TOTAL CROSS SECTIONS OF $\pi^{ \pm}, K^{ \pm}, \mathrm{p}$ AND $\overline{\mathrm{p}}$ ON PROTONS AND DEUTERONS BETWEEN 23 AND $280 \mathrm{GeV} / \boldsymbol{c}$

A.S. CARROLL, I.-H. CHIANG, T.F. KYCIA, K.K. LI, P.O. MAZUR, P.M. MOCKETT ${ }^{* 1}$ and D.C. RAHM Brookhaven National Laboratory, Upton, N.Y. 11973, USA
W.F. BAKER, D.P. EARTLY, G. GIACOMELLI*2, P.F.M. KOEHLER, K.P. PRETZL ${ }^{* 3}$, R. RUBINSTEIN and A.A. WEHMANN
Fermi National Accelerator Laboratory, Batavia, Ill. 60510, USA
and
R.L. COOL and O. FACKLER
Rockefeller University, New York, N.Y. 10021, USA

Received 23 June 1975

Abstract

New measurements are reported of total cross sections for $\pi^{ \pm}, \mathrm{K}^{ \pm}, \mathrm{p}$ and $\overline{\mathrm{p}}$ on protons and deuterons at 11 momenta between 23 and $280 \mathrm{GeV} / c$.

This paper describes measurements of high energy total cross sections which extend the momentum range reported earlier [1,2] (referred to here as I and II) down to $23 \mathrm{GeV} / c$ and up to $280 \mathrm{GeV} / c$. A description of the experiment, which was carried out in the M1 beam at the Fermi National Accelerator Laboratory, was given in I and II. We note here only several equipment refinements and additional checks of its performance: (i) Identification of muons in the incident beam was improved by requiring coincident counts between two scintillators placed behind 4.3 and 4.9 meters of steel, respectively, downstream of the transmission counters. (ii) Electron identification was improved by requiring large pulse heights in two consecutive lead glass Cerenkov counters of thickness 3 and 22 radiation lengths [3]. (iii) To improve inci-

[^0]dent particle identification above $200 \mathrm{GeV} / c$, the two differential Cerenkov counters were combined into one, increasing the radiator length from 15 to 30 meters, and reducing the Cerenkov angle from 15 to 7.5 mr . Corrections to the cross section for beam contamination were negligible except for K^{+}at 240 and $280 \mathrm{GeV} / c$ due to a $\mathrm{K}^{+} / \mathrm{p}$ ratio which was as low as 2×10^{-4} at $280 \mathrm{GeV} / c$. The corrections were 0.04% and 1.7%, respectively. (iv) Cross sections were remeasured at $200 \mathrm{GeV} / c$. The new data agreed with I and II within the errors which were, for example, $\pm 0.1 \%$ for the proton-proton cross sections. (v) The measurement procedure, described in I and II, makes use of partial cross sections measured by scintillation counters at several small values of $|t|$ down to $|t|$ $=0.016(\mathrm{GeV} / c)^{2}$. A fit to the partial cross sections is then used to extrapolate to $|t|=0$. Three sets of proportional wire chambers, two in front of the target and one at the location of the transmission counters, has allowed us to make measurements down to $|t|$ as small as $0.004(\mathrm{GeV} / c)^{2}$ for a subset of the data. The PWC data for events with both single and multiple tracks show no rapid change in slope down to $|t|$ $=0.004$ and verify the validity and accuracy of our extrapolation procedure using the scintillation counter

