p, + p, = p,; + p, is:

1
G(S - 2 2 2 2
167°\(p, - p,)’ —m.m,
d3l_71 d31_72 4 2
+ p,— P, — M
I2E1 2z O Pt PP p)M

The matrix element M depends here on two independent
variables (e.g. an invariant and an angle). If a differential
cross section dol/dx computed, no further integration over
M necessary (since one independent variable still left).

Doing the integration over phase space partly, one gets:

do _ ‘M‘z\/ﬂ«(s,mlzam;)
dQ, 647Z2S\//1(S,m§»m§)

(in CMF)

Similar formulas for do/d(2,* obtained by inter-changing
1 < 2. In many cases, more convient with an invariant
cross section like dol/dt than the expression above:

do M[

dt 167A(s,m>,m})

(in any frame)
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The optical theorem relates the total cross section for
the process p, + p, > anything with the forward scatter-

ing amplitude of the corresponding elastic process (see
e.g. G. Kallen: Elementary particle physics, Addison—-Wesley, 1964):

Im{Melastic (Sﬂt — O)} — \/ﬂ“(Sﬁmz’mlf) O o1 (S)
plus  do/dt= ‘M‘2/167z/1(s,m§,m,f) =
(R M5, = 0} = Als, 216742 —2,(s)

dt |¢=0

Implies that the "optical point” is A0 yusiic > 1
related to the total cross section:  dr |_, 16rx

NB! QM predicts: Im{Mgjastic} > Re{Mgastic} @ t =0

The TOTEM experiment at LHC uses the optical theorem
to determine the total pp cross section using the elastic
differential distribution or cross section dN,,/dt or do,;/dt
at r = 0 (very forward scattering). The dN_/dt att = 0 is
determined from extrapolating the measured distribution
at small # (~ 103 GeV?) to t = 0. TOTEM does it in several
ways, relying or not relying on luminosity (L) measuement

2
O-tot (S)

\
- 167 y dN /1
1+p2 dt =0 o _ 1672- % (dNel /dt)‘t:()
: tot 2
1+ IO Nel + Ninel
Gtoz = (Nel +Ninel)/L
~/

P = Re {Melastic (S,f = O)}/Im{Melastic (S,t = O)}
~ 0.10 at LHC energies (13 TeV)
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‘ HELSINGFORS UNIVERSITET  Tota] pp cross-section
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G, measurement @ Vs = 13 TeV

Luminosity 167

independent Ttot =
method:

Inelastic acceptance:
°T1:3.1< |n| <4.7
°T2:5.3<|n| <6.5
with low transverse
momentum (P;)

threshold (40 MeV

(T2) & 100 MeV (T1))

;77 Q1 Q2 Q3

\IP5/ R

 sector 45 ‘ sector 56 —

B* = 90 m dN,/dt @

horizontal
bottom

203 m

5= 3 Tel

diffractive slope B: ke
5 —-Bt E B
do/di = ae ™" |z=p N
DS2 i
& 10 E ——
| T SR (U | SRTTIRY P =
5 F B =20.36 £ 0.19 GeV2 0k —+= o
5 r E g T ++ + »
106 E— ............................................................................................... B <‘~ = +“>
; lu‘é | |
B 0300 08 09 ‘1 '
l()5 E_ . 1]1GeV7|
E N 6660h3
B 5 : Ty
1] DR, i..1,mm7..1.‘7.0159c¢% ................. — - S— e *... ++ jr
le e e s Eof e s s
:l 11 1 l ) I 11 1 I ) I . T l L . l M L - | I T
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-t [GeV?]
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HELSINGFORS UNTStdl cross-section & elastic scattering
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D

(mb)

e (green), oine) (blue) and oot (red)

DY Elastic scattering:

Elastic proton (anti)proton scattering at TeV scale: gluonic exchange

Electromagnetism

dominates at very
low [t] (< = 1073)

Gior = 110.6 £ 3.4 b, 6y = 79.5 £ 1.8 Mb, 6= 31.0 + 1.7 mb

Giotr Oinel & Ggl VS \/S
TOTEM @ Vs = 13 TeV (p = 0.10):

