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Introduction

These notes are intended to provide a summary of the essentials of relativistic kinematics
of particle reactions. A basic familiarity with the special theory of relativity is assumed. Most

derivations are omitted: it is assumed that the interested reader will be able to verify the results,
which usually requires no more than elementary algebra. Only the phase space calculations
are done in some detail since we recognise that they are frequently a bit of a struggle. For a
deeper study of this subject the reader should consult the monograph on particle kinematics
by Byckling and Kajantie.

Section 1 sets the scene with an introduction of the notation used here. Although other
notations and conventions are used elsewhere, I present only one version which I believe to
be the one most frequently encountered in the literature on particle physics, notably in such
widely used textbooks as Relativistic Quantum Mechanics by Bjorken and Drell and in the

books listed in the bibliography.
This is followed in section 2 by a brief discussion of the Lorentz transformation. This can

be dealt with fairly briey because Lorentz transformations play no major part in the kind of
calculations characteristic for the rest of this book: central to most relativistic calculations is

the notion of Lorentz invariants. This is so because all observables can be expressed in terms of
invariants. The transformations between di�erent reference frames are usually straight forward
for the invariants of the problem without involving the use of the Lorentz transformation
formul�.

In the following sections the kinematics of particle reactions is developed beginning with the

simplest case, that of two-body decays of unstable particles, and culminating in multiparticle
kinematics which is of paramount importance for the study of particle reactions at modern high
energy accelerators and colliders. The notes conclude with a fairly detailed discussion of phase
space calculations.

The most exhaustive treatment of the subject of relativistic kinematics is given in the
monograph by Byckling and Kajantie [1]. The notation and other conventions used here are
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those of [2]. A summary of formulas of relativistic kinematics can be found in the Particle Data

Tables [3],

1. Notation and units

The covariant components of 4-vectors are denoted by superscript Greek letters1 �, � etc.

Thus we write x�, � = 0; 1; 2; 3, such that

x0 = ct; x1 = x; x2 = y; x3 = z

The contravariant components of 4-vectors are labeled by subscripts:

x0 = x0; x1 = �x; x2 = �y; x3 = �z

The scalar product of two 4-vectors is given by

x � y = x�y� = x0y0 � x1y1 � x2y2 � x3y3

where the notation x�y� implies summation over �.
The minus signs in the scalar product signify that the 4-vector space is not Euclidian. This

is also expressed by introducing the metric tensor g�� with diagonal elements (1; �1; �1; �1)
and zero o�-diagonal elements:

g�� = diag(1; �1; �1; �1)

The contravariant elements of the metric tensor coincide with its covariant elements, i.e. we
have also g�� = diag(1; �1; �1; �1)

Using the summation convention one can check by explicit calculation that

x� = g��x
� and x� = g��x�

This procedure is referred to as the lowering and raising of the indices.
Using the metric tensor one can express the scalar product in the following equivalent forms:

x � y = g��x�y� = g��x
�y�

The invariant square of a 4-vector is given by

x2 = x�x�

If x2 > 0 the 4-vector is said to be time-like, if x2 = 0 it is light-like, and if x2 < 0 it is

space-like.
In the following we shall use units de�ned by c = 1, where c is the speed of light. This

is convenient in the kind of calculations characteristic of relativistic kinematics, because all
expressions must then be homogeneous in energies, momenta and masses, which all have the

same dimension. Velocities do not occur very often in these calculations, but one must remember
that particle velocities are dimensionless and do not exceed 1. Thus the relativistic  factor of
a particle of velocity v is written as

 =
�
1� v2

�
�1=2

(1)

The units of energy, momentum and mass most frequently used in elementary particle
physics are the Mega-electron Volt (1 MeV = 106 eV), Giga-electron Volt (1 GeV = 109 eV)

1
c.f. P.A.M. Dirac, The Principles of Quantum Mechanics, 4th edition, OUP, 1958, p. 254
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and Tera-electron Volt (1 TeV = 1012 eV). One should remember that the electron mass is

approximately 0.5 MeV, the proton mass is nearly 1 GeV (a more accurate value is 0.94 GeV),
and the highest energy accelerators in operation accelerate protons to about 1 TeV.

2. Lorentz transformation.

The Lorentz transformation between two inertial frames is of the form

x� ! x0� = a�
�
x� (2)

The invariance of the scalar product of two 4-vectors implies that

a�
�
a�
�
= ��

�
(3)

where ��
�
is the Kronecker � symbol.

If the axes of the two frames coincide at time t = t0 = 0 and the frames move with relative

velocity ~v, then

x00 = (x0 + vxjj)

x0
jj

= (xjj + vx0) (4)

~x0
?

= ~x?

where v = j~vj, xjj is the component of x in the direction of ~v, i.e. the modulus of ~xjj = (~x�~v)~v=v2,
~x? = ~x � ~xjj and  = (1 � v2)�1=2. Thus in this particular case the Lorentz transformation is

de�ned by three parameters, namely the three components of the velocity ~v.
If in addition the two frames are rotated with respect to each other, then the transfor-

mation matrix depends also on the three Euler angles. Therefore the most general Lorentz
transformation depends on six parameters.

The inverse Lorentz transformation from the primed to the unprimed frame is obtained by
replacing in Eq. (4) the primed by the unprimed coordinates and vice versa, and changing the
sign of v, i.e.

x0 = (x00 � vx0
jj
) xjj = (x0

jj
� vx00) ~x? = ~x0

?
(5)

Energy-momentum 4-vector.

Like time, so also energy is not invariant in relativity, but rather transforms under Lorentz
transformation like the zeroth component of a 4-vector, the other three components being the
ordinary 3-vector momentum.

Let us denote the energy-momentum 4-vector of a particle of mass m by p, i.e.

p = (p0; ~p) (6)

Frequently we shall denote the zeroth component p0, i.e. the energy, by E. Thus the invariant
square of p is

p2 = p�p� = E2 � ~p 2 = m2 (7)

The velocity ~v of the particle is de�ned by

~p = m~v (8)

From Eqs. (1), (7) and (8) we �nd the useful relations

 = E=m (9)
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and

~v = ~p=E (10)

The energy-momentum 4-vector p� transforms like the space-time 4-vector x� (c.f. Eq. (4)):

p00 = (p0 + vpjj)

p0
jj

= (pjj + vp0) (11)

~p 0
?

= ~p?

Minkowski metric; rapidity.

An alternative description of the Lorentz transformation (4) is based on the Minkowski
trick of introducing an imaginary time x4 = it. There is now no need to have two kinds of

vectors, such as the contravariant and covariant vectors considered above. Instead we denote
the 4-vector components of space-time by

x1 = x; x2 = y; x3 = z; x4 = it:

and the Lorentz invariant square becomes

x21 + x22 + x23 + x24 = invariant:

The transformation, which leaves this expression invariant, is a rotation. Thus, for instance, a
rotation in the (x1; x4) plane, leaving x2 and x3 unchanged, is of the form

x01 = x1 cos� � x4 sin�; x04 = x1 sin� + x4 cos�

Of course, no mathematical trick gets us o� the hook: nature demands space-time to be

non-Euclidian. Going back from the world of an imaginary time to the real world we must
write our rotation as

x0 = x cos� � it sin�; it0 = x sin� + it cos�

and using the identities
i sin� = sinh i�; cos� = cosh i�

and setting y = i� we recover a completely real form of the Lorentz transformation, viz

x0 = x cosh y + t sinhy; t0 = x sinh y + t cosh y

For this to be equivalent with Eq. (4) we must demand that y be real, and hence � is
imaginary. Thus the price to pay for a familiar Euclidian form of the rotation in the (x1; x4)
plane is an imaginary angle of rotation. The real quantity y de�ned above is called the rapidity
of the transformation; it is related to the relative velocity v between the two frames and to the
relativistic  factor by

cosh y = ; sinhy = v

hence v = tanh y.
We can similarly write the Lorentz transformation of the 4-momentum as

p0 = p cosh y + E sinhy; E 0 = p sinh y + E cosh y

In the ultra relativistic case, when the particle mass can be neglected and we have E = p,
we get the useful formula

yur = ln(E 0=E) (12)
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3. Two-body decays of unstable particles.

