ИНСТИТУТ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ

1 - _

ИФВЭ ПЭФ76-6

....

В.Д. Апокин, А.Н. Васильев, А.А. Деревщиков, Ю.А. Матуленко, А.П. Мещанин, А.И. Мысник, С.Б. Нурушев, А.И. Сарайкин, В.В. Сиксин, Е.В. Смирнов, Л.Ф. Соловьев, В.Л. Соловьянов

УПРУГОЕ "⁺ Р-, К⁺Р- и РР-РАССЕЯНИЕ В ОБЛАСТИ КУЛОН-ЯДЕРНОЙ ИНТЕРФЕРЕНЦИИ ПРИ ИМПУЛЬСАХ 42,5 и 52,2 ГэВ/с

Серпухов 1976

В.Д. Апокин, А.Н. Васильев, А.А. Деревщиков, Ю.А. Матуленко, А.П. Мещанин, А.И. Мысник, С.Е. Нурушев, А.И. Сарайкин, В.В. Сиксин, Е.В. Смирнов, Л.Ф. Соловьев, В.Л. Соловьянов

УПРУГОЕ "⁺ **Р–**, **К**⁺**Р**–<u>н</u> **РР**-РАССЕЯНИЕ В ОБЛАСТИ КУЛОН-ЯДЕРНОЙ ИНТЕРФЕРЕНЦИИ ПРИ ИМПУЛЬСАХ 42,5 н 52,2 ГэВ/с

Направлено в ЯФ

ARHOTALER

Алокии В.Д., Васильев А.Н., Деревшихов А.А., Матуленко Ю.А., Мешания А.Л., Мысник А.И., Нурушев С.Б., Саралкик А.И., Сиксин В.В., Сыщриов Е.В., Соловьев Л.Ф., Соловьянов В.Л.

Упругов ** Э-, К*р-и рр-расселние в области кулон-ядерной интерференции при импульсах 42,5 в 52,2 ГэВ/с. Серпухов, 1976.

20 стр. с рис. (ИФВЭ ПЭФ 78-6), Библиогр. 33.

Измерены диференцияльные сечения упругого рассеяния положительных писнов, каснов и протонов на протонах, а также нолные сечения при начальных импульсах 42,5 и 52,2 ГэВ/с, Значения квадрата четырахмерных передач ямпульсов находились в пределах (10⁻³ + 5·10⁻²) (ГэВ/с)², И Из эксперяментальных давных определены значения $\rho(0)$ -отношения реальной части амплитуды упругого рассеяния вперед к минной. Проводятся сопоставление полученных результатов с дисперскомными со-OTHOMEHINAM.

Abstract

Apokin V.D., Vasiliev A.N., Derevshchikov A.A., Matulenko Yu.A., Meshchanin A.P., Mysnik A.I., Nurushev S.B., Seraykin A.I., Siksin V.V., Smirnov E.V., Soloviev L.P., Solovianov V.L.

Elastic **p-, E*p-and pp-Scattering in the Region of Coulomb-Nuclear Interference at Momenta 42,5 and 52,2 GeV/c. Serpukhov, 1976.

(IHEP 76-6). p. 20

Refs. 33.

Differential cross sections of elastic scattering of positive pions, kaons and protons on protons and also total cross sections at initial momenta 42.5 and 52.2 GeV/c are measured. Values of four momentum transfer squared were in the limits of (10"3 4 \div 5·10⁻²) (GeV/c)². Values of $\rho(0)$ -ratio of the real part of the forward scattering elastic amplitude relations, imaginary one are defined from the experimental data. The com-parison of the obtained results with the dispression relations is given.

to t.

I. В В Е Д Е Н И Е

Настоящая работа посвящена измерению полных и дифференциальных сечений упругого рассеяния π^+ -мезонов, K^+ -мезонов и протонов на протонах при начальных импульсах 42,46 и 52,21 ГэВ/с. Эксперимент ставился с целью определения ρ (0)-отношения реальной части амплитуды упругого рассеяния вперед к мнимой путём наблюдения интерференции между кулоновским и ядерным взаимодействиями. Измерения проводились при малых углах рассеяния, соответствующих квадратам переданных 4-х импульсов 0,0015 $\leq |t| \leq$ $\leq 0,05 (\Gamma_{9}B/c)^2$. Для упругого рассеяния протонов на протонах ρ (0) измерено до энергий 500 ГэВ^{/1-3/}, и наши данные подтверждают измерения ^{/1/}, выполненные методом регистрации частицы отдачи.

