Observation of odderon exchange from proton-proton and proton-antiproton elastic scattering at TeV scale

K. Österberg, Department of Physics & Helsinki Institute of Physics, University of Helsinki

on behalf the **D0 & TOTEM** collaborations

HIP seminar 8.6.2021

- Elastic scattering & odderon
- Experiments & measurements
- Extrapolation of elastic $pp \ d\sigma/dt$ to $\sqrt{s} = 1.96$ TeV & comparison with elastic $p\overline{p} \ d\sigma/dt$
- Combination with other TeV scale odderon evidences
- Conclusions & next steps

CERN-EP-2020-236, FERMILAB-PUB-20-568-E, arXiv:2012.03981

Elastic scattering: t-channel exchange

Elastic proton (anti)proton scattering at TeV scale: gluonic exchange

Experimental variable: t $\approx -P^2\theta^2$, four-momentum transfer squared

Strong interaction (non-pertutative QCD)

Electromagnetism (QED): J^{PC} = 1⁻⁻

Photon exchange

dominates at very low |t| (< $\approx 10^{-3}$)

Crossing even C = + p _____ p Pomeron j _____ p

"Pomeron" exchange: system of 2 (or more number of) gluons

dominates at low |t|, ≈ imaginary part of A_{el}^{nucl} same for pp & pp Crossing odd C = $p \longrightarrow p$ Odderon \vdots \vdots p

"Odderon" exchange: system of 3 (or more number of) gluons

mostly suppressed, mainly real part of A_{el}^{nucl} different sign for pp & pp

Elastic pp differential cross-section

A. Donnachie, P. V. Landshoff, Z. Phys. C 2 (1979) 55.

Elastic pp differential cross-section

Elastic scattering: multi-gluon exchanges

- ✓ Multi-gluon exchanges: increases with \sqrt{s}
- $\checkmark\,$ Meson (secondary reggeon) exchanges: decreases with \sqrt{s}
- R. Kirschner & L. Lipatov, Sov. Phys. JETP 56 (1982) 266;

L.V. Gribov, E.M. Levin & M.G. Ryskin, Phys. Rep. 100 (1983) 1

Odderon/*C*-odd gluonic compound:

- *C*-odd exchange predicted in Regge-theory \checkmark L. Lukaszuk & B. Nicolescu, Nuovo Cim. 8 (1973) 405
- Confirmed in QCD as C-odd exchange of three \checkmark (or odd #) gluons at leading order

J. Bartels, Nucl. Phys. B 175 (1980) 365; J. Kwiecinski & M. Praszlowics, Phys. Lett. B 94 (1980) 413.

- Odderon searched for the last 50 years: \checkmark
 - modification of exclusive meson production (vs γ)
 - modification of elastic scattering (vs Pomeron)
 - \Rightarrow convincing experimental evidence up to now missing
- Vector glueball in lattice calculations with a mass of 3-4 GeV e.g. C.J. Morningstar and M. Peardon, Phys. Rev. D 60 (1999) 03450
- Gluonic compounds: colourless gluon combinations bound \checkmark sufficiently strongly not to interact with individual p/\bar{p} parton

pp & $p\overline{p}$ comparison @ \sqrt{s} = 53 GeV

- ✓ Direct comparison between elastic $pp \& p\overline{p} d\sigma/dt @ \sqrt{s} = 53 \text{ GeV}:$ > 3σ difference A. Breakstone et al., PRL 54 (1985) 2180; S. Erhan et al., PLB 152 (1985) 132
- Not considered as odderon evidence due to influence of mesonic exchanges (secondary Reggeons)
- ✓ UA4 $p\bar{p}$ @ \sqrt{s} = 540 GeV vs STAR pp @ \sqrt{s} = 510 GeV (awaiting STAR publication)
- ✓ D0 $p\bar{p}$ @ \sqrt{s} = 1.96 TeV vs TOTEM pp @ \sqrt{s} = 2.76, 7, 8 and 13 TeV

Pomeranchuk + Cornille-Martin theorems

TOTEM

Pomeranchuk theorem:

 $\frac{\sigma_{\text{tot}}^{p\bar{p}}}{\sigma_{\text{tot}}^{pp}}\Big|_{\sqrt{S}\to\infty} = 1 \Rightarrow$ at sufficiently high \sqrt{s} : $\sigma_{tot}^{p\bar{p}} = \sigma_{tot}^{pp}$