The simplest kind of particle reaction is the two-body decay of unstable particles. A well
known example from nuclear physics is the alpha decay of heavy nuclei. In particle physics one
observes, for instance, decays of charged pions or kaons into muons and neutrinos, or decays of
neutral kaons into pairs of pions, etc. The unstable particle is the mother particle and its decay

products are the daughter particles.
Consider the decay of a particle of mass M which is initially at rest. Then its 4-momentum

is P = (M; 0; 0; 0). This reference frame is called the centre-of mass frame (CMS). Denote the 4-
momenta of the two daughter particles by p1 and p2: p1 = (E1; ~p1), p2 = (E2; ~p2). 4-momentum
conservation requires that

P = p1 + p2 (13)

and hence ~p2 = �~p1. We can therefore omit the subscript on the particle momenta and hence

energy conservation takes on the form

E1 +E2 =
q
m2

1 + p2 +
q
m2

2 + p2 = M (14)

Solving this equation for p we get

p =
1

2M

q
[M2 � (m1 �m2)2] [M2 � (m1 +m2)2] (15)

An immediate consequence of Eq. (14) is that

M � m1 +m2 (16)

i.e. a particle can decay only if its mass exceeds the sum of the masses of its decay products.
Conversely, if some particle has a mass that exceeds the masses of two other particles, then this
particle is unstable and decays, unless the decay is forbidden by some conservation law, such
as conservation of charge or of angular momentum etc.

Another point to note is that the momenta of the daughter particles and hence also their

energies are �xed by the masses of the three particles. In the next section we shall see that
there is no equivalent statement in the case of three-body decays: the momenta of the daughter
particles in three-body decays can take on any value from zero to some maximum, and it is
only the maximum momentum that is �xed by the masses of the particles.

Let us complete our calculation by deriving the formul� for the energies of the daughter
particles. This is straightforward if we begin from the energy conservation formula (14) and

express E2 in terms of E1, viz. E2 =
q
E2
1 �m2

1 +m2
2, and then solve for E1 to get

E1 =
1

2M

�
M2 +m2

1 �m2
2

�
(17)

and similarly

E2 =
1

2M

�
M2 +m2

2 �m2
1

�
(18)

We also note that there is no preferred direction in which the daughter particles travel (the
decay is said to be isotropic), but if the direction of one of the particles is chosen (e.g. by

the positioning of a detector), then the direction of the second particle is �xed by momentum
conservation: the daughter particles are traveling back-to-back in the rest frame of the mother
particle.

Frequently one observes that the masses of the two daughter particles are equal, for instance

in the decay of a neutral kaon into a pair of pions. In this case the previous formul� simplify: the
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energies of the daughter particles are E1 = E2 =
1
2
M and the momenta are p = 1

2

p
M2 � 4m2,

if we denote the common mass of the daughter particles by m.
Of interest is also the two-body decay of unstable particles in ight. For instance, high

energy beams of muons or of neutrinos are produced in accelerators by letting the internal
beam of protons impinge on a target of metal (thin foils or wires are used in practice) to

produce pions and kaons, which are then steered in a vacuum tube in which they decay into
muons and neutrinos. Other cases of great interest are the decays of very short-lived reaction
products of high energy collisions, such as, for instance, the decays of B mesons or of D mesons,
which are copiously produced in modern high energy colliders. To illustrate the importance of
a proper discussion of such in-ight decays su�ce it to say that this is frequently the only way

to measure the mass of a neutral particle.
Thus we now have the following 4-momenta of the three particles: for the mother particles

we write P = (E; 0; 0; p), and for the daughter particles we have p1 = (E1; ~p1?; p1z) and p2 =
(E2; ~p2?; p2z). This means that we have chosen the z axis along the direction of ight of the

mother particle. The immediate result of this is that by momentum conservation the (two-
dimensional) transverse momentum vectors are equal in magnitude and opposite in sign:

~p? � ~p1? = �~p2? (19)

The energies and the z components of the particle momenta are related to those in the CMS
by a Lorentz boost with a boost velocity equal to the speed of the mother particle. We label
the kinematical variables in the CMS with asterisks and write the Lorentz transformation of

particle 1 in the form of

E1 = (E�

1 + vp�1z)

p1z = (p�1z + vE�

1) (20)

~p1? = ~p �1?

and similarly for particle 2. Here v = p=E and  = E=M . This completely solves the problem
in principle. We can now, for instance, �nd the angles which the two daughter particles make
with the z axis and with each other as functions of the momentum of the mother particle

(Exercise 1). But it is also of interest to approach the problem in a di�erent way, without using
the Lorentz transformation, starting from energy-momentum conservation:

E = E1 + E2 =
q
m2

1 + p21 +
q
m2

2 + p22 (21)

~p = ~p1 + ~p2 (22)

Thus, replacing in the energy conservation equation, p22 by (~p�~p1)2 we get an equation with un-
known momentum p1 and angle �1 between ~p1 and the z axis. Solving for p1 is a straightforward
if lengthy calculation (Exercise 2). In the end we get

p1 =
(M2 +m2

1 �m2
2)p cos �1 � 2E

q
M2p�2 �m2

1p
2 sin2 �1

2(M2 + p2 sin2 �1)
(23)

This result is of interest in the following sense. Reality of p1 demands that (M2p�2 �
m2

1p
2 sin2 �1) � 0. This condition is satis�ed for all angles �1 if Mp�=m1p > 1. In this case the

lower sign must be rejected since otherwise we would get unphysical negative values of p1 for
�1 > �=2. On the other hand, if Mp�=m1p < 1, then there is a maximum value of �1, given by

sin�1max = Mp�=m1p. Now both signs must be kept: for each value of �1 < �1max there are
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two values of p1, and correspondingly also two values of p2. Several examples illustrating this
are given in Exercise 3.

Exercise 1: Show that the LAB angle �1 that daughter particle 1 makes with the direction of
ight of the mother particle in a two-body decay is related to the CMS angle ��1 by the following
equation:

tan �1 =
sin ��1

(v=v�1 + cos ��1)
(24)

where v is the the LAB velocity of the mother particle and v�1 is the CMS velocity of the
daughter particle.

Exercise 2: Derive Eq. (23).

Exercise 3: Consider the following decay processes:

(i) K0
S
! �+��,

(ii) �0 ! p��

(iii) �0 ! 2.

In each case assume that the mother particle has a LAB energy of 1 GeV. Find the max-
imum Lab angles � and the corresponding LAB momenta for all decay products. Show that
the minimum opening angle between the decay products corresponds to a CMS angle of 90�

with the line of ight of the mother particle and calculate the corresponding LAB momenta.
Assuming that one of the daughter particles makes an angle half the maximum angle, �nd
the corresponding two momenta and the two momenta and LAB angles of the other daughter
particle.