EPJC 79 (2019) 103

140 LA N L B T T
& pp (PDG 2010) # STAR e TOTEM | | C T
130 | ¢ pp (PDG 2010) % ALICE & LHCb |1 7]
120 | O Auger (+ Glauber) < ATLAS/ALFA > CMS  |-iioio il -
110 Gtot fits by COMPETE S—
100 (pre-LHC model RRP¢L.2,,)
- - - - 0y fit by TOTEM
90

84— 1.6171Ins +0. )|
(11.84 — 1.617Ins +0.1359In?5s) |

80 F——
70
60
50
40
30
20

Experimental variable: t * —P282, four-momentum transfer squared

(QED): JPC =1~

p p
|

p p

Photon exchange

Strong interaction (non-pertutative QCD)

Crossing even

"Pomeron” exchange:
system of 2 (or more
number of) gluons

dominates at low |t],

nucl

~ imaginary part of A

same for pp & pp

t-channel exchange

Crossing odd

”"Odderon” exchange:
system of 3 (or more
number of) gluons

mostly suppressed,

mainly real part of 4
different sign for pp & pp
3

10
Vs (GeV)

D

nucl
el
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HELSINGFORS UNIVEBIEStic scattering & Odderon evidence
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Elastic pp differential cross-section

— 10°F
Photon L
2
exchange o 10
E 10
=
Y ot
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900 T
< _1 -+ data with statistical uncertainties
)
Q 800 va [ | ic uncertainties (except normalisation)
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"Coulomb-nuclear
interference” (CNI) region

p = Re[Al]/mlae]|

sensitive to Odderon exchange ?

Vs =13 TeVv

. sensitive to Odderon exchange ?

diffractive minimum (“dip”):

Im[A29] suppressed

compared to Re[AR2d

!

3.5

2 25

4
-t [GeV?]
"Perturbative QCD”
(pQCD) region
N ==

Triple gluon
exchange

 ——=

A. Donnachie, P. V. Landshoff,
Z. Phys. C 2 (1979) 55. 6

T 1
1
P
|
b
I F

€5 Otot& P measurement in pp @ /s = 13 TeV

TOTEM @ \/5_‘ =13 TeV: gyot= 110.5 + 2.4 mb, p =0.09/0.10 £ 0.01
EPIC 79 (2019) 785

Comparison to conventional (no-Odderon) model predictions (PRL 89 (2002) 201801):

RUR,L29C (12), RRcL29 (15), RRL2 (18), RRL2%C (17)

——— (RR)YPL2 (20), (RR)PL2, (17), (RRYIPL2, (19), (RRYIPICL2, (16), (RRc)IPL2y (15), (RRe)IPICL2, (14), RRPL2, (19), RRP, (L2, (21)
— — —RRPE, (19)

RUR LI (12), RICRLI (14), RRLIC (15), RR¢PL (19), RRL (18), RRLy (19), RRLY (17), RRPL (21)
— — — RR(PL2) (20), RR(PL2)% (18)
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no conventional (no-Odderon) model able to describe
simultaneously TOTEM o, & p measurements = adding t-channel
exchange of a “Odderon” improves model descriptions a
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HELSINGFORSENAGRIE S cattering & more Odderon evidence
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23 Elastic pp/pp cross-section characteristics

At TeV-scale, pp elastic do /dt characterized by a diffractive
minimum (“dip”) & a secondary maximum (”bump ), wheras

Y

A

do/dt characterized only by a “kink”.
pp do/ y by T
o 100 FT T T T T T T T T T T T L ? '-._. \/_=054& =
p | Tote e vimmTw 1 |l 08T
) C o s5=8TeV - g S ]
e r e s=TTeV 1 5 F *
~ r e /s=276TeV 1 R W 4
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2 E ]
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i 17 i CD
Comparison of pp & pp cross section

DO & TOTEM, PRL 127 (2021) 062003

— 1071 ¢ L L
> - TOTEM-DO ] N Ty
S I :\ /5 = 1.96 TeV ] X° test of
< o @ pp measurement by DO 7 & pp
e \ pp &« pp
~ i \:\+ pp extrapolation by TOTEM: diff .
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B \ . o fe
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C NPt & \+\ ] exchange of
L N 2 e N
\
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v Combine independent evidence of odderon from TOTEM
measurements in a completely different |t]-

p &a;

domaln with evidence from the pp & pp comparison.