Данных по $\rho(0)$ в дианазоне энергий 20+60 ГэВ для положительных пионов и каонов не было, и представляемые здесь результаты являются первыми данными по реальным частям амплитуд этих взаимодействий в указанном дианазоне энергий.

П. ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Эксперимент проводняся на высокоэнергетическом канале ускорителя ИФВЭ. Несепарированный пучок вторичных частии положительного заряда выводняся из внутренней мишени с углами рождения, близкими к нуло. Измерения были выполнены на годоскопическом магнитном спектрометре⁴⁴. На этой установке были выполнены измерения $\rho(0)$ для упругого рассеяния отрицательных пионов на протонах⁵⁵. Установка для измерений на пучке положительных частиц отличалась лишь наличием 3-х пороговых черенковских счётчиков для регистрашии сорта налетающей частипы. Пучок состоял из 91,1% протонов; 7,6% пиоков и 1,3% каонов при импульсе 42,5 ГэБ/с и 96,4% протонов; 3,1% пконов и 0,5% каонов при импульсе 52,2 ГэВ/с. Для улучшения импульсного разрешения установки применялся специальный годоскоп для импульсного анализа⁶⁷. Импульсное разрешение установки равно ±0,4%. Для увеличения схорости набора событий упругого рассеяния использовалось быстрое цифровое решающее устройство⁷⁷.

III. ИЗМЕРЕНИЯ И ОБРАБОТКА ДАННЫХ

Настройка годоскопической установки проводилась в три этапа:

 Пучок положительных частиц выводился по оси экспериментальной установки. Определялись эффективность спектрометрической части установка, состав пучка, доля µ-мезонов в пучке, геометрические константы годоскопов и в дальнейшем эти параметры непрерывно контролировались.

2. С помощью линэ головного объектива канала осуществлялось совмещение фокальной плоскости промежуточного фокуса пучка с плоскостью годоскопа для импульсного анализа. После достижения наилучшего импульсного разрешения измерялся импульсный спектр пучка и вычислялось абсолютное значение среднего импульса P_o и его разброс. Производился набор определенного количества событий прямого пучка для нахождения всех его параметров.

3. Производилась настройка цифрового решающего устройства. Выбирался порог обрезания по углу рассеяния θ_{МИН}, проверялась 100%-ная эффективность подавления прямого лучка и 100%-ная эффективность регистрации событий с углами рассеяния θ ≥ θ_{мини}.

Далее производился набор статистики с мишенью, наполненной водородом, и с эквивалентным фоновым макетом.

Анализ и обработка данных производились на вычислительной машине ICL-1906А. При вычислении дифференциальных сечений первый этап обработки состоял в геометрической реконструкции треков и проверке пересечения треков падающей и рассеяниой частицы в объеме мишени. События рассеяния, удовлетворяющие критерию пересечения, использовались для построения гистограмм импульсного распределения с целью выделения области упругого пика и вычитания фона неупругих событий под упругим пиком. Вклад неупругих событий под упругим пиком не превышал 0,7%. По отобранным событиям упругого рассеяния строились угловые распределения для полной N^H(†) и пустой N^E(†) мишеней и по ним вычислялось дифференциальное сечение в см²/(ГэВ/с)²

$$\frac{d\sigma}{dt}(t) = \frac{\pi}{P_{a}^{2}\Delta\Omega(t)n\epsilon} [K \cdot K_{1}^{H} \cdot N^{H}(t) - K_{2}^{E}N^{E}(t)]. \qquad (1)$$

Здесь К - коэффициент, учитывающий ослабление эффекта в водороде; К^H₁ н К^E₂ - нормировочные коэффициенты для измерений с полной и пустой мишенями; є - эффективность спектрометрической части установки, определяемая из измерений с пустой мишенью; n =3,906 · 10²⁴ пр/см² - число протовов мишени на см²; Р_о - начальный импульс; $\Delta \Omega(t)$ - телесный угол для данного интервала t. Для расчёта телесных углов (методом Монте-Карло) использовались исходные данные по геометрии установки и параметры пучка, определенные в эксперименте для каждого сорта падающих частиц и каждой начальной энергии. Учитывалось многократное кулоновское рассеяние на веществе, расположенном на пути частиц. Окончательно величины диференциальных сечений определялись после введения поправок на многократное, кратное и однократное рассеяние согласно теории Мольера. Максимальная величина поправки не превышала 3% от величины сечения.