					MOME	NTUM IN	$\mathrm{GeV} / \mathrm{c}$					
	23	35	50	70	100	120	150	170	200	240	280	α
${ }^{\sigma}$	$39.39 \pm .42$	$38.46 \pm .05$	$38.20 \pm .05$	$38.28 \pm .04$	$38.46 \pm .04$	$38.58 \pm .04$	$38.69 \pm .04$	$38.83 \pm .04$	$38.97 \pm .04$	$39.21 \pm .04$	$39.38 \pm .04$	
	$73.91 \pm .69$	$73.57 \pm .09$	$73.12 \pm .08$	$73.15 \pm .07$	$73.28 \pm .07$	$73.44 \pm .07$	$73.57 \pm .07$	$73.78 \pm .07$	$74.03 \pm .07$	$74.40 \pm .07$	$74.57 \pm .07$	－
${ }^{\circ} \mathrm{pn}$	$38.52 \pm .88$	$39.15 \pm .10$	$38.96 \pm .09$	$38.95 \pm .07$	$38.96 \pm .07$	$39.02 \pm .07$	$39.07 \pm .07$	$39.18 \pm .06$	$39.32 \pm .07$	$39.50 \pm .07$	$39.52 \pm .07$	－
${ }_{\overline{\mathrm{p} p}}$	－	45．46土．10	$43.93 \pm .10$	$43.05 \pm .06$	42．12土．08	$41.70 \pm .15$	41．79土．17	$41.69 \pm .15$	$41.44 \pm .18$	－	－	－
${ }^{\sigma} \overline{\mathrm{p} d}$	－	$85.33 \pm .20$	$82.45 \pm .20$	$81.05 \pm .16$	$79.42 \pm .17$	$79.31 \pm .23$	$78.41 \pm .27$	$78.54 \pm .26$	78．16土．28	－	－	－
${ }^{\sigma}{ }_{\text {pn }}$	－	$45.64 \pm .21$	43．88＊． 21	$43.18 \pm .14$	$42.26 \pm .16$	$42.54 \pm .27$	$41.44 \pm .33$	$41.69 \pm .31$	$41.51 \pm .34$	－	－	－
${ }^{\circ} \mathrm{K}^{+} \mathrm{p}$	－	$17.82 \pm .09$	18．06 $\pm .08$	18．52土．08	$18.88 \pm .07$	19．14土．07	$19.36 \pm .07$	19．64土．06	19．90土．11	$20.28 \pm .07$	$20.64 \pm .40$	－
${ }^{\sigma} \mathrm{K}^{+}{ }_{\mathrm{d}}$	－	$35.11 \pm .13$	$35.68 \pm .13$	$36.06 \pm .13$	$36.81 \pm .11$	$37.23 \pm .12$	$37.81 \pm .11$	$38.18 \pm .10$	$38.34 \pm .16$	$39.32 \pm .11$	$39.41 \pm .62$	－
${ }^{\sigma} \mathrm{K}^{+} \mathrm{n}$	－	18．29土．15	18．66 ${ }^{\text {m }} 14$	18．60土．14	19．04土．11	$19.23 \pm$ ， 13	19．63土．12	19．74土．10	19．65土．18	20．31 $\pm .14$	20．04＊．78	－
${ }^{\sigma} \mathrm{K}^{-}{ }_{\mathrm{p}}$		$20.54 \pm .12$	$20.30 \pm .10$	$20.38 \pm .05$	$20.45 \pm .06$	20．59土．06	$20.60 \pm .07$	$20.65 \pm .06$	$20.76 \pm .05$	$21.02 \pm .12$	－	－
${ }^{\sigma} \mathrm{K}^{-}{ }^{-}$		$39.12 \pm .16$	$38.91 \pm .14$	$38.97 \pm .09$	$39.15 \pm .11$	$39.47 \pm .10$	$39.44 \pm .12$	$39.62 \pm .10$	$39.97 \pm .10$	$40.37 \pm .15$	－－	－
${ }^{\sigma} \mathrm{K}^{-} \mathrm{n}$	－	$19.84 \pm .20$	$19.86 \pm .16$	19．83土．08	19．96土．11	$20.16 \pm .10$	20．12土．12	$20.25 \pm .10$	$20.52 \pm .09$	$20.69 \pm .18$	－	－
${ }_{\pi}{ }^{+}{ }^{\text {p }}$	$23.71 \pm .06$	$23.21 \pm .04$	23：11土．06	$23.22 \pm .06$	$23.33 \pm .06$	$23.42 \pm .04$	$23.50 \pm .04$	$23.68 \pm .05$	$23.84 \pm .06$	$24.12 \pm .07$	－	－