Combination excludes all models without odderon
exchange @ 5.2-5.70 = first observation of odderon

v
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When the reaction p, + p, — p, + p, is described by E* &
6,,*, then the physical region for the s—channel can be
defined by E\* > m;, =1 < cosé,;* < 1. In other words, the
reaction p, + p, = p; + p, can experimentally have any
values satisfying these conditions. To extract the physical
region for 2 — 2 scattering, it is most convient to fix the
boundary from the condition siné,;* = 0 < cosé,;* = £1.

Pe Py Dy PuDi
Ay(PasPosP) =Py Pa Pr Dy Di|=5(P)) (B sin® G,
PiPa Di'DPy  Di

From the determinant one obtains the basic four-particle
kinematic function G(x, y, z, u, v, w), which corresponds
to A; in the same way as A(x, y, z) corresponds to A, :

A(p,, Py p)) =
—1G{(p,+p,) (D, — ) (D, + Py — D) D2 i DL =
—%G(S,t,mg,mj,m,f,mf)

2 2 2 2
2 G(s,t,m;y,m,,m;, ,my)
So then sin 6’611——4s/1 S —

(s,m; ,m;)A(s,m; ,m5)

Physical region for 2 — 2 scattering in the st
plane has to satisfy the requirement: A; >0
where arguments may be any three linearly
independent combinations of p,, p,, p; and p,.
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An equivalent requirement based on G—function is:
2 2 2 2
G(s,t,m;5,m, ,m,,m; ) <0

(E.Byckling & K.Kajantie) P,
Physical region of == G((p, +pb)2,(pa~p,)2,pg ,pﬁ,pzb,pf)so
Po P2

Figure IV.5.3
NB! Valid even if some of the p;’s are groups of particles.
The algebraic expression for G(x, y, z, u, v, w) is:
G(X,V,2,u, v, W) =Xy +xy° +z2°u+zu” +vV’w+w’ + xzu
+xuv+ yzv+ yuw—xy(z+u+v+w)
—zu(x+y+v+w)—vw(x+y+z+u)

NB! The physical region of symmetric Gram determinants
depends on the order, e.g. A, <0 and A; > 0. The rule is
that odd orders > 0 and even < 0. Implies e.g. that for 2
— 3 scattering, the physical region is described by A, < 0.

Considering a decay p — p; + p;, it can be shown that
Az(piapj) = pizpjz- —(p; -pj)2 <0 <
2 2
(p;+p;) 2(m;+m))

Logically then in p, + p, = p; + py, s = (1+p2)* = (Pt pb)?
has to be larger than both (m,+m,)* & (m,+m)> or smaller
than both (m;—m,)?> & (m,—m,)?. Same will be valid for other
invariants so physical s, ¢ & u in scattering have to satisfy:

s > max{(m, +m,)>,(m, +m,)’}
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Lepton-hadron scattering at sufficiently high energies
create a large number of final state hadrons & such
reactions are called Deep Inelastic Scattering (DIS).
The reaction can generally be writtenas a + N > b + X,
where X stands for a hadronic system with an arbitrary
number of particles, N a nucleon and « & b are leptons.
An example is electro-  «®) k)
magnetic electron—proton
DIS shown in the figure. The
probe can either be electro-
magnetic (»), neutral (2°) Je
or charged (#*) current.

Figure 2: Generic diagram of deep inelastic scattering.

(von Schlippe)

X(P")

To describe DIS reactions, the 4—-momentum of incoming
lepton is denoted k = (E,k), that of target nucleon P and
those of the scattered lepton & hadronic system by &’ =
(E’,k'), and P’, respectively. The exchanged boson has
the 4—-momentum ¢ = k£ — k’. 4—momentum conservation
gives k+ P=k’+ P’. Since DIS energies are at least a
few GeV, the lepton masses can safely be set to zero.
Then the 4-momentum transfer squared ¢* = (k—k’)* ~
—2EE’(1-cos0) < 0, i.e. the exchanged boson spacelike.

Invariant W? = P’? is a DIS—variable since the hadronic
system can have variable multiplicity. The kinematics of

a DIS reaction is therefore determined by 3 independent
invariants rather than 2 as in the case in 2 — 2 scattering.
The reaction is called "deep” since —¢> » m,? & inelastic
since final state X not just a nucleon (& usually W2 » m,?).
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A natural choice of one of these invariants is S = (k + P)?
= m,? + 2k - P, which defines the experimental setup.