4. Three-body decays; Dalitz plot.

Consider the decay of a mother particle of mass M into three particles of masses m1, m2 and
m3. Denote their 4-momenta by P, p1, p2 and p3, respectively. Energy-momentum conservation
is expressed by

P = p1 + p2 + p3 (25)

De�ne the following invariants:

s = P2 = M2

s1 = (P� p1)
2 = (p2 + p3)

2

s2 = (P� p2)
2 = (p3 + p1)

2 (26)

s3 = (P� p3)
2 = (p1 + p2)

2

Invariant s is a trivial invariant, trivial in the sense that it is constant and thus has no
dynamical signi�cance. To understand the physical signi�cance of invariant s1 consider the
second part of its de�nition: s1 = (p2 + p3)

2. This shows that
p
s1 is the invariant mass of the

subsystem of particles 2 and 3.2 Similarly
p
s2 and

p
s3 are the invariant masses of subsystems

(3,1) and (1,2), respectively.
The three invariants s1, s2 and s3 are not independent: it follows from their de�nitions

together with 4-momentum conservation that

s1 + s2 + s3 =M2 +m2
1 +m2

2 +m2
3 (27)

2
therefore we could alternatively write s23 instead of s1, with similar notation for s2 and s3.
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Kinematical limits

In the case of three-particle decay an important question arises as to the limits of the
kinematical variables. We shall see that this question also arises in collision problems. Therefore
the present derivation is of more general use. It is for this reason that we discuss it in greater
detail than most other derivations in these notes.

The space spanned by any set of independent kinematical variables is called phase space.
Therefore we can alternatively say that we are deriving the boundaries of phase space.

Consider the decay process in the rest frame of the mother particle (CMS). Here we have

s1 = M2 +m2
1 � 2ME1 (28)

with E1 =
q
m2

1 + p21, where p1 is the CMS momentum of particle 1. Thus E1 � m1, and hence

max s1 = (M �m1)
2 (29)

To �nd min s1 we evaluate s1 in the rest frame of subsystem (2,3).3 Let us denote all frame
dependent kinematical variables in this frame by a little zero above the symbol. Thus we get

s1 = (p2 + p3)
2 = (

�

E2 +
�

E3)
2 � (m2 +m3)

2 (30)

with similar formul� for s2 and s3. In summary, we get the following limits of the invariants
s1, s2, and s3:

s1 2
h
(m2 +m3)

2; (M �m1)
2
i

s2 2
h
(m3 +m1)

2; (M �m2)
2
i

(31)

s3 2
h
(m1 +m2)

2; (M �m3)
2
i

However not the entire cube de�ned by Eq. (31) is kinematically accessible. To �nd the limits
of s2, say, for �xed s1 2 [(m2 +m3)

2; (M �m1)
2] it is convenient to consider the Jackson frame

S23. This frame is de�ned by
~�
p3 = �

~�
p2. Momentum conservation then implies that

~�
p1 =

~�
P ,

and it follows that

s1 = (
�

E �
�

E1)
2 =

0
@
r
M2+

�

p
2

1 �

r
m2

1+
�

p
2

1

1
A
2

(32)

Solving for
�

p1
2

we get4

�

p
2

1=
1

4s1

h
s1 � (M �m1)

2
i h
s1 � (M +m1)

2
i
�

1

4s1
�
�
s1;M

2;m2
1

�
(33)

Similarly we get from

s1 = (p2 + p3)
2 =

�
�

E2 +
�

E3

�2
(34)

the corresponding expression for
�

p
2

2 and
�

p
2

3:

�

p
2

2=
�

p
2

3=
1

4s1
�
�
s1;m

2
2;m

2
3

�
(35)

Now consider the invariant s2:

s2 = (p1 + p3)
2 = m2

1 +m2
3 + 2

�
�

E1

�

E3�
�

p1
�

p3 cos�
�

(36)

3
such a frame is called Jackson frame; this particular Jackson frame will be denoted S23.

4
The kinematical function �(x; y; z) is de�ned by �(x; y; z) = x

2
+ y

2
+ z

2
� 2xy � 2yz � 2zx
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where � is the angle between
~�
p1 and

~�
p3. Taking into account Eqs. (33) and (35), we see that

s2 depends only on � if s1 is �xed. It follows that s2+ � max s2 and s2� � min s2 correspond
to � = � and � = 0, respectively, i.e.

s2� = m2
1 +m2

3 + 2

�
�

E1

�

E3�
�

p1
�

p3

�
(37)

If we express
�

E1 and
�

E3 in terms of s1, i.e. if we write

�

E1 =
1

2
p
s1

�
s� s1 �m2

1

�
,

�

E3 =
1

2
p
s1

�
s1 +m2

3 �m2
2

�
(38)

then we get s2� explicitly as a function of s1:

s2� = m2
1 +m2

3 +
1

2s1

h�
s� s1 �m2

1

� �
s1 �m2

2 +m2
3

�
� �1=2(s1; s;m

2
1)�

1=2(s1;m
2
2;m

2
3)
i

(39)

The curve de�ned by Eq. (39) is the boundary of the Dalitz plot in the (s1; s2) plane.

Of interest are also the maximum values of the three-momenta of the daughter particles in the
rest frame of the mother particle. From Eq. (28) we see that maxE1, and hence also max p1,
corresponds to min s1, and a straight forward calculation gives the result

p1max =
1

2M

q
[M2 � (m1 +m2 +m3)2][M2 � (m2 +m3 �m1)2] (40)

and we get the similar expressions for p2max and p3max by the cyclic replacement of the sub-

scripts: 1! 2, 2! 3 and 3! 1.
In the particular case when one of the daughter particles is massless, such as for instance in

K+
�3 decay: K

+ ! �0�+��, we �nd that the maximum momenta of the two massive daughter
particles are equal and greater than the maximum momentum of the massless daughter particle.

If two daughter particles are massless, such as in muon decay: � ! e���, then the maximum
momenta of all daughter particles coincide.

5. Particle collisions

Centre-of-mass frame and Laboratory frame.

The total 4-momentum p� of a system of n particles with 4-momenta p�1 ; p�2 ; : : : ; p�
n
is

given by
p� = p�1 + p�2 + : : : + p�

n

The centre-of-mass frame (CMS) of the system is de�ned as the frame in which the total three-
momentum of the system is equal to nought. Labeling CMS variables by asterisks, we express
this de�nition by the following equation:

~p � = ~p �1 + ~p �2 + : : : + ~p �
n
= 0 (41)

In particle physics the laboratory frame (LAB frame) of the system is de�ned as that
reference frame in which one of the initial particles is at rest. This particle is called the target

particle, the other being the beam particle or incident particle. The CMS and LAB frames are
illustrated for the reaction a+ b! c+ d by the kinematical diagrams in Fig. 1.

We use the convention that the beam particle is incident along the positive z axis. Its
momentum and energy are denoted pLAB and ELAB , respectively. Then its 4-momentum is

given by
p1 = (ELAB; 0; 0; pLAB) (42)
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Figure 1: Kinematical diagram: (a) CMS; (b) LAB.

and the 4-momentum of the target particle is given by

p2 = (m2; 0; 0; 0)

where we have arbitrarily denoted the incident particle as particle 1 and the target particle as

particle 2. � is the scattering angle and �r is the recoil angle. In the CMS the scattering angle
is ��.

The total 4-momentum of the initial particles is

p = p1 + p2 (43)

The invariant square of p is usually denoted by s.5 In the CMS frame we have ~p �1 + ~p �2 = 0 and

hence
s = (E�

1 + E�

2)
2 (44)

i.e.
p
s is the total CMS energy of the system.