${ }_{\pi}{ }^{+}{ }_{\text {d }}$	$46.71 \pm .10$	$45.87 \pm .08$	$45.42 \pm .12$	45．62土．12	$45.47 \pm .12$	$45.73 \pm .08$	45．81土．08	$46.09 \pm .08$	$46.32 \pm .10$	$46.90 \pm .10$	－	－
$\sigma_{\pi}{ }^{-p}$	$25.01 \pm .06$	$24.37 \pm .04$	$24.06 \pm .06$	$24.00 \pm .06$	$24.00 \pm .06$	$24.06 \pm .04$	$24.11 \pm .04$	$24.21 \pm .04$	$24.33 \pm .04$	$24.58 \pm .04$	$24.67 \pm .08$	－
${ }_{\pi}{ }^{-1}$	46．83土．11	$45.98 \pm .08$	$45.59 \pm .12$	$45.53 \pm .12$	$45.59 \pm .12$	$45.74 \pm .07$	$45.93 \pm .07$	$46.12 \pm .07$	$46.36 \pm .07$	$46.88 \pm .07$	$46.81 \pm .12$	－
$\sigma_{\overline{\mathrm{p}} \mathrm{p}}-{ }_{\mathrm{p} p}$	－	$7.00 \pm .10$	$5.73 \pm .11$	$4.76 \pm .06$	$3.66 \pm .08$	$3.12 \pm .15$	$3.10 \pm .17$	$2.86 \pm .15$	$2.47 \pm .18$	－	－	$0.39 \pm .02$
$\sigma_{\widehat{\mathbf{p d}}}-\sigma_{\text {pd }}$	－	$11.75 \pm .18$	$9.32 \pm .18$	$7.90 \pm .13$	$6.14 \pm .14$	$5.87 \pm .21$	$4.84 \pm .25$	$4.76 \pm .24$	$4.13 \pm .27$	－	－	$0.40 \pm .02$
$\sigma_{\overline{\mathrm{p}} \mathrm{n}}-\sigma_{\mathrm{pn}}$	－	$6.49 \pm .23$	$4.92 \pm .23$	$4.23 \pm .16$	$3.30 \pm .18$	$3.52 \pm .28$	$2.37 \pm .33$	$2.51 \pm .32$	$2.18 \pm .35$	－	－	$0.39 \pm .04$
${ }^{\sigma} \mathrm{K}^{-} \mathrm{p}^{-\sigma} \mathrm{K}^{+} \mathrm{p}$	－	$2.72 \pm .15$	$2.23 \pm .13$	$1.86 \pm .09$	$1.57 \pm .09$	$1.45 \pm .09$	$1.24 \pm .09$	1．01 $\pm .08$	0．86 $\pm .10$	0．74土．14	－	$0.40 \pm .04$
${ }^{\sigma} \mathrm{K}^{-1} \mathrm{~d}^{-\sigma} \mathrm{K}^{+} \mathrm{d}$	－	$4.01 \pm .19$	$3.22 \pm .17$	$2.91 \pm .13$	$2.34 \pm .12$	$2.24 \pm .13$	1．63土．13	$1.44 \pm .11$	$1.64 \pm .13$	$1.06 \pm .18$	－	$0.41 \pm .03$
${ }^{\prime} K^{-} \mathbf{n}^{-\sigma} \mathbf{K}^{+} \mathbf{n}$	－	$1.55 \pm .25$	$1.20 \pm .22$	$1.23 \pm .16$	$0.92 \pm .16$	$0.93 \pm .16$	0．49土．17	$0.51 \pm .14$	$0.87 \pm .20$	$0.38 \pm .23$	－	$0.38 \pm .11$
$\sigma^{-}{ }^{-}{ }^{-\sigma^{-} \pi^{+} \mathrm{p}}$	1．31土．08	$1.16 \pm .04$	$0.94 \pm .06$	$0.78 \pm .06$	0．67土．06	$0.64 \pm .04$	0．61土．04	$0.54 \pm .04$	0．48土．06	$0.46 \pm .07$	－	$0.55 \pm .03$
$\sigma_{\pi}^{-}{ }_{d} / \sigma_{\pi}{ }^{+}{ }_{\text {d }}$	$\begin{aligned} & 1.003 \\ & \pm .003 \end{aligned}$	$\begin{aligned} & 1.002 \\ & \pm .002 \end{aligned}$	－	－	－	$\begin{aligned} & 1.000 \\ & \pm .002 \end{aligned}$	$\begin{aligned} & 1.003 \\ & \pm .002 \end{aligned}$	$\begin{aligned} & 1.001 \\ & \pm .002 \end{aligned}$	$\begin{array}{r} 1.001 \\ \pm .003 \end{array}$	$\begin{aligned} & 1.000 \\ & \pm .003 \end{aligned}$	－	－
$\left\langle\mathrm{r}^{-2}\right\rangle\left(\mathrm{mb}^{-1}\right)$	0.042	0.037	0.038	0.037	0.040	0.039	0.039	0.039	0.040	0.038	－	－