The 2" invariant is usually chosen to be the negative (4—
momentum transfer)?, O* = —¢? = 4EE 5in*(02). The 3™
independent invariant can be taken to be 7 or one of the
dimensionless variables x=0?/(2P-q)or y=(P-q)/(k- P).
The invariant x is called Bjorken—x and gives the fraction
of the nucleon momentum carried by the involved parton.
The variable y has a simple physical meaning in the TF:
y=1-EPT/ET i.e. the relative energy loss of the lepton.

In fixed target DIS, S = m,? + 2myE,,, whereas in a lepton—
proton collider like HERA § = 4 E,E,. Note following useful
DIS variable relations Q% ~ xyS & W? ~ m,? + Q*(1/x — 1).
Within the parton model framework, the process can be
viewed as below with the lepton—quark collision as the
hard subprocess. If we think of the incoming lepton and
nucleon as travelling in opposite directions, then at suffi-

ciently high momenta, e(#) e(k')

the energy of the quark 7*(a) Lvon Schippe)
is the same fraction of the a(p)
nucleon energy i.e. x. Then

the subprocess invariant X(P')

s = (k + p)? = xS, p(P)

where p (= xP) Figure 3: Parton model diagram of deep inelastic scattering.
is the 4—momentum of the incoming quark.

One is naturally interested in the parton content of the
proton (to be able to describe e.g. proton—proton processes).
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Parton distribution functions

X

The proton content is described by the parton distribution
functions (pdf’s) that gives the momentum distribution in
the proton separately for each partons species (e.g. for a
valence quark flavour or gluons). The kinematics of the parton
process is controlled by 2 variables, x & O? so then also
the proton pdf’s ¢,(x, O?) are functions of both x & 0.
Below is shown the underlying physics reasons for the
experimentally observed shape of the valence quark pdf.

(F.Halzen
& A.Martin)

If the proton is

A quark

Three valence quarks

Three bound valence quarks

<
<
<

000
000
L 000000

Three bound valence
quarks + some slow
debris, e.g., g qq

<X

000

>

=

—>

%Qi -<——Small x

Fig. 9.7 The structure function pictured corresponding to different compositions

assumed for the proton.

then q;(x) is

1/3

1/3
x
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Parton model: pdfs converge at fixed x when 0?> — «

i.e. q; (x, 0°) = ¢q; (x), when O°—
Violated due to hard gluon radiation, perturbative QCD
predicts dependence on scale u via "DGLAP”-equations:

af’aqli_ a(ﬂ )I “ P, (2)(q,(x/2,0%) = q,(x/z,07))
n u’ *

8 (QZ_l_ql) :as(/«lz) ])qq 2']\[Fl)qg ® (Qz+61)
Oln u° g 2z \ P, P g

g9 g8

where P;(z) gives (Dokshitzer—Gribov—Lipatov—-Altarelli-Parisi)
ij

the probability forai — j s e
splitting with momentum q i g€ 24
fraction z. N = number

of flavours. NB! even if Soa il e

QCD predicts the evolution a4 - ¢ g g
of pdf’s from a particular scale, 1, it cannot predict them
at any ,u W|thout experlmental measurements as input.

z, Q%),xAq"F (z, Q%) a;qs(:c,QZ)
valence Q%>><23--..,.. sea quarks

quarks .

Q> Q8-

Qi

0.001 0.01 o1 1 oom 0.0 ety
I leads to softer
. . Q%»Q% a - glulons o pdf’s & Iarger

qualitative number of partons.
effects of large—x: valence
DGLAP: quarks dominate,

- — =) small-x: gluons.
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Determination of pdfs

pdf's determined using
an iterative procedure
based on a functional
ansatz combined with
DGLAP evolution &
experimental data.
Some recent next-to-
next leading order
(NNLO) determinations: '°
CTEQ, MSHT, NNPDF
and ABMP. All use a

108
10"

10°

1o

D-Y = Drell-Yan qq — 71~
Tevatron = pp collider
HERA = e*p collider

wide range of data, x & O-. 10°10% 107 107 0" 1
typical list of processes used:

Process Subprocess Partons x range

—_—

r{p,n}y — ¢+ X Y*q — q q.9,9 xr = 0.01

ttn/p — 0+ X y*d/u — d/u d/u x = 0.01

pp — putu— X uﬁ,ﬁddi% ~* cz 0.015 < = < 0.35 Fixed
pn/pp — putuT X (ud)/(uwa) — ~* d/a 0.015 < = < 0.35 S

v(D) N — pu () X W*q — q’ a,q 0.01 < x < 0.5 tar ;et
v N — pu—put X W*s — ¢ s 001 <x < 0.2

N — utum X W*s — ¢ 5 0.01 < x < 0.2

eTp —erF X Y*qg — q g,49,q 1074 <z <o0.1

etp - v X W+ {d, s} — {u,c} d, s x = 0.01 =
etp — eT céX, et bbX y*e — ¢, y*g — cc c,b, g 1074 <z < 0.01 HE:RA
eTp — jet+X Y*g — qq g 0.01 < x < 0.1

pp, pp — jet(dijet)+X 9gg,aqag,qq — 27 g.q 0.00005 < = S O?

pp — (W* — ¢+10) X ud — W+, ad — W~  wu,d,s,a,d,s x = 0.05

pp — (W+ — ¢+0) X ud — W+, da — W~ wu,d,s,a,d,5,g x = 0.001

pp(pp) — (Z — £7¢7)X wuu,dd,..(ua,..) — Z w,d, s, ..(g) x = 0.001

pp — W—c, WTe gs — W—c¢c 5,5 x ~ 0.01 LI— C
pp — (v* — £te)X ua, dd, .. — v* q,9 x = 1073 S— &
pp — (v* — e )X uy,dvy, .. — y* v x = 1072

pp — bb X, ttX gg — bb, tt g x = 107°,102 Te a-
pp — t(t) X, bu(bd) — td(tu) b,d/u x = 1072 tr n
pp — exclusive J/y, T ¥*(gg9) — J/, T g x = 107°,104

pp — v X 99 — Y9, 99 — Yq g x = 0.005
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The output are pdf’s for different flavours of valence and
sea quarks & gluons at specific x & 0% as shown below.
Note that the gluon pdf is shown divided by a factor 10.

1.2 T 1.2 e
MSHTQONNLO If(x,HQ — 104 Gev2) ]
' zf(z, u? =10 GeV?) ]
0.8 0.8 |
0.4t 0.4 -
0 Ll el T ) , 0 il L Y R NV
0.0001 0.001 0.01 0.1 1 0.0001 0.001 0.01 0.1 1

X X

Even if exact values & shape differs for different Q2
(or u?as in Fig.) the general trends are the same:
valence quarks dominate at x > 0.1, gluons
dominate at x < 0.1. The higher 0?, the faster gluon
and sea quark distributions raise at low x

In hadron—hadron collisions, usually pdf's are one
of the largest uncertainties in measurements of

Cross sections, etc ...

At best pdfs are known to a few % but in certain
corners of the O?—x plane the uncertainty can be

much larger ...

For more info see PDG structure function review
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Since a decay process p — p; (E.Byckling & K.Kajantie)

+p, + p; is relatgd by crossing . \s,
to 2 —» 2 scattering, the number P Py

of invariant variables must be \NSQ
the S.ame,_ namGIY tWO Let S Figure V.1.1 Three-particle decay
consider first the invariant p—py + ps+ ps with invariant

variables s, and s,

variables for the process 1 — 3.

As invariant variables, it is convient to choose s, t & u as
in 2 — 2 scattering. To avoid mixup let’s change notation

-

sp=5=(p+p) =(p—p,)°
new invariants : { S, =5, =(p, er3)2 =(p —]91)2
\531 =33 :(p3 +p1) :(p_p2)

their common relation : s, + 5, + 8, = § +m; +m; + m:

Non-invariant variables are three-momenta & angles.
To define them one has to specify a Lorentz frame. The
most common one correspond to 2 — 2 scattering CMF.

The rest frame of the decaying (E.Byckiing 3 K Kaiantie)

particle or overall CMF is defined as
the frame in which p=p, + p, + p; =0.
This is the analogue of TF in 2 — 2
scattering in the sense that one of the
external momenta is taken to be at
rest. Quantities in this frame are
denoted by an asterisk.
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Expressions for energies and momenta can immediately
be derived using s, (i = 1...3) definitions in frame p = (\s, 0).

