# TOTAL CROSS SECTIONS OF $\pi^{ \pm}, K^{ \pm}, p$ AND $\bar{p}$ ON PROTONS AND DEUTERONS BETWEEN 200 AND $370 \mathrm{GeV} / \mathrm{c}$ 

A.S. CARROLL, I.-H. CHIANG, T.F. KYCIA, K.K. LI, M.D. MARX, D.C RAHM<br>Brookhaven National Laboratory, Upton, NY 11973, USA

W.F. BAKER, D.P. EARTLY, G. GIACOMELLI ${ }^{1}$, A.M. JONCKHEERE, P.F.M. KOEHLER, P.O. MAZUR, R. RUBINSTEIN<br>Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

and
O. FACKLER

Rockefeller University, New York, NY 10021, USA

Received 20 November 1978

Total cross sections of $\pi^{ \pm}, \mathrm{K}^{ \pm}, \mathrm{p}$ and $\overline{\mathrm{p}}$ on protons and deuterons have been measured at 6 momenta between 200 and $370 \mathrm{GeV} / c$.

We report here an extension of our earlier measurements [1,2,3] (referred to here as I, II and III respectively) of hadron total cross sections to incident beam momenta of $370 \mathrm{GeV} / \mathrm{c}$. The higher momenta were achieved by the upgrading of the M1 beam in the Meson Laboratory at Fermilab [4,5] where the experiment was carried out, and the avallability of $400 \mathrm{GeV} / \mathrm{c}$ protons on the Meson Laboratory target. The experimental arrangement was essentrally identical to that described in III, except for the following modifications: (i) The number of muons in the incident beam was determined by penetration through 6.1 m of steel. (ii) For most data below $280 \mathrm{GeV} /$ c, incident particles were identrfied using two gas differential Cerenkov counters [6] with radiator lengths of 16 and 32 m and respective Cerenkov angles of 15 and 7.5 mr . For 310 $\mathrm{GeV} / c$ and above, the two counters were combined into one with radiator length of 48 m and Cerenkov angle of 5 mr in order to obtain the additional resolution required. (iii) The distance from target to transmission counters in I, II and III, at a momentum of $P(\mathrm{GeV} / c)$, was $0.30 P$ (meters), while in this experiment

[^0]it was reduced to $0.23 P$ (meters) because of space limitations.

Data analysis was carried out similarly to that described previously except for changes necessitated by modification (iii) above. Data taken at $200 \mathrm{GeV} / c$, at a distance of 60 m (and thus with each transmission counter covering the same $t$ range as before) were in excellent agreement with those obtained previously: e g. to $\sim 0.05 \%$ in the pp case. With the reduced distance, the individual counters did not cover the same $t$ ranges as in III, and there was therefore some uncertainty about which counters to include in the extrapolation fit. In the few cases where the results were dependent on the choice of counters, we used that set of counters in the extrapolation which gave a result closest to that obtained in III in the overlapping momentum region; in the case of $\sigma_{\mathrm{pd}}$, where there was the largest sensitivity to this effect ( $\sim 0.5 \%$ ), we normalized the cross sections in the overlap region to give agreement with III. As in III, the extrapolation procedure was verified using proportional wire chambers [7]. Our procedure extrapolated the fit to the partial cross sections from $-t=0.015(\mathrm{GeV} / c)^{2}$ to $-t=0$. In the case of $\overline{\mathrm{p}} \mathrm{p}$ scattering at $280 \mathrm{GeV} /$ c, the proportion.

Table 1
Total cross sections in millibarns measured in this experiment, and combined with those of ref. [3] where appropride See text for defintions of $\left\langle r^{-2}\right\rangle$ and $\alpha$. Any entry in this table supercedes the corresponding entry in table I of ref [3] Only momentum dependent errors are given.