Таблица 1

,

$\pi^+ p \rightarrow \pi^+ p$				
P _o c = 42,46 ΓэΒ		·P,	,с = 52,21 ГэВ	
t 0	dø/dt	†	dø/dt	
<u>(ГэВ/с)²</u>	мб/(ГэВ/с) ²	(ГэВ/с) ²	мб/(ГэВ/с)2	
	2	3	4	
0,00196	85,7 ± 7,1	0,00187	100,0 ± 5,8	
0,00280	67,6 ± 5,4	0,00298	$59,3 \pm 4,1$	
0 ,00375	50,0 ± 4,3	0,00421	40,6 ± 3,3	
0,00483	45,7 ± 3,7	0,00553	37,6 ± 2,9	
0 ,00601	32,5 ± 3,0	0,00705	33,5 ± 2,5	
0 ,00727	32,9 ± 3,1	0,00866	32,3 ± 2,4	
0 ,00854	29,0 ± 2,6	0,01202	26,1 ± 2,1	
0 ,00985	29,5 ± 2,7	0,01442	24,8 ± 2,1	
0,01314	27,9 ± 2,7	0,01704	$24,7 \pm 2,0$	
0,01516	25,5 ± 2,8	0,01988	21,1 ± 2,0	
0,01732	24,8 ± 2,4	0,02293	19,8 <u>+</u> 1,9	
0,01963	23,8 ± 2,4	0,02620	19,2 <u>+</u> 1,8	
0,02208	22,0 ± 2,2	0,02969	21,4 <u>+</u> 1,9	
0,02468	23,7 ± 2,4	0,03340	21,1 ± 1,8	
0,02742	22,8 <u>+</u> 2,4	0,03732	19,9 <u>+</u> 1,8	
0,03030	20,6 ± 2,4	0,04147	19,9 ± 1,9	
0,03333	18,9 ± 2,4	0,04583	18,5 <u>+</u> 1,9	
0,03650	18,7 ± 2,3	0,05041	16,9 ± 1,9	
0,03982	19,8 ± 2,5			
0,04328	19.4 ± 2.7			

Экспериментальные значения дифференциальных сечени	Ā
do/dt упругого рассеяния * -, К+-мезонов и протонов	
на протонах в области кулон-ядерной интерференции	

6

ŝ

K ⁺ p → K ⁺ p					
1	2	3	4		
0,00195	93,0 ± 11,3	0,00188	87,0 ± 12,2		
0,00279	54,9 <u>+</u> 8,7	0,00298	50,4 ± 10,8		
0,00375	31,9 ± 6,2	0,00424	33,3 ± 7,7		
0,00483	24,2 <u>+</u> 5,4	0,00557	20,1 ± 5,3		
0,00599	31,3 ± 5,7	0,00710	23,6 ± 5,3		
0,00727	25,4 ± 4,9	0,00875	$14,5 \pm 6,2$		
0,00854	17,2 <u>+</u> 3,1	0,01202	16,0 ± 4,5		
0,00986	18,0 <u>+</u> 5,2	0,01442	16,3 ± 3,4		
0,01314	14,1 <u>+</u> 3,5	0,01704	12,6 <u>+</u> 3,2		
0,01516	11 ,7 ± 2,8	0,01988	15,8 <u>+</u> 3,2		
0,01732	11,7 <u>+</u> 3,6	0,02293	14,6 ± 4,0		
0,01963	13,9 ± 3,1	0,02620	15,6 ± 2,7		
0,02208	15,3 <u>+</u> 3,2	0,02969	15,8 ± 3,2		
0,02468	11,8 ± 2,8	0,03340	12,0 ± 2,5		
0,02742	21,3 ± 4,8	0,03732	12,6 ± 2,4		
0,03030	12,6 ± 3,6	0,04147	12,2 ± 2,6		
0,03333	$12,7 \pm 3,4$	0,04583	6,9 <u>+</u> 2,5		
0,03650	9 ,0 ± 3,0	0,05041	7,8 ± 2,2		
0,03982	13,1 ± 3,7				
0,04328	12,4 <u>+</u> 4,1				

Таблица 1 (продолжение)

\$

÷

.