We also note that ~p �1 + ~p �2 = 0 implies that we can drop the subscripts on the magnitudes
of the three-momenta and write

E�

1 =
q
m2

1 + p�2; E�

2 =
q
m2

2 + p�2 (45)

Substituting these expressions in Eq. (44) and solving for p� we get

p� =
1

2
p
s

nh
s� (m1 �m2)

2
i h
s� (m1 +m2)

2
io1=2

(46)

If particles c and d are di�erent from a and b, then we must distinguish between the initial

CMS momentum p�
i
, given by Eq. (46), and the �nal CMS momentum p�

f
, given by

p�
f
=

1

2
p
s

nh
s� (m3 �m4)

2
i h
s� (m3 +m4)

2
io1=2

(47)

In the LAB frame s is given by

s = p�p
�
= m2

1 +m2
2 + 2m2ELAB (48)

5
This is one of the Mandelstam variables; in section 6 we shall de�ne the full set of three Mandelstam

variables.
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from which we get the useful relation

ELAB = (s�m2
1 �m2

2)=2m2 (49)

and hence, substituting ELAB =
q
p2
LAB

+m2
1 and solving for pLAB, we get

pLAB =
1

2m2

nh
s� (m1 �m2)

2
i h
s� (m1 +m2)

2
io1=2

=
1

2m2

�
1

2 (s;m2
1;m

2
2) (50)

Comparing Eq. (50) with (46) we �nd that

p� = pLAB
m2p
s

(51)

and hence
E�

1;2 = (m2
1;2 +m2ELAB)=

p
s (52)

It is interesting to note that for ultra-relativistic particles, i.e. when we can neglect all
masses in comparison with the particle energies, we get E�

1 = E�

2 , which means that we can
drop the subscript of the CMS energies, and hence we get from Eqs. (48) and (52) the simple
relation

E� �

s
1

2
m2ELAB (53)

thus the CMS energy grows only like the square-root of the LAB energy. In particle collisions

only the centre-of-mass energy can be converted into the reaction products of the �nal state.
Therefore we see from Eq. (53) that in �xed-target experiments at high energies most of the
beam energy is lost in kinetic energy of the particle system. This limitation is overcome by
the construction of colliders, i.e. accelerators with two beams moving in opposite directions: in

the case of particles of equal masses in the two beams, such an arrangement ensures that the
combined beam energy is the centre-of-mass energy and no energy is lost in the form of overall
kinetic energy of the reaction products. This can be illustrated strikingly by the example of
the creation of Z bosons in electron-positron annihilations. In an e+e� collider we need two

beams of half the Z boson mass, i.e. of approximately 45.5 GeV each. The equivalent LAB
energy of a positron beam impinging on target electrons is 8:3� 106 GeV, i.e. an energy which
is unattainable in the foreseeable future.

Let us use our results to �nd the LAB velocity of the centre of mass of the initial particles.
This is also the boost velocity of the Lorentz transformation from the CMS to the LAB frame.

We note that the Lorentz transformation Eq. (20) applies to any particle. Therefore, if we add
the �rst of Eqs. (20) to the corresponding equation for particle 2, i.e. for the target particle,
then we get

E1 + E2 � ELAB +m2 = cm[E
�

1 + E�

2 + vcm(p
�

1z + p�2z)]

and hence with (44) and recalling that p�1z + p�2z = 0, we get

cm = (ELAB +m2)=
p
s

and �nally also the LAB velocity of the centre of mass

vcm = pLAB=(ELAB +m2)

Consider the particular case of equal masses. Then in the nonrelativistic limit we expect
intuitively that the centre of mass is moving with half the speed of the incident particle. The

relativistic formula simpli�es to

vcm =

s
ELAB �m

ELAB +m

11



where we have set m = m1 = m2. Then, with pLAB � m, we get

vcm =
pLAB
2m

 
1�

p2
LAB

4m2

!

or, since the LAB velocity vLAB of the incident particle is vLAB = pLAB=LABm and LAB =

1=(1 � v2
LAB

)�1=2 we get, neglecting terms of order v4
LAB

,

vcm =
1

2
vLAB

�
1 +

1

4
v2
LAB

�

and we see that the second term in the brackets can be neglected in the nonrelativistic limit.
Thus we have found the expected result.

We can use the expressions for vcm and cm to write down the Lorentz transformation from

the LAB frame to the centre-of-mass frame for the energy of particle 1 using Eq. (20):

E�

1 = cm(ELAB � vcmpLAB) = (m2
1 +m2ELAB)=

p
s

which reproduces the result Eq. (52). The corresponding transformation formula for the
momentum reproduces Eq. (51).

To carry out the Lorentz transformation of the target particle from the LAB frame to the
CMS we substitute its LAB energy E2LAB = m2 and LAB momentum p2LAB = 0 in Eq. (20),
hence

E�

2 = cmm2 = m2(m2 + ELAB)=
p
s

in agreement with Eq. (52).

6. Elastic Collisions

In the case of elastic collisions we denote the 4-momenta of the incident particles p1 and p2,

and the 4-momenta of the scattered particles p3 and p4, such that

p23 = p21 = m2
1 and p24 = p22 = m2

2 (54)

4-momentum conservation is expressed by

p1 + p2 = p3 + p4 (55)

Consider the invariants which can be constructed from the 4-momenta p1; : : : ; p4. Such
invariants are of the form p

i
� p

j
; i; j = 1; 2; 3; 4, and hence there are sixteen invariants. Four

of these are of the form p2
i
= m2

i
, i.e. they are constants without any dynamical contents.

They are therefore referred to as trivial invariants. Of the remaining twelve invariants there

are only six di�erent ones as a result of the symmetry p
i
� p

j
= p

j
� p

i
. This leaves us with six

invariants, which are further constrained by the 4-momentum conservation (55). Thus there
remain two independent invariants. However rather than working with two invariants it is
frequently convenient to use three invariants with one constraint. The most widely used choice
of such invariants are the Mandelstam variables, which are de�ned by the following equations:

s = (p1 + p2)
2 = (p3 + p4)

2

t = (p1 � p3)
2 = (p2 � p4)

2 (56)

u = (p1 � p4)
2 = (p2 � p3)

2

Since only two of the Mandelstam variables are independent there exists one relation between

them, namely
s+ t + u = 2m2

1 + 2m2
2 (57)

12



The variable t has a simple meaning in the CMS where one has E�

1 = E�

3 , and hence

t = �(~p1 � ~p3)
2 = �2p�2(1� cos ��) (58)

Thus up to a sign, t is the squared momentum transfer in the CMS. For this reason t is

generally and not very accurately referred to as the 4-momentum transfer. An important result
of Eq. (58) is that in elastic scattering t is always negative except at �� = 0 (forward scattering)
where t = 0.

Interesting is also the signi�cance of t in the LAB frame. Here we have

t = (p2 � p4)
2 = 2m2(m2 � E4) = �2m2T4 (59)

where we have denoted the LAB kinetic energy of particle 4 - the recoil particle - by T4, i.e.
T4 = E4 �m2.

7. Inelastic collisions

If the particles in the �nal state are di�erent from the particles in the initial state then the

collision is said to be inelastic. Examples of inelastic collisions are the creation of additional
pions in pion-proton collisions,

�+ + p! �+ + p + �+ + �� (60)

or the annihilation of an electron-positron pair into a muon pair,

e+ + e� ! �+ + �� (61)

At very high energies where many particles are created one frequently measures only one
of the �nal state particles, for instance a fast outgoing electron in electron-proton collisions,
with all other particles remaining unobserved. This is referred to as inclusive collision, and the
corresponding reaction equation is written in the form

e� + p! e� +X (62)

where X denotes any system of �nal state particles.
Let us denote the 4-momenta of the initial particles p1 and p2, and the 4-momenta of the

�nal state particles p3; p4; : : : ; pn. Energy and momentum conservation are expressed by

p1 + p2 = p3 + p4 + : : :+ p
n

(63)

Let us calculate the minimum LAB energy needed for this reaction. This energy is called

the threshold energy. Let particle 1 be the incident particle and particle 2 the target particle,
then in the LAB frame

p1 = (ELAB; 0; 0; pLAB) p2 = (m2; 0; 0; 0) (64)

and hence
s = (p1 + p2)

2 = m2
1 +m2

2 + 2m2ELAB (65)

By 4-momentum conservation we have also s = (p3 + p4 + : : : + p
n
)2. We make use of the

invariance of s and evaluate the latter expression in the CMS; then, by Eq. (63), we have

s = (E�

3 + E�

4 + : : : +E�

n
)2 � (m3 +m4 + : : : +mn)

2 (66)

where in the last step we have used E�

i
=
q
m2

i
+ ~p �2

i
� mi.
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Thus the threshold CMS energy is

E�

thr
=
p
smin = m3 +m4 + : : : +mn (67)

and hence with Eq. (65) and setting M = m3 +m4 + : : : +mn

Ethr

LAB
=

1

2m2

h
M2 �m2

1 �m2
2

i
(68)

or, if we introduce the LAB kinetic energy TLAB = ELAB �m1,

T thr

LAB
=
h
M2 � (m1 +m2)

2
i
=2m2 (69)

Equation (67) has an important physical interpretation: at threshold the �nal state particles
are at rest relative to each other. Expressed di�erently this means that there is no internal

motion in the system of �nal state particles. This implies that they move together with equal
velocity in the LAB frame.6

Let us calculate the threshold kinetic energy for the reaction �+ + p ! �+ + p + �+ + ��

using the approximate mass values mp = 940 MeV, m� = m�+ = m�� = 140 MeV:

T thr

LAB
=

1

2mp

h
(mp + 3m�)

2 � (mp +m�)
2
i

=
1

2mp

(2mp + 4m�) (2m�) = 2m�

 
1 +

2m�

mp

!