2 2 2
_s+my —s, S +m; — s, s +m; — s,

Ef =
: 2./s 2./s 2./s

# \/ﬁ,(s,mlz,sz) * \/ﬂ(Sam§9S3) * \/A(Sam:fasl)
R = P = P =
24s 24s 24s

Note the logic: E,* is obtained by considering the two-
particle decay p — p, + (p, + p;) with final state masses
m, & \s,. The angles between the momentum vectors
follow from expansions of the s, (i = 1...3) definitions, e.g.

E; = £y =

s, =(p,+p,) =m’ +m; +2E'E, —2P P, cos 6, =
C056’1*2 = P '1_72/1D11D2‘]3:O —

(s+m} —s,)(s+m> —s,)+2s(m’ +m3 —s,)
\//,i,(S,mlz,Sz)\/ﬂ,(S,mzz,Sg,)

sin &;,* is related to corresponding symmetric Gram

— — 12
determinant A; in CMF: ;2 o1, = 2 >2<P22| —
PP;
5=0
SiIlZ 91*2 _ A3(_p;9p9p§) _ _4SG(5229519m§9m1292S9m§)
S(])l ) (132) /Y“(Saml 9S2)/1(Sam29s3)
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The Dalitz plot is defined as the physical region of p — p,
+ p, + psyin the 55, plane. More generally, can be defined
as the physical region in terms of any variables related to
s & s, by a linear transformation with constant Jacobian
e.g. any pair s;, s; or any pair £;*, £*, where i & j = 1...3.

The Dalitz plot is given by all points in the 5,5, plane that
satisfies the following equation: G(s,,s,,m;,m;,s,m>)<0
(E.Byckling & K.Kajantie)

Figure V.2.1 A direct procedure giving the physical region in
the s,s, plane

The G here is the same as in the expressions for sin ,,*.
The equality gives the boundary in the Dalitz plot. This
can be obtained e.g. by solving s, in terms of s,.

{(s2 +m =) (s, +ms —m3) —i\/l(sz,s,mlz)\/l(sz,mg,mg)}

2s,
The equation giving s, in terms of s, is obtained from the
above by the exchange p, < p;; p, p, unchanged. Both
give, of course, the same curve. By requiring the V to be
real, one gets the physical region in s,. Cyclic symmetry
implies that also following conditions have to be satisfied:

(m, +m2)2 <s=(p "’pz)2 < (\/_—m3)2
(my +m,)’ <5, =(p, + psY <(s —m,)
(my +m1)2 <853=(p; +p1)2 < (\/_—m2)2

+ 9 2
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To determine the phase space density & obtain as well
the condition for the boundary of the Dalitz plot directly,
let's consider the phase space integral:

3 d’p. - - _  _
R3(S):J-H,~:12_§l53(p_pl_pz_p3)5(‘/;_El_E2_E3)

Integrate first over p, in the rest frame p =0 =

Ry(s) = j IPADs s [ BB -E), where
8E E,E,

E=|pl+ pi [ +m = P74 P* + 2B P cos O}, +m

* *

Write further d°p, d°p, = P E,dE,dQ, P, E,dE.d cos 0,,d ¢,
The o6-function containing energies can be used to inte-
grate over cosd;;* (dcosb;* = E,* dE,* [ (P*P5*)) giving:
Ry(5) = | R EREE 61 -cos' )

o j’( L 2) Here the ®—function

:J-dEl dE;dQ)d ¢, O(1 - cos? ) restrilcts cosf;* to
8 physical values only.

The variables E* & E5* are linearly connected to s, & s,
with the Jacobian o(E*, E;*) [ d(s,, s;) = 1 [ 4s, thus

1 ES ES
Ri9)= 5o j s ds,dOd OG5, 5, mm’ 5,2}
S

NB! the cosf,;*—condition is exchanged to a G—function
condition, obtained by algebra from the E,*—condition in
the o-function. Analogous forms of R;(s) with the pairs
5, 53 & 55, 5; obtained by cyclic permutations of indices.
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The solid angle Q,* describes the p,—orientation in CMF
& ¢.*, the rotation of the entire momentum configuration
about some axis. Integrating over Q;* & ¢;*, we obtain:
2 2
The phase space distribution: dr, _z (= constant)
dsds, 4s

In other words, if data of a three-particle decay is shown
as points in a Dalitz plot, the density of points o« (matrix
element)?. Any structure is thus easily evident. This is
why the Dalitz plot is so famous & used often. Note that
this result is strictly only valid for three-particle decays.

dR, 7 (" 7
3 = j ‘/ﬂ,(Sz,S,mlz)\//l(SQ)mgﬂmg) —

Further ds, =

ds, s 4ss,

For the total volume of the three-particle phase space:

2 o (Js-m)
T vods
R3(S):4_Sj —2‘/2(S2,S,m12)\/i(S2,m§,m32)
(

m, +m3)2 S2

The +-factor is 4t order in s, & lead to elliptic functions.
Explicit solutions exists only for some special cases.