pp → pp				
1	2	3	4	
0,00193	169,5 <u>+</u> 5,8	0,00187	162,7 <u>+</u> 4,6	
0,00278	132,6 <u>+</u> 5,1	0,00302	118 , 5 <u>+</u> 3,6	
0,00379	97,9 <u>+</u> 4,5	0,00428	101,5 <u>+</u> 3,3	
0,00487	92 , 3 <u>+</u> 4,4	0,00563	92,4 <u>+</u> 3,1	
0,00602	86,2 <u>+</u> 4,1	0,007!4	84,5 <u>+</u> 2,9	
0,00730	81,6 <u>+</u> 4,0	0,00881	78,7 <u>+</u> 2,8	
0,00857	76,3 <u>+</u> 3,9	0,01202	68,0 <u>+</u> 2,7	
0,00989	73,1 <u>+</u> 3,8	0,01442	65,7 <u>+</u> 2,7	
0,01314	73,2 <u>+</u> 3,9	0 , 01 7 04	66,7 <u>+</u> 2,7	
0,01516	67,4 <u>+</u> 3,8	0,01988	61,3 <u>+</u> 2,6	
0,01732	65,2 <u>+</u> 3,7	0,02293	59,1 <u>+</u> 2,5	
0,01963	64,4 <u>+</u> 3,6	0,02620	56,6 <u>+</u> 2,5	
0,02208	60,4 <u>+</u> 3,4	0,02969	53,0 <u>+</u> 2,4	
0,02468	60,1 <u>+</u> 3,4	0,03340	53,7 <u>+</u> 2,5	
0,02742	59,6 <u>+</u> 3,4	0,03732	49,6 <u>+</u> 2,4	
0,03030	55,3 <u>+</u> 3,3	0,04147	47,9 <u>+</u> 2,3	
0,03333	52,7 <u>+</u> 3,2	0,04583	43,9 <u>+</u> 2,2	
0,03650	48,3 <u>+</u> 3,1	0,05041	43 , 6 <u>+</u> 2,3	
0,03982	48,0 <u>+</u> 3,1			
0,04328	39 , 5 <u>+</u> 2,8			

Таблица 1 (продолжение)

ţ

В тебл. 1 приведены полученные значения дифференциальных сечений с указанием ошибок, составленных из статистических ошибок измерений и ошибок вычисления телесных углов.

Систематические ошибки измерений могут быть обусловлены следующими причинеми:

- изменением эффективности установки по разным сериям измерений. Это дает наибольшую ошибку в дифференциальное сечение - 0,6%;

- неопределенностью в значении среднего импульса $\Delta \mathbf{p}_{o} = 0,2\%$. Эта ошибка включает нестабилььость тока шунта, неоднородность магнитного поля и неточность геодезического определения угла поворота в магнитах;

- неточностью в определении количества водорода в мишени

$$\frac{\Delta n}{n} = 0,18\%;$$

- неопределенностью в вычитании фона под упругим пиком - 0,2%;

- неточностью поправки на µ -мезоны - 0,25%;

- вкладом случайных события - 0,2%;

- ошибками в измерении полного сечения: 0,3% - для протонов; 0,5% - для π^+ -мезонов; 0,7% - для К⁺-мезонов.

Все вышелеречисленные систематические ошибки дают следующие ошибки в величину ρ (0): 0,011 – для протонов; 0,012 – для π^+ -мезонов; 0,014 – для K^+ -мезонов.

Дифференциальные сечения, полученные в настоящей работе, показаны на рис. 1.

-

Одновременно с измерением дифференциальных сечений в эксперименте определялись полные сечения взаимодействия по ослаблению пучка. При вычислении полных сечений вводились поправки на вклад в измеряемую величину упругого и неупругого взаимодействий (измеряются в этом же эксперименте), поправки на кулоновское взаимодействие, на интерферен – цию кулоновского и ядерного рассеяний и на содержание µ -мезонов в пучке. Значения полных сечений, полученые в настоящей работе, находятся в хорошем согласии с давными^{/9/} и пряведены в табл. 2.

Рас. 1. Дифференциальные сечения do/di упругого K⁴p-, x^{*}P-н PP-рассеяния для P = 42,5 и 52,2 ГэВ/с. Сплонная линия соответствует двухнараметрической апроссимация. Пунктирная движ – апроксимация с $\rho(0) = 0$.

Таблица 2

Результаты двухпараметрической апроксимации выражения (2) эксперименти вых данных по кулон-ядерной интерференции с целью определения параметров Р(0) и b. Приведены также значения найденных в настоящей работе полных сечений σ_{tot} с указанием суммарной ошибки.