|  | Momentum in $\mathrm{GeV} / \mathrm{c}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 200 | 240 | 280 | 310 | 340 | 370 | $\alpha$ |
| ${ }^{\sigma} \mathrm{pp}$ | $38.98 \pm 0.04$ | $39.24 \pm 0.04$ | $3942 \pm 0.04$ | $39.59 \pm 006$ | $3969 \pm 0.07$ | $39.77 \pm 0.06$ | - |
| ${ }^{\text {opd }}$ | $73.99 \pm 007$ | $74.42 \pm 0.07$ | $74.61 \pm 0.07$ | $74.96 \pm 0.10$ | $75.02 \pm 012$ | $7535 \pm 0.11$ | - |
| $\sigma_{\mathrm{pn}}$ | $39.27 \pm 0.05$ | $39.50 \pm 0.06$ | $39.53 \pm 0.05$ | $3975 \pm 0.07$ | $39.72 \pm 0.10$ | $40.01 \pm 0.08$ | - |
| ${ }^{\sigma} \overline{\mathrm{p} p}$ | $41.51 \pm 015$ | $41.90 \pm 0.20$ | $41.91 \pm 0.21$ | - | - | - | - |
| $\sigma_{\overline{\mathrm{p}} \mathrm{d}}$ | $78.32 \pm 0.28$ | $7846 \pm 029$ | $78.40 \pm 0.31$ | - | - | - | - |
| $\sigma_{\overline{\mathrm{p}} \mathrm{n}}$ | $41.62 \pm 0.23$ | $41.39 \pm 0.34$ | $4130 \pm 0.38$ | - | - | - | - |
| ${ }^{\mathrm{K}^{+}{ }_{\mathrm{p}}}$ | $1991 \pm 011$ | $20.22 \pm 0.06$ | $20.45 \pm 0.07$ | $20.67 \pm 015$ | - | - | - |
| $\sigma^{+}{ }^{+}{ }_{\text {d }}$ | $38.42 \pm 010$ | $3932 \pm 0.10$ | $3976 \pm 0.10$ | $40.14 \pm 0.21$ | - | - | - |
| ${ }^{\sigma} \mathrm{K}^{+} \mathrm{n}$ | $1972 \pm 0.11$ | $2037 \pm 0.09$ | $20.61 \pm 0.10$ | $20.80 \pm 026$ | - | - | - |
| ${ }^{\sigma}{ }^{-}-\mathrm{p}$ | $20.79 \pm 0.05$ | $2130 \pm 0.07$ | $2132 \pm 0.08$ | $2145 \pm 012$ | - | - | - |
| ${ }^{\sigma} \mathrm{K}^{-\mathrm{d}}$ | $4000 \pm 010$ | $40.50 \pm 0.09$ | $4085 \pm 0.10$ | $4113 \pm 0.15$ | $\sim$ | - | - |
| ${ }^{6} \mathrm{~K}-\mathrm{n}$ | $2052 \pm 008$ | $20.55 \pm 0.09$ | $2090 \pm 0.11$ | $2107 \pm 018$ | - | - | -- |
| $\sigma^{+}{ }^{+}$ | $23.78 \pm 0.04$ | $24.10 \pm 0.07$ | $24.43 \pm 010$ | $2450 \pm 0.10$ | $24.62 \pm 014$ | - | - |
| $\sigma^{+}{ }_{\text {d }}$ | $46.26 \pm 008$ | $4688 \pm 0.10$ | $47.18 \pm 0.14$ | $47.24 \pm 0.15$ | $4745 \pm 020$ | - | - |
| $\sigma_{n-\mathrm{p}}$ | $2434 \pm 0.04$ | $2461 \pm 0.04$ | $24.78 \pm 0.06$ | $2490 \pm 0.08$ | $2508 \pm 0.08$ | $25.25 \pm 009$ | - |
| ${ }^{0} \pi^{-} \mathrm{d}$ | $46.32 \pm 0.07$ | $4691 \pm 0.07$ | $47.05 \pm 0.09$ | $4734 \pm 0.11$ | $47.68 \pm 0.12$ | $47.89 \pm 015$ | - |
| $\sigma_{\mathrm{pp}}-\sigma_{\mathrm{pp}}$ | $253 \pm 0.11$ | $266 \pm 018$ | $2.49 \pm 0.19$ | - | - | - | $043 \pm 0.02$ |
| $\sigma_{\overline{\mathrm{p}} \mathrm{d}}-\sigma_{\mathrm{pd}}$ | $433 \pm 0.18$ | $4.04 \pm 0.26$ | $3.79 \pm 0.29$ | - | - | - | $0.43 \pm 0.02$ |
| $\sigma_{\overline{\mathrm{pn}}}-\sigma_{\mathrm{pu}}$ | $235 \pm 0.24$ | $1.89 \pm 0.34$ | $177 \pm 0.38$ | - | - | - | $040 \pm 0.04$ |
| ${ }^{\sigma^{-}{ }^{-p}-\sigma_{K^{+}}{ }^{\prime}}$ | $0.88 \pm 008$ | $1.08 \pm 0.07$ | $087 \pm 0.09$ | $0.77 \pm 0.18$ | - | - | $0.44 \pm 0.03$ |
|  | $1.58 \pm 010$ | $1.18 \pm 0.10$ | $1.09 \pm 0.11$ | $098 \pm 0.25$ | - | - | $039 \pm 003$ |
| $\sigma_{\mathrm{K}}{ }^{-} \mathrm{n}-{ }^{-\mathrm{K}^{+}{ }_{\mathrm{n}}}$ | $080 \pm 0.14$ | $0.18 \pm 0.13$ | $0.29 \pm 0.15$ | $027 \pm 0.32$ | - | - | $031 \pm 010$ |
| $\sigma^{-} \mathrm{p}^{-\sigma^{+}}{ }^{+}$ | $0.56 \pm 0.04$ | $0.51 \pm 0.06$ | $0.35 \pm 0.08$ | $0.40 \pm 0.08$ | $046 \pm 013$ | - | $0.54 \pm 0.03$ |
| $\sigma_{\pi-\mathrm{d}} / \sigma^{+}{ }^{+}{ }^{\text {d }}$ | $1.001 \pm 0.002$ | $1001 \pm 0.003$ | $0.997 \pm 0.004$ | $1.002 \pm 0004$ | $1.005 \pm 0.005$ | - | - |
|  | 0040 | 0.039 | 0.043 | 0043 | 0.043 | - | - |