= 2 � 140 � (1 + 2 � 140=940) = 363:4 MeV (70)

The kinetic energy of the incident pion is the only source of energy to create the additional

mass of the �nal state, which is 2m�. But our result shows clearly that we must supply more
kinetic energy than the additional mass. Qualitatively this result can be understood from our
discussion of Eq. (67): part of the LAB kinetic energy is converted into the rest energy of the
additional particles, and more kinetic energy is needed to impart LAB kinetic energy to the

created particles.

Quasi-elastic collisions.

A particular case of inelastic collisions are the quasi-elastic collisions, i.e. 2! 2 body reactions,
in which the two particles in the �nal state are di�erent from the initial particles. The reaction

e+ + e� ! �+ + �� is a typical example of such reactions. Elastic collisions are a particular
case of quasi-elastic collisions.

To describe 2 ! 2 body reactions we shall again use the Mandelstam variables s, t and u.
In this case Eq. (57) must be replaced by the more general relation

s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4 (71)

As before we have in the CMS ~p �1 + ~p �2 = ~p �3 + ~p �4 , but

j~p �1 j 6= j~p
�

3 j (72)

Let us therefore distinguish the magnitudes of the CMS momenta by a prime on the CMS
momentum in the �nal state. Thus

p� = j~p �1 j = j~p �2 j and p� 0 = j~p �3 j = j~p
�

4 j (73)

6
This statement has to be modi�ed if there are massless particles in the �nal state.
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Equation (46) remains valid for p�; to express p�0 in terms of s we must replace in Eq. (46)

m1 by m3 and m2 by m4, thus

p�0 =
1

2
p
s

nh
s� (m3 �m4)

2
i h
s� (m3 +m4)

2
io1=2

) (74)

Consider the reaction
�� + p! K� +�+

with the pion incident on the target proton. The threshold energy for producing the kaon
(mK = 0:494 GeV) and the �+ (m�+ = 1:189 GeV) is 1.03 GeV by Eq. (68). Assuming a
LAB energy of the incident pion of 1.5 GeV we get

s = m2
�
+m2

p
+ 2mpELAB = 0:142 + 0:942 + 2 � 0:94 � 1:5 = 3:71 GeV2

and hence by Eqs. (46) and (74) we have

p� = 0:727 GeV and p�0 = 0:438 GeV

i.e. the CMS momenta of the �nal state particles are less than the CMS momenta of the initial
particles. Qualitatively this result is obvious: the reaction products are heavier than the initial

particles, and therefore part of the initial kinetic energy must be converted into mass.
Conversely one expects the CMS momentum of the �nal state to be greater than the CMS

momentum of the initial state if the �nal state particles are lighter than the initial state particles.
This can be checked for the example of the annihilation of a proton-antiproton pair into a pair
of pions. It is interesting to note that this reaction can take place at zero relative momentum

of the proton and antiproton; even under this condition the pions are created with highly
relativistic momenta. Experimentally the annihilation at rest of proton-antiproton pairs can
be realized for instance in the low-energy antiproton ring LEAR at CERN, where antiproton
beams of extremely low momenta can be produced. These low-energy antiprotons can lose

practically their entire kinetic energy in a liquid hydrogen target before being captured by a
hydrogen atom to form a protonium atom and �nally annihilate with the proton.

Without derivation we collect here some useful formulas relating CMS and LAB variables to

the Mandelstam invariants.

CMS variables:

E�

1 =
s+m2

1 �m2
2

2
p
s

; E�

2 =
s+m2

2 �m2
1

2
p
s

; (75)

E�

3 =
s+m2

3 �m2
4

2
p
s

; E�

4 =
s+m2

4 �m2
3

2
p
s

; (76)

p�1 = p�2 =
1

2
p
s

rh
s� (m1 �m2)

2
i h
s� (m1 +m2)

2
i
; (77)

p�3 = p�4 =
1

2
p
s

rh
s� (m3 �m4)

2
i h
s� (m3 +m4)

2
i
; (78)

Denoting the CMS angle between ~p �3 and ~p �1 by ��, we have

cos �� = 1 � (t0 � t)=2p�1p
�

3 = 1 � (u� u0)=2p
�

1p
�

4 (79)

where
t0 = m2

1 +m2
3 � 2(E�

1E
�

3 � p�1p
�

3) = m2
2 +m2

4 � 2(E�

2E
�

4 � p�2p
�

4)
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and

u0 = m2
1 +m2

4 � 2(E�

1E
�

4 + p�1p
�

4) = m2
2 +m2

3 � 2(E�

2E
�

3 + p�2p
�

3)

LAB variables: by de�nition we have in the LAB ~p2 = 0, hence

E1 =
s�m2

1 �m2
2

2m2

; E2 = m2 (80)

E3 =
m2

2 +m2
3 � u

2m2

; E4 =
m2

2 +m2
4 � t

2m2

(81)

the production angle of particle 3, i.e. the angle made by ~p3 with the z axis, is given by

cos �3 =
t �m2

1 �m2
3 + 2E1E3

2p1p3
(82)

and similarly

cos �4 =
u �m2

1 �m2
4 + 2E1E4

2p1p4
(83)

8. Deep inelastic scattering.

In lepton-hadron scattering at su�ciently high energies one �nds a large number of hadrons
in the �nal state: this is deep inelastic scattering (DIS). The multiplicity of the hadronic system
varies event by event. The reaction equation for electron-proton DIS is written as

e� + p! e� +X (84)

where X stands for the hadronic system with an arbitrary number of particles. A generic
diagram depicting the DIS process is shown in Fig. 2.

�
�(q)

p(P )

e(k)

X(P 0)

e(k0)

Figure 2: Generic diagram of deep inelastic scattering.

To describe the DIS reaction kinematics we denote the 4-momentum of the incoming electron
by k = (E; 0; 0; k), that of the target proton by P and those of the scattered electron and of the
hadronic system by k0 and P0, respectively. The exchanged virtual photon � has 4-momentum
q = k� k0. 4-momentum conservation demands

k + P = k0 + P0 (85)

and we have the mass-shell conditions k2 = k0 2 = m2
e
and P2 = m2

p
. Since energies characteristic

of DIS are at least of several GeV, the electron mass can be safely set equal to zero. Then we

get for the square of the 4-momentum transfer q2 = (k � k0)2 = �2EE 0(1 � cos �), and we see
that q2 � 0, i.e. the exchanged photon is space-like.
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The invariant W 2 = P 0 2 is variable because of the variable multiplicity of particles in the

hadronic system, each of which can have an arbitrary kinetic energy up to some maximum
value. Therefore the complete kinematics of DIS is determined by three independent invariants
rather than two as we are used to in elastic collisions. A natural choice of one of these invariants
is the square of the total CMS energy S,

S = (k + P)2 = m2
p
+ 2k � P (86)

which is de�ned by the beam energy.

