B-anomalies at LHCb

Mitesh Patel (Imperial College London) Seminar at Helsinki Institute of Physics, 25th May 2021

Introduction

- Interesting set of anomalies have appeared in measurements of B decays :
 - Branching fractions of several $b \rightarrow (s)II$ processes [update 2weeks ago]
 - Angular observables in $B^0 \rightarrow K^{*0}\mu\mu$ [updated last year]
 - Lepton-flavour universality ratios in $b \rightarrow cl_v$ and $b \rightarrow sll$ decays

Latter subject of a recent update that got some attention in the community - will talk about our measurement of the LFU ratio, R_{K}

- Extent of discrepancies depends on theoretical issues
 - Will try and highlight these issues as go through
 - Some evolution here also
- B-decays of interest when well-calculable process, sensitive to new physics can be measured...

b→sll decays

- b→sll decays involve flavour changing neutral currents → loop process
- Best studied decay $B^0 \rightarrow K^{*0} \mu \mu$
- Large number of observables: BF, A_{CP} and angular observables – dynamics can be described by three angles (θ_I, θ_K, φ) and di-μ invariant mass squared, q²

Hadronic Effects

Theoretical Foundation

• The Operator Product Expansion is the theoretical tool that underpins rare decay measurements – rewrite SM Lagrangian as : $\int_{-\infty}^{\infty} C O$

$$\mathcal{L} = \sum_{i} C_{i} O_{i}$$

- "Wilson Coefficients" C_i
 - Describe the short distance part, can compute perturbatively in given theory
 - Integrate out the heavy degrees of freedom that can't resolve at some scale $\boldsymbol{\mu}$
- "Operators" O_i
 - Describe the long distance, non-perturbative part involving particles below scale $\boldsymbol{\mu}$
 - Account for effects of strong interactions and are difficult to calculate reliably

→ Form a complete basis – can put in all operators from NP/SM

Theoretical Foundation

• The Operator Product Expansion is the theoretical tool that underpins rare decay measurements – rewrite SM Lagrangian as : $\int = \sum C Q$

$$\mathcal{L} = \sum_{i} C_{i} O_{i}$$

- Mixing between different operators : $C_i \rightarrow C_i^{\text{effective}}$
- In *certain* observables the uncertainties on the operators cancel out – are then free from theoretical problems and measuring the C_i tells us about the heavy degrees of freedom – *independent of model*

$B^0 \rightarrow K^{*0} \mu \mu C_i$ and form factors

- Amplitudes that describe the $B^0 \rightarrow K^{*0}\mu\mu$ decay involve
 - The (effective) Wilson Coefficients: C_7^{eff} (photon), C_9^{eff} (vector), C_{10}^{eff} (axial-vector)
 - Seven (!) form factors primary origin of theoretical uncertainties