al wue chamber data, which allowed measurements to smaller values of $-t$, showed that there was no rapid change in partial cross section slope down to at least $-t \approx 0.006(\mathrm{GeV} / c)^{2}$.

Several cruss sections measured in III were repeated here, and there was good agreement between the new data and those of III.

Based on the reproducibility of the data and upon the uncertainty in extrapolation procedure we estimate
the momentum dependent systematic uncertainty in $p$ and $\overline{\mathrm{p}}$ cross sections to be between $\pm 01 \%$ and $\pm 0.2 \%$ in addition to the statistical error. For pions and kaons, the estimated systematic uncertanty was increased to between $\pm 0.2 \%$ and $\pm 0.3 \%$ as a result of uncertanties in the muon contamination. A momentum independent systematic scale error in the absolute magnitude of the cross sections is introduced by uncertainties in the form of extrapolation and in the hydrogen and deuterium

densities and contaminations. It is estimated to be $\pm 0.4 \%$ for protons and $\pm 0.7 \%$ for deuterons. The systematic scale error for deuterons was determined from the consistency of these measurements and those of III.

Results of this experıment are given in table 1 and also displayed in figs. 1 and 2, together with previous data [3, 8-18] Only momentum dependent errors are given. Where measurements made in III have been repeated in the present experiment, we have combined the two measurements, so that any entry in table 1 supercedes the corresponding entry in table I of III. This is done in order to correctly combine both the statistical and systematic uncertainties in the two experiments.

Cross sections for target neutrons have been obtained from those on protons and deuterons using the

Fig. 1. Total cross sections on protons; only momentum dependent errors are shown. Data in figs. 1, 2 and 3 are from this experment and refs. [3,8-18]. Additional earlier data


Fig. 2. Total cross sections on deuterons on neutrons. Only momentum dependent errors are shown The upper and lower dashed curves represent the pn cross sections assuming $\left\langle r^{-2}\right\rangle=0.039$ and $0.031 \mathrm{mb}^{-1}$ respectively.