Р _о , ГэВ/с	Сорт	Интервал по †) , (ГэВ/с) ²	- ρ (0)	b , (ГэВ/с) ⁻²	σ _{tot} , ΜΟ	$\chi^{2/4$ исло степеней свободы
42,48	P	0,00193 + 0,04328	0,194 <u>+</u> 0,019	13,5 <u>+</u> 0,74	38,42 <u>+</u> 0,09	12/18
	n ⁺	0,00196 + 0,04328	0 , 103 <u>+</u> 0,036	9,7 <u>+</u> 1,38	23,10 <u>+</u> 0,13	11/18
	к+	0,00195 + 0,04328	0,049 <u>+</u> 0,074	12,6 <u>+</u> 3,3	17,91 <u>+</u> 0,19	13/18
52,21	Р	0,00187 + 0,05041	0,176 <u>+</u> 0,015	12,7 <u>+</u> 0,5	37,87 <u>+</u> 0,12	16/18
	π+	0,00187 + 0.05041	0 ,07 0 <u>+</u> 0 , 032	9 ,96<u>+</u>0,9 8	23,10 <u>+</u> 0,17	11/16
	к+	0,00188 + 0,05041	0,028 <u>+</u> 0,097	11 , 8 <u>+</u> 2 , 4	18,28 <u>+</u> 0,24	9/16

e,

1У. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Для определения величины $\rho(0)$ дифференциальные сечення апрокси-/10/ мировались зависимостью вида

$$\frac{d_{\sigma}}{dt} = \frac{F_{c}^{2}}{t^{2}} + \frac{2F_{c}}{|t|} \ln A(t) [\rho(0) \cos 2\delta - \sin 2\delta] + \\ + [1 + \rho^{2}(0)] [\ln A(t)]^{2}, \qquad (2)$$

где

$$2\delta = -\left(\frac{e^2}{hc}\right) [2\ln (kb'\theta) + \gamma];$$

b' = (b/2 + r_{\pi}^2 + r_{p}^2)'; y = 0,577;
ImA(t) = ImA(0) exp(-\frac{1}{2}b|t|) = \left(\frac{\sigma_{tot}}{4hc\sqrt{\pi}}\right) e^{-b/2|t|}.

Здесь $\rho(0) = \frac{\text{Re A}(0)}{(\text{m A}(0)}$ - отношение реальной части амплитуды к мнимой; δ - фаза Бете^{/10/}; $F_c = [(2\sqrt{\pi})e^2/\beta c]$; где F - дипольный формфактор кулоновской амплитуды; b - нараметр наклона дифференциального сечения; Im A(0) находилась по оптической теореме из измеренных в нашей работе полных сечений; $r_{\pi,K,P}$ - радиусы π -; К-мезонов или протона. Результаты двухпараметрической апроксимации показаны на рис. 1 сплошной линией, и полученные значения $\rho(0)$ и b даны в табл. 2.

1. Дисперсионные соотношения для ρ (0)

В настоящее время существует ряд теоретических работ по вычисленню $\rho(0)$ для широкого интервала энергий с использованием различных параметризаций в апроксимаций данных по полным сечениям /11-14/. Мы будем пользоваться вычислениями работ /13, 14/, использующих наиболее современные апроксимации данных по полным сечениям и все существующие экспериментальные данные. В интересующей нас области энергий оба предсказания практически совпадают в поэтому на рас. 2, 3, 4 при-

Рис. 2. Экспериментальные эначения отношения реальной части к минмой части амплитуды вперед p(0) для упругого рр-рассении в зависимости от начального импульса: • – данные настоящей работы; • – данные/18/ • – данные/19/; • – данные/20/; • – данные/21/; • – данные/22/; • – данные/1/; • – данные/23/; • – данные/2/; • – данные/3/; • – данные/32/.

ø

Рис. 3. Экспериментальные эначения ρ (0) для упругого π^{P} -рассеяния в зависимости от начального импульса: • – денные настоящей работы; • – денные 44; • – денные 13/; + – денные 32/.