The second invariant is usually chosen to be the negative square of 4-momentum transfer:

Q2 = �q2 = �(k � k0)2 = 4EE 0 sin2
�

2
(87)

The third independent invariant can be taken to beW or alternatively one of the dimensionless
variables

x =
Q2

2P � q
(88)

or

y =
P � q
k � P

(89)

where q = k � k0.
The variable y has a simple physical meaning in the target rest frame where P = (mp; 0; 0; 0),

k = (ELAB; 0; 0; ELAB), and k0 = (E 0

LAB; ~p
0

3), hence y = 1 � E 0

LAB=ELAB, i.e. y is the relative
energy loss of the electron in the LAB frame.

The invariant x is the Bjorken scaling variable or simply Bjorken-x. It was �rst recognised
as an important variable of DIS by J.D. Bjorken who predicted the property of scaling in DIS
which was subsequently con�rmed experimentally.

Interesting is the expression of S in terms of the beam energies. In �xed target DIS we

have the electron or muon beam with 4-momentum k = (E; 0; 0; E) and the proton target with
P = (mp; 0; 0; 0), hence

S = m2
p
+ 2mpE

whereas in an electron-proton collider like HERA we have 4-momenta P = (Ep; 0; 0; Ep) and
k = (Ee; 0; 0;�Ee) and hence

S = 4EeEp

Other useful relations between the various kinematical variables are the following:

Q2 = xyS (90)

and
W 2 = m2

p
+Q2(1=x � 1) (91)

where in the latter formula we have kept the proton mass in order to indicate that the threshold
of W corresponds to elastic scattering.

Within the framework of the parton model, DIS proceeds by the exchange of a photon or
intermediate vector boson with only one of the quarks in the proton. This is shown in the

diagram in Fig. 3.
The electron-quark collision is elastic. As a result of this collision the struck quark acquires

a su�cient momentum to break away from the rest of the proton as far as the colour force
allows it to travel. At this stage some of the binding energy is converted into the creation of a

quark-antiquark pair from the vacuum; the antiquark combines with the original quark into a
meson, leaving behind a quark which can give rise to the creation of another quark-antiquark
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Figure 3: Parton model diagram of deep inelastic scattering.

pair. This process, called fragmentation, continues until the remaining energy drops below the
threshold for the creation of another pair. Thus, as a result of fragmentation, several mesons

are created which travel roughly in the direction of the struck quark. Such a system of mesons,
or more generally of hadrons, is called a jet. The residue of the proton is a highly unstable
system: it has lost a quark, absorbed a quark presumably of the wrong sort that is left over
from the fragmentation, and has absorbed a fraction of the energy transferred from the electron.
Therefore it breaks up into several hadrons.

The elastic electron-quark collision is the hard subprocess of DIS. If we think of the incoming
electron and proton as travelling in opposite directions, then the quark carries a fraction of the
proton momentum. At a su�ciently high momentum, where the proton mass is negligible, the
energy of the quark is the same fraction of the proton energy. It turns out that this fraction is

identical with the Bjorken-x de�ned above. Denoting the 4-momentum of the incoming quark
by p we have therefore

p = xP

Denoting the invariant (k + p)2 by s, which is the squared CMS energy of the subprocess, we
have therefore also

s = xS (92)

This, together with the de�nition of Q2, shows that the two independent invariants that control
the kinematics of the subprocess are x and Q2.

The �rst DIS experiments were carried out in 1967 at the Stanford 2-mile linear electron
accelerator with electron beams of up to 20 GeV and hydrogen targets at rest, giving a CMS
energy of about 6 GeV. Subsequent �xed target experiments were done in other laboratories,
notably at the CERN SPS with muon beams of up to nearly 300 GeV and hence of CMS

energies up to about 25 GeV. The range of energies available for DIS was extended by an
order of magnitude when in 1992 the electron-proton collider HERA came into operation at
the DESY laboratory in Hamburg. In this collider the electrons are accelerated up to nearly
30 GeV and the protons up to 820 GeV, giving a CMS energy of 314 GeV. Theoretically the

corresponding values of Q2 go up to about 105 GeV2.
An important tool to study the structure of the nucleon is also deep inelastic scattering with

neutrinos as beam particles. The kinematics is identical with the one described above, but one
must bare in mind that the exchanged particle in neutrino-DIS is an intermediate vector boson,
either the W or the Z.

9. Phase Space Integrals.

One step in the evaluation of a decay rate or of a cross section is the evaluation of phase

space integrals. This step is logically part of kinematics, the dynamics of the process being
contained in the matrix element.
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The di�erential decay rate of a particle of 4-momentum P = (E; ~P ) into n particles of

4-momenta p1, p2, : : :, pn is given by

d� =
(2�)4

2E
jMj2d3n�2(P; p1; p2; : : : ; pn) (93)

where jMj2 is the Lorentz invariant square of the matrix element and d3n�2(P; p1; p2; : : : ; pn) is
the Lorentz invariant di�erential phase space factor. The usual task of phase space calculations
is to integrate over all unobserved degrees of freedom.

Consider the simplest case, namely two-body decay. Then the Lorentz invariant di�erential
phase space factor is

d6�2(P; p1; p2) = �4(P� p1 � p2)
d3p1

(2�)32E1

d3p2
(2�)32E2

(94)

where P = (E; ~P ), p1 = (E1; ~p1) and p2 = (E2; ~p2) are the 4-momenta of the mother particle
and the two daughter particles, respectively, and the four dimensional delta function ensures
energy-momentum conservation.

Thus, in the present case, if we want to �nd the total decay rate, then we must integrate
the di�erential decay rate

d� =
(2�)4

2E
jMj2d6�2(P; p1; p2) (95)

over all components of p1 and p2. Here jMj2 is the spin-averaged square of the matrix element,
which in the case of two-body decay is a constant. Therefore the integrations can be carried
out exactly. Integrating over one of the three-momenta removes the three dimensional delta
function �3( ~P � ~p1 � ~p2), hence

d3�2(P; p1; p2) = (2�)�6�(E � E1 � E2)
d3p1
2E1

where E1 =
q
p21 +m2

1 and E2 =
q
( ~P � ~p1)2 +m2

2. Now we exploit the Lorentz invariance of
�2 by �nishing the integration in the \frame of convenience", which in this case is the rest
frame of the mother particle (CMS), where ~P = 0 and E = m, hence

d3�2(CMS) = (2�)�6�(m � E1 � E2)
d3p1
2E1

Here E1 retains its previous form and E2 =
q
p21 +m2

2. Since the integrand has no angular
dependence, the integration over the full solid angle gives a factor of 4�, leaving us with the

integration of the modulus of ~p1. This is conveniently converted into an integration over E1,
using E2

1 = p21 +m2
1, hence p1 dp1 = E1 dE1. The �nal integration over E1 is accomplished by

setting the argument of the delta function equal to f(E1) and using the identity

�(f(E1)) = jf 0(E10)j�1�(E1 � E10)

where E10 is the root of f(E1) = 0. Thus �nally we get

�2 =
2p1CMS

(2�)5m

where the CMS momentum is p1CMS = f[m2 � (m1 �m2)
2][m2 � (m1 +m2)

2]g1=2=2m.
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Example: pion decay � ! ��.
The spin averaged modulus squared of the matrix element of pion decay is in the lowest order
of perturbation theory given by

jMj2 = 4G2f2
�
m2

�
(p � k) (96)

where G is the Fermi constant, f� is the pion decay constant, m� is the muon mass, p and k
are the four-momenta of the muon and neutrino, respectively, and we assume the neutrino to
have zero mass. The di�erential decay rate of this process is given by

d� =
(2�)4

2m�

jMj2 d6�2(P; p; k)

where P is the four-momentum of the pion and

d6�2(P; p; k) = �4(P� p� k)
d3p

(2�)32E

d3k

(2�)32!

where E and ! are the energies of the muon and the neutrino, respectively. We get the total
decay rate � by integrating over the momenta ~p and ~k. Let us do this in two steps. First we

integrate over the neutrino momentum:

d3� =
(2�)4

2m�

Z
jMj2 �(E� � E � !)�3( ~P � ~p � ~k)

d3p

(2�)32E

d3k

(2�)32!