Fig. 3. Antiparticle-particle total cross section differences

Glauber-Wilkin procedure [19,20]; the parameter $\left\langle r^{-2}\right\rangle$ derived from pion cross sections on protons and deuterons is given in table 1 . To provide consistency over the range 23 to $370 \mathrm{GeV} / c$ measured in III and this experıment, we derive neutron cross sections using $\left\langle r^{-2}\right\rangle$ of $0.039 \mathrm{mb}^{-1}$ for pions and kaons, and $0.035 \mathrm{mb}^{-1}$ for protons and antiprotons. As we noted in III, it must be stressed that the adequacy of this procedure for deriving neutron cross sections has been frequently questioned [21], so we again emphassize that caution should be exercised in drawing conclusions on neutron cross sections from these data As an illustration, fig 2 shows the effect on the pn cross section of a variation in $\left\langle r^{-2}\right\rangle$ of $\pm 0004 \mathrm{mb}^{-1}$. Reasonable changes in the parameter $\left\langle r^{-2}\right\rangle$, however, do not appreciably affect the momentum dependence of the neutron cross sections.

The new data above $200 \mathrm{GeV} / \mathrm{c}$ for all cross sections extrapolate well from the data of III, and continue the trends observed there. In particular, the $\bar{p} p$ cross section appears momentum independent above $\sim 120 \mathrm{GeV} / \mathrm{c}$; this is consistent with the behavior of all other cross sections where the cross sections, after falling with increasing momentum, reach a minımum before rising again

The simple power law dependence of the antipar-ticle--particle differences observed in I, II and III continues to hold at the higher momenta measured here, as shown in fig. 3. Fittung the data of III and this experiment only (from 23 to $370 \mathrm{GeV} / c$ ) with the form $A s^{\alpha-1}$, we obtam the values of $\alpha$ given in table 1

The ratio $\sigma_{\pi^{--d}} / \sigma_{\pi^{+} d}$, which should be unity if charge symmetry is valid, is given in table $1 ;$ it is always consistent with 1 , and averages $1.0008 \pm 0.0014$.

In conclusion, we have measured hadron total cross sections up to $370 \mathrm{GeV} / c$. The trends observed previously [3] continue to hold. Conclusions drawn on comparisons of the earlier data with various relations given by quark and Regge pole models (e.g. [13,22]) remain valid.

We wish to thank T. Toohig, the Meson Laboratory staff, and the Cryogenics Group, for all of the assistance given in making these measurements possible. We are grateful to J. Fuhrmann and H. Vard for technical assistance. This work was supported by the U.S. Department of Energy.

## References

[1] A S. Carroll et al., Phys. Rev. Lett. 33 (1974) 928.
[2] A.S. Carroll et al., Phys. Rev Lett. 33 (1974) 932.
[3] A S. Carroll et al, Phys. Lett 61B (1976) 303.
[4] S. Ecklund, Fermilab TM-743 (1977), unpublished
[5] A.A. Wehmann, Fermilab TM-775 (1978), unpublished
[6] T I Kycra, to be published, see also S Ecklund, Fermilab TM-743 (Rev. A.) (1977), unpublished
[7] A S. Carroll et al., Nucl Instr Meth., to be published.
[8] W. Galbratth et al., Phys. Rev. 138 (1965) B913.
[9] K.J. Foley et al., Phys Rev. Lett. 19 (1967) 330.
[10] K.J 「oley et al., Phys. Rev. Lett 19 (1967) 857.
[11] S.P. Denisov et al, Phys. Lett 36B (1971) 415
[12] S.P. Denisov et al., Phys Lett. 36B (1971) 528.
[13] S.P. Denisov et al., Nucl. Phys. B65 (1973) 1.
[14] V D. Apokin et al., Nucl. Phys B106 (1976) 413
[15] A.I. Babaev et al., Sov J Nucl Phys. 20 (1975) 37 [Yad. Fiz 20 (1974) 71].
[16] M.J. Longo et al, Phys Rev. Lett. 33 (1974) 725.
[17] L W. Jones et al, Phys Rev. Lett 33 (1974) 1440
[18] CFRN-Pisa-Rome-Stony Brook, Phys Lett. 62B (1976) 460.
[19] R.J. Glauber, Phys Rev. 100 (1955) 242
[20] C. Wikın, Phys. Rev. Lett. 17 (1966) 561.
[21] See refs [22-28] of ref. [3], above;
L G Dakhno, IHEP 76-117 (1976), unpublished.
[22] R.E. Hendrick et al , Phys. Rev. D11 (1975) 536


[^0]:    ${ }^{1}$ Visitor from University of Bologna, Bologna, Italy.