Рис. 4. Экспериментальные экачения $\rho(0)$ для упругото К*р-рассания в заявсямос з от началького импулься ‡ - дажные настоящей работыс ф - дажные⁷²⁵; ф - дажные⁷²⁶; ф - дажные⁷²⁶; ф - дажные⁷²⁶; ф - дажные⁷²⁶; ф - дажные⁷³⁰; ‡ - дажные⁷³¹; ‡ -

ведены результаты вычислений $\rho(0)$ по работе^{/14/} для протонов, пнонов и каонов соответственно. Как видно из рисунков, экспериментальные значених $\rho(0)$ корошо согласуются с вычислениями по дисперсионным соотношениям.

2. Дисперсионные соотношения для сными тричной и антисимметричной амплитуд упругого рассеяния писнов на протонах

Используя наци данные $^{/5/}$ по измерению $\rho(0)$ для $\pi^- p$ -упругого рассеяния, можно получить С₁ и С₂ – реальные части амплитуды упругого рассеяния $\pi^+ p$ и $\pi^- p$ соответственно и их симметричную и антисимметричную конбинацию

$$C^{+} = \frac{1}{2} (C_{-} + C_{+}), \qquad (3)$$

$$\vec{C} = \frac{1}{2} (C_{-} - C_{+}).$$
 (4)

і.а рис. 5 приведены данные для С⁺ и С⁻. Мы представили эти амплитуды в системи центра масс, в натуральных единицах ($\hbar = * = m_{\pi} = 1$) и с нормировкой квадрата амплитуды рассеяния, равной $d\sigma/d\Omega$ в лабораторной системе. Это сделано для удобства сравнения с данными /15/.

На рис. 5 а сплошными линиями показаны результаты вычислений по дисперсионным соотношениям для чисто ядерной реальной части С⁻ при наличии радиационных поправок с разными энергетическими зависимостями фазы $\delta^{/11/}: \delta \sim lnS$ кривая I н $\delta \sim lnlnS_{-}$ кривая II, штрихпунктирные кривые I' и II' дают соответствующее значение С⁻, которое получится из опыта, если будет использована формула Бете^{/8/} для учёта кулоновской интерференции.

На рис. 56 сплошной линией показаны результаты расчёта по дисперсконным соотногениям с поведением $\sigma \sim ln^2$ 5 при высоких энергиях, а пунктирной кривой – ресчёты с поведением $\sigma _{\rm TOT} ln S^{/13/}$.

Пунктырной линкей ноказаны вычисления для С⁻ с учётом предварытельных данных по реакции перезарядки π[°]P → n[°]n , полученные во ФНАЛе^{/16/.}

Мы вычислили величиску диференциального сечения вперед для перезарядки пионов, используя наши данные по С⁻ и апроксимацию (6) для разности полных сечений. Результаты наших вычислений показаны на рис. 6 вместе с данными^{/16,17,33/} по прямому измерению этого сечения. Сплошной лишей показаны результаты расчетов по дисперсионным соотношениям^{/13/}. Видно хорошее согласше наших данных и данных^{/17/} с вычислениями по дисперсионным соотношениям и сильное отклонение данных^{/18/}

от этих вычислений.

В заключение авторы выражают свою признательность за обсуждения Ю.Д. Проколкину и А.В. Шелизчеву.

Рис. 5. Воличним С⁺ и С[−] в затуральных единицах в системе дентра масс; # - данные настояней работы; ф - данные ¹⁵⁷, ф - данные ¹³²⁷. Содонныем, нужктирныем в итрихлужктирной дикноми поназаны разультиты вычислений по дисперсионным соотношениям с различными правложимины с каучилийся поправках и поведении полных сечений ири высоких завруемх (см. текст.

Рис. 6. Дифференциальное сечение реакиия перезарядки = 9 - 9 й илеред в зависимости от начального випульса: 4 - вычисления по дляным настоящей работы; 4 - денные^{/33}; 5 - денлые^{/15}; 5 - денные^{/17}; 5 - денные^{/16}. Сплошной кривой показаны результаты вычислений по дисперсионным соотношениям (см. текст).

ЛИТЕРАТУРА

- 1. G.G.Beznogikh et al. Phys. Lett., 39B, 411 (1972).
- 2. V.Bartenev, R.A.Carrigan, I-Hung Chiang. Phys. Rev. Lett., 31, 1367 (1973).
- 3. U.Amaldi, R.Biancastelli, C.Bosic et al. Phys. Lett., <u>43B</u>, 231 (1973).