data．The PWC resolution and multiple Coulomb scat－ tering prevent measurements below $|t|=0.004$ ．
（vi）Studies showed negligible variation of the meas－ ured cross section due to changes in beam spot size and transmission counter position；a variation with beam intensity required a small correction（ $\sim 0.1 \%$ ） which was also applied to the data of I and II．The re－ vised data are also reported in table 1.

Data analysis was carried out essentially as in I and II．Based upon the reproducibility of the data，and upon the uncertainty in the extrapolation procedure， we estimate a momentum dependent systematic un－ certainty for incident protons and antiprotons of $\pm 0.1 \%$ in addition to the statistical error．For pions and kaons，the estimated systematic uncertainty was increased to between $\pm 0.15 \%$ and $\pm 0.25 \%$ as a result of uncertainties in the correction for muon and elec－ tron contamination．A momentum independent sys－ tematic scale error in the absolute magnitude of the cross section is introduced by uncertainties in the form of extrapolation and in the hydrogen and deu－ terium densities and contaminations．It is estimated to be $\pm 0.4 \%$ for protons and $\pm 0.5 \%$ for deuterons．

Results are given in table 1 and displayed in figs． 1 and 2 together with previous data［4－19］．Momentum dependent errors only are shown．For the cross sec－ tions of $\mathrm{K}^{ \pm}, \overline{\mathrm{p}}$ and π^{+}on protons and deuterons，we are in reasonable agreement with all of the previous measurements．In the region from 50 to $70 \mathrm{GeV} / c$ the $\pi^{-} p$ cross sections of this experiment are about 0.2 mb lower than those of Denisov et al．$[8,9]$ ．However， we are in good agreement with the more recent meas－ urements of Apokin et al．［10］．Our pp total cross sections join smoothly to the rising cross section from the CERN－ISR［13，14］．There is a small difference only around $50 \mathrm{GeV} / c$ from the data of Denisov et al． ［7］，and a larger difference from the 200 and 300 GeV / c data points of Gustafson et al．［17］．

The cross sections for target neutrons have been ob－ tained from those on protons and deuterons using the Glauber－Wilkin $[20,21]$ procedure．From the pion－pro－ ton and pion－deuteron cross sections we derive the values of the parameter $\left\langle r^{-2}\right\rangle$ given in table $1 .\left\langle r^{-2}\right\rangle$ is consistent with being momentum independent with an average equal to $0.039 \mathrm{mb}^{-1}$ ．For kaons we have used this value；for protons and antiprotons we have

Fig. 1. Total cross sections on protons. Only momentum dependent errors are shown.
used the value $0.035 \mathrm{mb}^{-1}$ for the reasons discussed in I and II. It is clear, however, that this procedure introduces uncertainties due to theoretical approximations which are large compared to the experimental errors of the data and the adequacy of the procedure has been frequently questioned [22-28]. For example, an uncertainty in the parameter $\left\langle r^{-2}\right\rangle$ of $\pm 0.004 \mathrm{mb}^{-1}$ produces a $\pm 1.5 \%$ uncertainty in the p -n cross section and $\pm 0.7 \%$ in the kaon-neutron cross section. The dashed curves in fig. 2 illustrate this effect. Thus caution must be exercised in drawing conclusions concerning neutron cross sections from these data. We note, however, that reasonable changes in
the parameter $\left\langle r^{-2}\right\rangle$ do not appreciably affect the momentum dependence of the neutron cross sections.

One of the striking regularities of the total cross section behavior is the simple power law dependence of the antiparticle-particle difference over our momentum range as shown in fig. 3. Fitting only our data with the form $A s^{\alpha-1}$ we obtain the values of α given in table 1.

The results of this experiment, together with previous data, show that the cross sections of all incident particles except $\overline{\mathrm{p}}$ fall as the momentum increases, followed by a minimum and then a rise. The $\overline{\mathrm{p}} \mathrm{p}$ total cross section continues to fall with increas-

Fig. 2. Total cross sections on deuterons and neutrons. Only momentum dependent errors are shown. The upper and lower dashed curves represent the p-n cross sections obtained assuming $\left\langle r^{-2}\right\rangle=0.039$ and $0.031 \mathrm{mb}^{-1}$ respectively.

Fig. 3. Antiparticle-particle total cross section differences.
ing momentum, but the rate decreases markedly and above $120 \mathrm{GeV} / c$ there is comparatively little variation. Considering the regular behavior of the $\overline{\mathrm{p}} \mathrm{p}-\mathrm{pp}$ difference and the observed rise in the pp total cross section, it is very likely that the flat regions in the $\bar{p} p$ and $\bar{p} d$ cross sections represent minima before they also rise.