(except some small C-odd contribution) I.I. Pomeranchuk, Zh. Eksp. Teor. Fiz. 34 (1958) 725

I.I. Pomeranchuk

Cornille-Martin theorem:

 $\frac{d\sigma_{\rm el}^{p\bar{p}}/dt}{d\sigma_{\rm el}^{pp}/dt} \bigg|_{\sqrt{s} \to \infty} = 1 \Rightarrow$ at sufficiently high \sqrt{s} : $d\sigma_{\rm el}^{p\bar{p}}/dt = d\sigma_{\rm el}^{pp}/dt$

A. Martin

(in elastic diffractive cone) H. Cornille & A. Martin, Phys. Lett. B 40 (1972) 671

- Elastic scattering & odderon
- Experiments & measurements
- Extrapolation of elastic $pp \ d\sigma/dt$ to $\sqrt{s} = 1.96$ TeV & comparison with elastic $p\bar{p} \ d\sigma/dt$
- Combination with other TeV scale odderon evidences
- Conclusions & next steps

TOTEM experiment @ LHC

Roman Pots: elastic & diffractive protons

Roman Pots: diffractive protons (di-proton trigger)

Elastic pp cross-section measurements

- Elastic $pp \ d\sigma/dt$ measurements: measure both intact p's in TOTEM Roman Pots at 210-220 m from IP with silicon detectors.
- Precise measurements at \sqrt{s} = 2.76, 7, 8 and 13 TeV: EPJC 80 (2020) 91; EPL 95 (2011) 41004; NPB 899 (2015) 527; EPJC79 (2019) 861.

Elastic *pp* **cross-section measurements**

- ✓ Elastic pp̄ dσ/dt measurements: measure both the intact p & p̄ in D0
 Roman Pots at 23-31 m from IP with scintillating fibre detectors.
- Measurement at \sqrt{s} = 1.96 TeV: PRD 86
 (2012) 012009.

Elastic *pp/pp* cross-section characteristics

At TeV-scale, *pp* elastic $d\sigma/dt$ characterized by a diffractive minimum ("dip") & a secondary maximum ("bump"), wheras

 $p\bar{p} \, d\sigma/dt$ characterized only by a "kink".

@TeV scale: persistancy of dip & bump for pp, absence of dip & bump for $p\bar{p}$

Ratio of bump & dip cross sections

For $p\bar{p}$ R estimate, use $d\sigma/dt$ of t-bins close to expected pp bump & dip position

- Elastic scattering & odderon
- Experiments & measurements
- Extrapolation of elastic $pp \ d\sigma/dt$ to $\sqrt{s} = 1.96$ TeV & comparison with elastic $p\overline{p} \ d\sigma/dt$
- Combination with other TeV scale odderon evidences
- Conclusions & next steps

Extrapolation of pp cross section

dσ/dt

- Extrapolate 8 characteristic points (both their $d\sigma/dt \& t$) in dip-bump region of the pp elastic $d\sigma/dt$ @ 2.76, 7, 8 & 13 TeV to 1.96 TeV \implies pp elastic $d\sigma/dt$ points @ 1.96 TeV
- Alternative forms lead to compatible results within quoted uncertainties

 $h(t) = a_1 e^{-b_1 |t|^2 - c_1 |t|} + d_1 e^{-f_1 |t|^3 - g_1 |t|^2 - h_1 |t|}$

- First exponential describes diffractive cone, second asymmetric dip/bump
- ✓ Such formula leads also to good description of TOTEM data in dip/bump region for \sqrt{s} = 2.76, 7, 8 and 13 TeV
- ✓ pp dσ/dt uncertainties @ D0 measured |t|-values evaluated from ensemble of MC experiments in which the cross sectiom values of the characteristic points varied within their Gaussian uncertainties. MC experiments with double-exponential fits giving dip and bump values not matching extrapolated values are rejected.