- 4. А.А.Борисов, А.Л.Бугорский, Ю.Б.Бушнин и др. ПТЭ № 3, 49 (1973).
- 5. В.Д.Апокин, А.Н.Васильев, А.А.Деревшиков и др. Препринт ИФВЭ 75-69, Серпухов, 1975.
- 6. А.Л.Бугорский, А.А.Деревщиков, Ю.А.Матуленко и др. ПТЭ № 5, <u>40</u> (1973).
- A.A.Derevshchikov, Z.Gusik, Yu.A.Matulenko et al. Nucl. Instr. and Meth., 108, 381 (1973).
- 8. H.Bethe, Ann.Phys., 3, 190 (1958).
- 9. Ю.Л.Горин, С.П.Денисов, С.В.Донсков и др. ЯФ, <u>14</u>, 998 (1971); hys. Lett., 36B, 415 (1971).
- 10, G.B.West, D.R.Yennie, Phys. Rev., 172, 1413 (1968).
- 11. Л. Д. Соловьев, А.В. Шелкачев. Препринт ИФВЭ 73-61, Серпухов, 1973.
- 12. E.Ferrari. Nota Interna №382, Instituto di Fisica "G.Marconi" Universita di Roma, 1972.
- G.Höhler, H.P.Jakob, F.Kaiser. Institut für Theoretische Kernphysik, Universität Karlsruhe, Preprint TKP 13/75, 1975.
- 14. R. B. Hendrick, B. Lautrup, Phys. Rev., D11, 529 (1975).
- 15. K.J.Foley, R.S.Jones, S.J.Lindenbaum et al. Phys. Rev., <u>181</u>, 5 (1969).
- 16. A.V.Barnes, D.J.Mellema, A.V.Tollestrup et al. Proceedings of XVII Intern.Conf. on High Energy Physics, London, UK, 1974, p. 1-37.
- 17. V.N.Bolotov, V.V.Isakov, V.A.Kachanov et al. Nucl. Phys., B73, 365 (1974).
- A.A. Vorobyov, A.S. Denisov, Yu.K. Zalite et al. Phys. Lett., 41B, 639 (1972).
- 19. L.M.C.Dulton, H.B.Van der Ray. Phys. Lett., 26B, 11 (1968).
- 20. A.R. Clyde, UCRL Report Ne 16275, 1966.
- 21. Л.Ф.Кириллова и др. ЖЭТФ, <u>50</u>,77 (1966).
- 22. K.J.Foley, R.S.Jones, S.J.Lindenbaum et al. Phys. Rev. Lett., 19, 857 (1967).
- 23. C.Billittini, G.Cocconi, A.N.Diddens et al. Phys. Lett., 14, 164 (1965).
- 24. P.Baillon, C.Bricman, Ph.Eberhard et al. Phys. Lett., 50B, 387 (1974).
- G.G.G.Acomelli, F.Lugaresi-Serra, G.Mandrioli et al. Nucl. Phys., B20, 301 (1970).

- 28. P.Baillon, C.Bricman, N.Ferro-Luzzi et al. Phys. Lett., 50B, 377 (1974).
- 27. W.Chinowsky, G.Goldhuber, S.Goldhuber et al. Phys. Rev., <u>139B</u>, 1411 (1965).
- J.Debaisieux, P.Grard, J.Heughebacrt et al. Muovo Cim., <u>43A</u>, 142 (1966).
- 29. T.H.J.Bellm. Muovo Cim. Lett., 3, 389 (1970).
- 30. K.J.Foley, R.S.Jones, S.J.Lindenbaum et al. Phys. Rev. Lett., 11, 503 (1963).

- 31. C.Y.Chieu, E.Malamud, D.J.Mellema et al. Phys. Lett., 23B, 615 (1969).
- 32. C. Ankenbrandt, N. Atac, R. Brown et al. FERMILAB-Conf. -75/61 EXP.
- 33. A.V.Stirling, P.Sonderegger, J.Kirz et al. Phys. Rev. Lett., <u>14</u>, 763 (1965);
 P.Sonderegger, J.Kirz, C.Guisan et al. Phys. Lett., <u>20</u>, 75 (1966).

Рукопись поступила в издательскую группу 20 января 1976 года.

÷

э

Цева 10 кол.

ŧ

С - Институт физнин высоких энергий, 1976 г.
Издательская группа И Ф В Э
Заказ 236. Тираж 290. 0,8 уч.-изд.л. Т-03227.
Январь 1976. Редактор М.Л. Фоломешинна.

-