Especially interesting are the extremes, s — threshold =
(m+m,+m5)? (decay products non-relativistic, NR) or s — oo
(ultra-relativistic, UR). Latter is obtained by setting all m; = 0.

2 3
¥4 mm-m
R?R(s)=% R (s)=—Y 125 (s —my —m, —my)’

2(my+my +my)?
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The process p, + p, > p, + ... + p,, depends on 3n—4
essential variables and can be described in numerous
ways. Let’'s here concentrate on two methods that with
some modifictions are the descriptions used in modern
HEP event generators. It is possible to visualize
a multi-particle reaction as  (E.Byckling & 1
taking place via resonance  KKaante)
formation & decay. In the -
intermediate state, there N Ms
are unstable particles,
which successively decays
to others & eventually form
the final state particles. The
alternative is to use a Multi- T, denoie systems of particies. Total cncrey i
. . fixed. In this figure M3, = (p, + ps + ... + Po)’,
peripheral mechanism, ete
implying the dominance of a diagram
of the type exhibited in the 2" figure.
Regardless of the actual validity of
such dynamical ideas, we shall show
that kinematically an n—particle final
state can always be subdivided into
simpler processes. This means that
the phase space integral R, can be (E.Byckling &
recursively expressed in terms of R;’S, K Kajantie)

where / <n. The 2 methods needs to be seperated since
in the 15t one, all the intermediate systems occuring have
timelike total four-momenta & hence one can go to their

rest frames and parametrize vectors by spherical angles.
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In the 2" case, particles a & b do not join to the graph at
the same vertex, and there is at least one line which is
connected to one initial & one final state 4—-momentum.
Starting at one incoming momentum, the total energy s
can only be fixed when one has reached the other initial
state momentum in the graph, imposing a complicated
constraint on the variables between p, & p,. Also inter-
mediate state momenta may now be spacelike (see e.g.
DIS) & some of the appropriate variables are now boosts.

The simplest possible recursion relation is based on the
physical picture of sequential decay (see figure below):

R, (p)= ” dp’ ((p Pn)— Zp,} Idp” R, (p-p,)

R, ,isonly a functlon of M> =(p-p,) =(p,+..+p,_) =k,
M,_, is ofcourse the invariant mass of the system formed
by particles 1, ..., n—1. Since R,_, is a function of only 1
variable, it is most natural to take AM,,_, as a variable of

integration. When the following is inserted in integrand:

J‘de—lé(Mrf—l o krf—l) = 19 j‘d4kn—154(p - pn _kn—l) - 1 — Rn (le) =

j a2 f [ .52, - M2 )50~ )5 (o p, b, )R, (M2)

/_L ’? e m—— .
E B ckllng & -
; >& Nl Ro @

K Kajantie) R ko o

Flgure VI1.2.3 The reaction p, + p, > p, + ... + p, expressed as a
sequence of two-particle decays
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o (M,—m, )

R, (M;f) = dMi—le (kn;kf_ppﬁ )Rn—l(Mif—l)

bt ,Uf—l
.(M"_zm")z 2 2 a2 42 2 2

— chn—l dQn—an—l (Mn—l)\//l(Mn ’Mn—l9mn ) /8Mn ’

¥ U

where y, =m; +...+m,. Thresholds give u <M,k <M, 6 —m,

So R, can be expressed as a product of R, describing the

decayp — p, + k,_; & R,_, describing the decay &, | —>

p; t+.... + p,,, integrated over all possible values of the

invariant mass M, _,. To proceed, we iterate the above

steps to obtain a relation corresponding to the entire

chain. Let’'s use M, instead of M, as variable. Then

1 M, —m, My —m;
Rn(M;f):_I dMnldQnI%})nJ‘
2Mn My

Hy

dM,dQ, L P, j i, 1P,

where P =\ A(M2M2,.m?) [2M..