=
1

32�2m�

Z
jMj2 �(E� � E � !)

d3p

E!

then we integrate over the polar angle � and azimuth � of the muon. To do this we represent
d3p as p2 dp d
, where d
 = d� d cos �, and we use E dE = p dp, thus

d3� ==
1

32�2m�

Z
jMj2 �(E� � E � !)

pdE d


!

Now we note that the matrix element is constant. Indeed, we have P2 = (p+k)2 = m2
�
+2p �k,

but also P2 = m2
�
, hence p � k = (1=2)(m2

�
�m2

�
), and the matrix element is given by

jMj2 = 2G2f2
�
m2

�
(m2

�
�m2

�
)

and therefore the integrand has no angular dependence and integration over 
 gives just a
factor of 4�. Thus

d� =
1

8�m�

jMj2 �(E� � E � !)
pdE

!

Now, since momentum conservation has already been imposed by integration over ~k, the energies
E and ! are no longer independent: we have ! = k = p =

q
E2 �m2

�
. Let us denote the

argument of the remaining � function by f(E): f(E) = E� � E � !, or, working from now on

in the pion rest frame, f(E) = m� � E � !. Then, using the identity

�(f(E)) = jf 0(E0)j�1�(E � E0)

we get

� =
1

8�m2
�

jMj2 p0
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where p0 =
q
E2
0 �m2

�
. Using once more momentum conservation, we also have p0 = k0 =

!0 = (m2
�
�m2

�
)=2m� . Finally we get for the pion decay rate

� =
G2f2

�

8�
m�m

2
�

 
1 �

m2
�

m2
�

!2
(97)

Now the decay rate is related to the mean life � by � = �h=tau. Therefore we can �nd the
pion decay constant f� from Eq. (97) by substituting the known values of the Planck constant

hbar, the Fermi constant G and the muon and pion masses.

Example: Muon decay �! e���e.

In this example we have three �nal state particles, two of which are massless. Each of
the outgoing particles can have an energy of up to one half of the muon rest energy, i.e.

approximetely up to 50 MeV, which is an ultrarelativistic energy for the electron. At momenta

close to zero, the electron is of course nonrelativistic, but at such energies the approximation
which we are going to use, where the matrix element is calculated in the lowest order of
perturbation theory, is not very accurate and one must include radiative corrections. This
is outside the scope of these notes. We shall therefore carry out the calculations with an

ultrarelativistic electron over the entire phase space, and hence set the electron mass equal to
zero.

The reaction equation of muon decay is

�(p)! e(p0) + ��(k) + �e(k
0)

with the following four-momenta in the muon rest frame:

p = (m;~0); p0 = (E 0; ~p0); k = (!;~k); k0 = (!0; ~k0)

The di�erential decay rate is given by

d� =
1

2m
jMj2 d�3(p; p

0; k; k0)

where in lowest order perturbation theory we have

jMj2 = 64G2(p � k0)(k � p0)

Now, p � k0 = m!0, but k � p0 involves the energies ! and E 0 and the angle between ~k and ~p0.
This is inconvenient. Therefore we use four-momentum conservation to transform this scalar
product:

2k � p0 = (k + p0)2 = (p� k0)2 = m2 � 2m!0

hence
jMj2 = 64G2m2!0(m=2� !0) (98)

and in this form jMj2 depends only on the energy !0; therefore we need not consider it until
we get to the integration over !0.

Writing the Lorentz invariant phase space factor d�3(p; p
0; k; k0) in detail, we have therefore

for the di�erential decay rate

d� =
1

2m
jMj2 (2�)4�4(p� p0 � k� k0)

d3p0

(2�)32E 0

d3k

(2�)32!

d3k0

(2�)32!0

21



and we begin the calculation by integrating over the muon-neutrino three-momentum ~k; we get

Z
�4(p� p0 � k � k0)

d3k

!
=

1

!
�(m� E 0 � ! � !0)

with ! = j~kj = j~k0 + ~p0j =
q
!02 + E 02 + 2!0E 0 cos �, where � is the angle between ~p0 and ~k0.

Next we integrate over ~k0. To do this we represent d3k0 in polar coordinates with the polar

axis along ~p0, which is kept �xed at this stage, i.e. d3k0 = 2�!02d!0 d cos �, where the factor 2�
comes from the integration over the azimuth. First the integration over cos �:

d� =
1

(4�)4m
jMj2

d3p0

E 0
!0d!0

Z 1

�1
�(m� ! � !0 � E 0)

d cos �

!

Let us put x = cos � and denote the argument of the � function by f(x), i.e.

f(x) = m� !0 � E 0 �
q
!02 +E 02 + 2!0E 0x

and proceed by using the standard formula

�(f(x)) = jf 0(x0)j�1�(x� x0)

where x0 is de�ned by f(x0) = 0 and f 0(x0) is the derivative of f(x) at x = x0:

f 0(x0) = �(E 0!0=!0)

with !0 = !(x0), and hence

�(f(x))
dx

!
= �(x � x0)

dx

E 0!0

which gives us immediately

d� =
1

(4�)4m
jMj2

d3p0

E 02
d!0

and we must remember that the � function gives a nonzero value only if �1 � x0 � 1 or,

equivalently, if !� � ! � !+, where

!� =
q
!02 +E 02 � 2!0E 0 = j!0 � E 0j

and since by virtue of the � function we have ! = m � !0 � E 0, this condition can be cast in

the form of
j!0 � E 0j � m � !0 � E 0 � !0 + E 0

or, if we add (!0 + E 0) and divide by 2,

1

2
(j!0 � E 0j+ !0 + E 0) �

m

2
� !0 + E 0 (99)

The left-hand side of this inequality is the greater of !0 and E 0, and hence the left-hand
inequality is equivalent to two inequalities:

E 0 � m=2 and !0 � m=2

which, together with the right-hand inequality, de�nes a triangle in the (E 0; !0) plane over
which the integration over !0 and E 0 has to be taken, see Fig. 4.
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Figure 4: The shaded region is the domain of integration (99)

The integral over !0 goes from (m=2 � E 0) to m=2, and we must now remember that the

matrix element depends on !0. Thus

d� =
64G2m

(4�)4
d3p0

E 02

Z
m=2

m=2�E0

!0

�
m

2
� !0

�
d!0 =

16G2m2

(4�)4

 
1�

4E 0

3m

!
4� E 02 dE 0

where in the last step we have also represented d3p0 in polar coordinates and done the angular
integrations, which have yielded a factor of 4�. We can rewrite our result in the form of the
energy distribution of the emitted electron:

d�

dE 0
=

16�2m2

(4�)3
E 02

 
1 �

4E 0

3m

!
(100)

This result is very close to the experimental data.7

Now we can also get the total decay rate by carrying out the �nal integration over E 0 from

zero to m=2, hence

� =
G2m5

192�3
(101)

and hence the muon lifetime:

� =
�h

�
=

192�h�3

G2m5

This formula can be used to get a value for the Fermi constant G from the accurately known
values of �h and of the muon mass and lifetime. The result is remarkably close to the result
obtained from similar calculations for nuclear � decay. The small di�erences are accounted for
by radiative corrections. However, we shall not enter into these considerations, remembering

that the purpose of this exercise was an illustration of the phase space integration in the case
of three-body decay.