Normalization of pp cross section

- σ_{tot}^{pp} @ 1.96 TeV = 82.7 ± 3.1 mb from σ_{tot}^{pp} @ 2.76, 7, 8 & 13 TeV
- \checkmark OP $(d\sigma_{\rm el}/dt|_{t=0})$ of pp (from σ_{tot}^{pp}) consistent with OP of $p\bar{p}$ data
- Normalize $pp \ d\sigma/dt$ to a common OP with $p\bar{p}$ $(\sigma_{tot}^{pp} = \sigma_{tot}^{p\bar{p}}$ within experimental & theoretical uncertainties)

NB! Not a σ_{tot} measurement, only a way to obtain a common normalization point

Comparison of $pp \& p\overline{p}$ cross section

Uncertainties of pp data points @ D0 measured |t|-values strongly correlated; full covariance matrix used

- Elastic scattering & odderon
- Experiments & measurements
- Extrapolation of elastic $pp \ d\sigma/dt$ to $\sqrt{s} = 1.96$ TeV & comparison with elastic $p\overline{p} \ d\sigma/dt$
- Combination with other TeV scale odderon evidences
- Conclusions & next steps

Previous evidence from $pp \rho \& \sigma_{tot}$

- ✓ Using very low |t| TOTEM data @ \sqrt{s} = 13 TeV: ρ = 0.09 ± 0.01 (TOTEM, EPJC (2019) 785)
- Unable to describe TOTEM $\rho \& \sigma_{tot}^{pp}$ measurements without adding colourless *C*-odd exchange (comparison to COMPETE predictions shown below)

Combining with $pp \ \rho \& \sigma_{tot}$ evidence

- Combine independent evidence of colourless C-odd exchange from TOTEM $\rho \& \sigma_{tot}^{pp}$ measurements in a completely different |t|-domain with evidence from the $pp \& p\bar{p}$ comparison.
- Combination made using Stouffer method[†] in order of sensitivity starting from 13 TeV ρ measurement & the $pp \& p\bar{p}$ comparison adding σ_{tot}^{pp} measurements if needed
- Partial combination of TOTEM \$\rho \& \sigma_{tot}^{pp}\$ measurements provide a
 3.4 4.6\$\sigma\$ significance, giving to a total significance of 5.2 5.7\$\sigma\$ for odderon exchange when combined with the TOTEM-D0 result
- ✓ Combination excludes models‡ without odderon exchange @ 5.2-5.7 σ ⇒ observation of colourless *C*-odd gluonic compound / odderon

[†]S. Bityokov et al. , Proc. of Sc. (ACAT08) 118 (20008) [‡]COMPETE Coll., PRL 89 (2002) 201801; M.M. Block et al., PRD 92 (2015) 114021; Durham group, PLB 748 (2018) 192.

- Data-driven comparison between $p\bar{p}$ (D0 @ \sqrt{s} = 1.96 TeV) & pp(TOTEM @ \sqrt{s} = 2.76, 7, 8, 13 TeV) elastic $d\sigma/dt$ data -FERMILAB-PUB-20-568-E; CERN-EP-2020-236, arXiv:2012.03981
- Extrapolate "characteristic" points of elastic $pp \ d\sigma/dt$ to predict elastic $pp \ d\sigma/dt$ @ \sqrt{s} = 1.96 TeV
- □ Elastic pp and $p\bar{p}$ cross sections differ @ 3.4 σ at \sqrt{s} = 1.96 TeV \implies evidence of t-channel exchange of odderon.
- □ Combined with TOTEM ρ & total cross section results \Rightarrow 5.2-5.7 σ & thus first experimental observation of odderon. Major discovery @ LHC & Tevatron

Next steps

- Model-dependent comparisons between $p\bar{p}$ (D0 @ \sqrt{s} = 1.96 TeV)
 & pp (TOTEM @ \sqrt{s} = 2.76, 7, 8, 13 TeV) elastic $d\sigma/dt$ data
- $\rho \& \sigma_{tot}$ measurements @ \sqrt{s} = 900 GeV (data taken in 2018) for a comparison with ρ measurement @ \sqrt{s} = 546 GeV in $p\bar{p}$

• $\rho \& \sigma_{tot}$ measurements @ \sqrt{s} = 14 TeV (data to be taken in 2022)

Odderon searches in exclusive meson production

Backup

No convincing evidence of effect !

 $\sigma_{tot}, \sigma_{inel} \& \sigma_{el} vs \sqrt{s}$

TOTEM @ \sqrt{s} = 2.76 TeV (ρ = 0.145): σ_{tot} = 84.7 ± 3.3 mb, σ_{inel} = 62.8 ± 2.9 mb & σ_{el} = 21.8 ± 1.4 mb

B slope vs \sqrt{s}

TOTEM @ \sqrt{s} = 2.76 TeV: B = 17.1 ± 0.3 GeV⁻²