It is interesting also to note that the average of the $\mathrm{K}^{+} \mathrm{p}$ and $\mathrm{K}^{-} \mathrm{p}$ and the average of the $\pi^{+} \mathrm{p}$ and $\pi^{-} p$ cross sections are slowly approaching one another. The data are consistent with a slower approach of the ratio of the average of the $\pi^{+} p$ and the $\pi^{-} p$ to the average of the $\bar{p} p$ and the $p p$ cross sections to the value $2 / 3$ predicted by the additive quark model.

The ratio $\sigma_{\pi^{-} \mathrm{d}} / \sigma_{\pi^{+} \mathrm{d}}$, which should be unity if charge symmetry is valid, is given in table 1 (for those momenta where it was not assumed in order to estimate uncertainties in electron contamination). The ratio is always consistent with unity, and the average is 1.0014 ± 0.0009. The $\pi^{-1} p-\pi^{+} p$ total cross section differences agree within errors with the predictions from forward charge exchange measurements of Barnes et al. [29]. Several authors have compared total cross section data with the various relations given by quark and Regge Pole models [9, 30] . A comparison of our new data with such relations reinforces the conclusions of a similar comparison made to the data of I and II [e.g. 30].

References

[1] A.S. Carroll et al., Phys. Rev. Lett. 33 (1974) 928.
[2] A.S. Carroll et al., Phys. Rev. Lett. 33 (1974) 932.
[3] B.J. Blumenfeld et al., Nucl. Instr. and Methods 94 (1970) 427.
[4] W. Galbraith et al., Phys. Rev. 138 (1965) B913.
[5] K.J. Foley et al., Phys. Rev. Lett. 19 (1967) 330.
[6] K.J. Foley et al., Phys. Rev. Lett. 19 (1967) 857.
[7] S.P. Denisov et al., Phys. Lett. 36B (1971) 415.
[8] S.P. Denisov et al., Phys. Lett. 36B (1971) 528.
[9] S.P. Denisov et al., Nucl. Phys. B65 (1973) 1.
[10] V.D. Apokin et al., paper 7-86, Proc. XVII Intern. Conf. on High energy physics, London (1974), ed. J.R. Smith.
[11] G. Charlton et al., Phys. Rev. Lett. 29 (1972) 515.
[12] A. Firestone et al., Phys. Rev. D10 (1974) 2080.
[13] U. Amaldi et al., Phys. Lett. 44B (1973) 119.
[14] S.R. Amendolia et al., Phys. Lett. 44B (1973) 119.
[15] D. Bogert et al., Phys. Rev. Lett. 31 (1973) 1271.
[16] C. Bromberg et al., Phys. Rev. Lett. 31 (1973) 1563. [17] H.R. Gustafson et al., Phys. Rev. Lett. 32 (1974) 441.
[18] M.J. Longo et al., Phys. Rev. Lett. 33 (1974) 725.
[19] L.W. Jones et al., Phys. Rev. Lett. 33 (1974) 1440.
[20] R.J. Glauber, Phys. Rev. 100 (1955) 242.
[21] C. Wilkin, Phys. Rev. Lett. 17 (1966) 561.
[22] J. Pumplin and M. Ross, Phys. Rev. Lett. 21 (1968) 1778.
[23] V.V. Anisovitch et al., Phys. Lett. 42B (1972) 224.
[24] D. Sidhu and C. Quigg, Phys. Rev. D7 (1973) 755.
[25] C. Quigg and L.L. Wang, Phys. Lett. 43B (1973) 314.
[26] Yu.P. Gorin et al., Yad. Fiz. 15 (1972) 953; Sov. J. Nucl. Phys. 15 (1972) 530.
[27] E. Lehman, Phys. Lett. 51B (1974) 263.
[28] D. R. Harrington, Phys. Lett. 51B (1974) 287.
[29] A.V. Barnes et al., p. 1-37, Proc. XVII Intern. Conf. on High energy physics, London (1974), ed. J.R. Smith.
[30] R.E. Hendrick et al., Phys. Rev. D11 (1975) 536.and references therein.

[^0]: ${ }^{4}$ Work supported by the Energy Research and Development Administration.
 ${ }^{* 1}$ Present address: Physics Department, University of Washington, Seattle, Washington 98195, USA.
 *2 Visitor from Istituto di Fisica, University of Padova, and Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova, Italy.
 ${ }^{* 3}$ Present address: Max Planck Institute for Physics and Astrophysics, Munich, Germany.