The derivation of the three-particle phase space given here followed the most direct route.
One can �nd other, more ingenious methods in the literature. For instance, in Part 2 of
the \Relativistic Quantum Mechanics" by E.M. Lifshits and L.P. Pitaevsky,8 the following

alternative derivation is presented.

7
M. Bardon et al., Phys. Rev. Lett. 14 (1965) 449; the deviation is partly due to radiative corrections and

partly due to experimental acceptance.
8
this is Vol. IV of the monograph on theoretical physics by Landau and Lifshits; the derivation mentioned

here is given in Chapter XVI, section 146 of the Russian 1971 edition
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Without spin summation, the modulus squared matrix element is

jMj2 = 32G2(pe �meae)�(p� �m�a�)�k
�

e
k�
�

where pe and p� are the four-momenta of the electron and muon, respectively, me and m� are

their masses, ae and a� are their polarization vectors, and ke and k� are the four-momenta of
the electron and muon neutrino, respectively. The 4-vector components are labeled by � and
�. The di�erential decay rate is given by

d� = (2�)4�4(pe + ke + k� � p�)
jMj2

2m�

d3pe
(2�)32Ee

d3ke
(2�)32!e

d3k�
(2�)32!�

where Ee, !e and !� are the energies of the electron, electron neutrino and muon neutrino,
respectively.

Integration over the neutrino momenta is accomplished by taking the following integral:

I�� =
Z
k�
e
k�
�
�4(ke + k� � q)

d3ke
!e

d3k�
!�

where q = p�� pe. The only dynamical variable, on which this symmetric tensor depends, is q;
therefore the integral must be of the form of

I�� = Aq2g�� +Bq�q�

where A and B are numerical factors. Contracting I�� with g�� we get

(4A +B)q2 =
1

2
I q2

and contracting with q�q� we get

(A+B)(q2)2 =
1

4
I (q2)2

where

I =
Z
�4(ke + k� � q)

d3ke
!e

d3k�
!�

Integration over d3k� removes the three-dimensional � function �
3(~ke+~k�� q), leaving us with

the integral

I =
Z
�(!e + !� � !)

d3ke
!e!�

which is done in the CMS of the two neutrinos, where ~ke+~k� = 0 and !e = !�, and there is no
angular dependence, so the angular integration gives a factor of 4�, leaving us with the integral

I = 4�
Z
�(2!e � !) d!e = 2�

and hence

I�� =
�

6
(q2g�� + 2q�q�)

and the �nal result is found by straight forward calculations.

For n particle decays the phase space integrals can be done recursively in the CMS:

�n(E) =
1

(2�)3

Z
d3pn
2En

�n�1([E
2 � 2EEn +m2

n
]1=2)
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As we have seen, the three-particle phase space integral can be evaluated analytically. For n > 3

one has to resort to numerical integration which is usually done by Monte Carlo methods.

Phase Space Calculations in the Case of Collision Processes.

Phase space calculations are equally important in collision processes. Here one must bear
in mind that the matrix element is not constant even in the simplest case of 2! 2 collisions.
However the structure of the spin-averaged square of the matrix element of a two-body collision
is su�ciently simple for analytical calculation to be feasible. For inelastic 2 ! n particle
collisions with n � 3 one resorts to numerical integration.

For 2! 2 body collisions, i.e. elastic in quasielastic collisions, the observed quantity is the
di�erential cross section; it is given by the formula

d� = (2�)4
jMj2

F
d6�2(p1 + p2; p3; p4) (102)

where F = 4
q
(p1 � p2)2 �m2

1m
2
2 is the Lorentz invariant ux of the incoming particles of masses

m1 andm2 and 4-momenta p1 and p2, and the 4-momenta of the outgoing particles are denoted
p3 and p4. In the LAB frame the ux factor takes the form of

F = 4m2 pLAB

where, as before, m2 is the mass of the target partcle. In the CMS we have

F = 4 pCMS

p
s

Consider the particular example of electron-muon elastic scattering in the LAB frame. Then
the spin-averaged matrix element is given by

jMj2 =
8e4

q4
2M2EE 0

"
cos2

�

2
�

q2

2M2
sin2

�

2

#

where M is the muon mass, E and E 0 are the initial and �nal electron energies, � is the
scattering angle, q2 = �4EE 0 sin2 �

2
is the 4-momentum transfer, and we have neglected the

electron mass.
Note that jMj2 depends on the observable scattering angle �. Therefore, bearing in mind

that we want to integrate over all unobserved degrees of freedom, we must from the beginning
plan the phase space integrations such as not to integrate over �, except possibly as a very last
step if we want to �nd the total cross section.

The Lorentz invariant two-body phase space factor is

d6�2 = �(4) (p3 + p4 � p1 � p2)
d3p3

(2�)32E3

d3p4
(2�)32E4

and we have to carry out four of the six integrations to get rid of the four-dimensional � function.

We begin by integrating over the 3-momentum ~p4; this removes the three-dimensional � function
�(3) (~p3 + ~p4 � ~p1 � ~p2 ) and leaves us with

d3�2 = � (E3 + E4 � E1 � E2)
p23dp3d


[2(2�)3]2E3 E4

where we have expressed the three-dimensional di�erential d3p3 in polar coordinates with d
 =
sin�d�d�, where � and � are the polar angle and azimuth, respectively.
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At this point we change the notation to that used previously for the LAB frame by setting

E1 = E =

q
~k2; E3 = E 0 =

q
~k 0 2; E2 =M; and E4 =

q
~p 0 2 +M2

hence

d3�2 =
1

4(2�)6
� (E 0 + E4 � E �M)

E 0dE 0

E4

d


We note that our integration over ~p4 has already enforced momentum conservation. There-
fore we have

~p 0 = ~k � ~k0; hence ~p 0 2 = E2 + E 0 2 � 2EE 0 cos �

Now consider the argument of the � function. Let us denote it by f(E 0 ), i.e.

f(E 0 ) = E 0 +
q
~p 0 2 +M2 � E �M

Its zero corresponds to energy conservation. To evaluate the integral over E 0 we rewrite the �
function in the form of

�(f(E 0 ) =

�����df(E
0

0)

dE 0

�����
�1

�(E 0 � E 0

0 )

where E 0

0 is the zero of f(E
0 ). Di�erentiating f(E 0 ) with respect to E 0 we get

df(E 0)

dE 0
= 1 +

E 0 � E cos �

E4

=
E4 +E 0 � E cos �

E4

or, applying energy conservation, E4 + E 0 = E +M ,

df(E 0)

dE 0
=

M + E(1� cos �)

E4

=
ME

E 0E4

where in the last step we have used q2 = �2EE 0 (1 � cos �) = �2M(E � E 0). Thus �nally we
have

�(f(E 0 )) =
E 0E4

ME
�(E 0 � E 0

0 )

Now we can do the integral over E 0 and get

d2�2 =
1

4(2�)6
1

(4�)2
E 0 2

ME
d


where in the �nal expression we have dropped the subscript of E 0

0, which is now redundant.

Putting our results for the matrix element, the phase space factor and the ux factor
together, we get for the di�erential cross section of elastic electron-muon scattering the following
expression:  

d�

d


!
LAB

=
�2

4E2 sin4 �

2

E 0

E

 
cos2

�

2
�

q2

2M2
sin2

�

2

!
(103)

where � = e2=4� is the �ne structure constant.

References

[1] E. Byckling and K. Kajantie, \Particle Kinematics", Wiley, New York, 1973.

[2] J.D. Bjorken and S.D. Drell, \Relativistic Quantium Mechanics", McGraw-Hill, New York,

1964.

[3] \Review of Particle Physics", Particle Data Group, European Physical Journal C 15 (2000)
1-878.
Popularly known as the Particle Data Tables, this review is published every other year; it

is available on the website http://pdg.lbl.gov

26