i-1»
The 3n—4 essential variables now consists of 2 types:
(i) n—-2 invariant masses M;, M? =k?, i =2, .., n—1,
defined the masses of the intermediate states.
(i) 2(n—1) angles 6;, ¢,in Q;=(cos 0,, ¢;),i =1, ..., n—1.
These define the direction of . =-p., in the rest frame

= i
(E.Byckling & T k. =0 of the decay k;,
. : ! I+ .
K Kajantie) — pi + Kk;(see figure).
o Figure V1.2.4 Definition of Q; = (cos 8;, ¢;). The orien-
-1 / tation of coordinate axes can be chosen arbitrarily. To
kit =0 Y obtain the recursion relation (2.27) with multiperipheral
e momentum transfers, one chooses p, as the z-axis and
! replaces cos@; by the corresponding momentum
X/ transfer
Particle Physics Phenomenology 2026 .
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The equation can be used as basis for a generator. Let’s
examine 2 special cases: (i) all m; = 0, equivalent with the

asymptotic limit, M, (or s) — o (the "ultrarelativistic” case):

; . L, ) - n—1 Sn—2
R, (M) =R, (s;m; —O)—(Ej (n—1)(n-2)!

(i) M, (or s) > u, = 2m; (the "non-relativistic” case):

3\(n-1)/2 n
R,ﬁVR(M,f) _ R (sim) = (277) \/Hizlnzi/z (J;_z?:lmi)(sn—s)/z
2 (- m,)

NB! [(n)=(n-1)! forinteger n ~ D(x+1)=xT(x) T(1/2)=vz
A radically different relation for R, is obtained exploiting
the freedom of choosing the variables of intermediate
R/’s in a ladder type diagram. If the direction of p, is
chosen as the z—axis, then the scattering angle, 6,_,,

of the process p, + p, — k,_; + p,, can be replaced by
the corresponding momentum transfer (see figure below).

ZLn—l — (pa _kn—l)2 - mczz +M3—1 _2E ko + 2})a(n)Kn—1 COs 0}1—19

avn-1
where P = \//I(M,f,mj,m,f)/2Mn & K, = \/1(M5»M5-1am5)/2Mn
pa ! “Mgﬂ P 1
}M" : G(n-1)=0 .
(E.Byckling & i

K.Kajantie) /n/1 i
2

tn-‘I i
(a) (b) (c)

JE'|+1 1+1

Figure VI.2.6 (a) The basic process when p, is chosen as z axis in the frame
k, =p, + p, = 0; (b) the range of variation of t,_, is given by the M;_,, t,_,
Chew-Low plot; (c) the basic process at stage i of the iteration
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When cos 6,_, is replaced by ¢,_;, the range —1 < cos @,,_;
< 1 is transformed to a M,_,—dependentrange ¢, ;" <t,

<t, ", where the specific values of ¢,_,* are solutions to
Gn—-1)=G(s,t,_ ,m>,m>,m,,M’_)=0.In terms of ¢, |,

’nl’

(Mn—mn) 2 .
R,(M2)= ,“jdt [, Lot
1o 4\/2,(M2 ma,mb)

where R,_, has to be regarded as a function of ¢,_;, since
1,1 is the (mass)? of one of the initial particles leading to

R,_,. To iterate, we must apply the same equation for R,_,
remembering that m;?> =¢, now has to be replaced by ¢, ;.
If we also take M, as a variable instead of A/,%, we obtain

5 1 (M,—m,) (M5—m)
R jdr [t ) jdtzjd@
27z

a
4;<2>Jdtljd¢l,whem P(’)—\//i(Mf,tl,m )/2M & t,=ql,q,=p,—k

In this equation, R, can takes a

(E.Byckling & K.Kajantie)

form in which multiperipheral de - 1)5
momentum transfers ¢; appear as t’ ——
variables. That might be a more 2"{———3%2
convient starting point for Monte :
Carlos than previous expression. b2l
One may also further replacethe ,_ "' . Jon-

azimuthal angles ¢; In the above goe via7 The mutiper-
expression by invariants, which pher?; P e

. ti=@P.—P1—...—p)° an
turns out to be equivalent to the (o particie ~subenergies

2—particle subinvariant masses s;. 5i = (P + Pivt)?
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