$$\begin{split} A_{\perp}^{L(R)} &= N\sqrt{2\lambda} \bigg\{ \left[(\mathbf{C}_{9}^{\text{eff}} + \mathbf{C}_{9}^{\prime\text{eff}}) \mp (\mathbf{C}_{10}^{\text{eff}} + \mathbf{C}_{10}^{\prime\text{eff}}) \right] \frac{\mathbf{V}(\mathbf{q}^{2})}{m_{B} + m_{K^{*}}} + \frac{2m_{b}}{q^{2}} (\mathbf{C}_{7}^{\text{eff}} + \mathbf{C}_{7}^{\prime\text{eff}}) \mathbf{T}_{1}(\mathbf{q}^{2}) \bigg\} \\ A_{\parallel}^{L(R)} &= -N\sqrt{2} (m_{B}^{2} - m_{K^{*}}^{2}) \bigg\{ \left[(\mathbf{C}_{9}^{\text{eff}} - \mathbf{C}_{9}^{\prime\text{eff}}) \mp (\mathbf{C}_{10}^{\text{eff}} - \mathbf{C}_{10}^{\prime\text{eff}}) \right] \frac{\mathbf{A}_{1}(\mathbf{q}^{2})}{m_{B} - m_{K^{*}}} + \frac{2m_{b}}{q^{2}} (\mathbf{C}_{7}^{\text{eff}} - \mathbf{C}_{7}^{\prime\text{eff}}) \mathbf{T}_{2}(\mathbf{q}^{2}) \bigg\} \\ A_{0}^{L(R)} &= -\frac{N}{2m_{K^{*}}\sqrt{q^{2}}} \bigg\{ \left[(\mathbf{C}_{9}^{\text{eff}} - \mathbf{C}_{9}^{\prime\text{eff}}) \mp (\mathbf{C}_{10}^{\text{eff}} - \mathbf{C}_{10}^{\prime\text{eff}}) \right] \left[(m_{B}^{2} - m_{K^{*}}^{2} - q^{2})(m_{B} + m_{K^{*}}) \mathbf{A}_{1}(\mathbf{q}^{2}) - \lambda \frac{\mathbf{A}_{2}(\mathbf{q}^{2})}{m_{B} + m_{K^{*}}} \right] \\ &+ 2m_{b} (\mathbf{C}_{7}^{\text{eff}} - \mathbf{C}_{7}^{\prime\text{eff}}) \left[(m_{B}^{2} + 3m_{K^{*}} - q^{2}) \mathbf{T}_{2}(\mathbf{q}^{2}) - \frac{\lambda}{m_{B}^{2} - m_{K^{*}}^{2}} \mathbf{T}_{3}(\mathbf{q}^{2}) \right] \bigg\} \end{split}$$

 \rightarrow BFs have relatively large theoretical uncertainties

b→sll branching fractions

New BF($B_s \rightarrow \phi \mu \mu$) update

• LHCb recently presented updated results for $BF(B_s \rightarrow \phi \mu \mu)$:

This 3.6σ tension with SM is not yet in the fits to the anomalies

BF(B⁰ \rightarrow K^{*0}µµ) and the narrow width approximation

Also not yet taken into account in such fits :

 \Rightarrow BRs are corrected by a factor $|\mathcal{W}_{K^*}|^2 \simeq 1.2$ (increasing anomalies)

Measuring $B^0 \rightarrow \mu^+ \mu^-$

- Potential of B⁰→µ⁺µ⁻ decays as clean probe of NP well known for more than 30 years :
 - Dominant contribution from Z-penguin diagram, helicity and GIM suppressed
 - Can get bag-factor that would otherwise dominant theory uncertainty from data
 - Theoretically pristine, precise predictions for BFs :

 $BF(B_{s}^{0} \rightarrow \mu\mu) = (3.66 \pm 0.23) \times 10^{-9}$ $BF(B_{d}^{0} \rightarrow \mu\mu) = (1.06 \pm 0.09) \times 10^{-10}$

- BF can be altered by modification of C₁₀ or new scalar or pseudoscalar contribution (C_{S,P})
- Major constraint on high tan β SUSY

ABSTRACT. Using the ARGUS detector at the e^+e^- storage ring DORIS II, we have studied the colour-suppressed decays $B \to J/\psi X$ and $B \to \psi' X$. We find the inclusive branching ratios for these two channels to be $(1.07 \pm 0.16 \pm$ 0.19)% and $(0.46 \pm 0.17 \pm 0.11)\%$ respectively. From a sample of reconstructed exclusive events the masses of the B^0 and B^+ mesons are determined to be $(5279.5 \pm 1.6 \pm 3.0) \ MeV/c^2$ and $(5278.5 \pm 1.8 \pm 3.0) \ MeV/c^2$ respectively. Branching ratios are determined from five events of the type $B^0 \to J/\psi K^{+0}$ and three of $B^+ \to J/\psi K^+$. In the same data sample a search for $B^0 \to e^+e^-$, $\mu^+\mu^-$ and $\mu^\pm e^+$ leads to upper limits for such decays.

Table 2 Upper limits for exclusive dilepton decays.	
decay channel	upper limit with 90% CL
$B^0 \rightarrow e^+e^-$	8.5 - 10-5
$B^0 \rightarrow \mu^+ \mu^-$	$5.0 \cdot 10^{-5}$
$B^0 \rightarrow e^{\pm} \mu^+$	$5.0 \cdot 10^{-5}$

New $B^0 \rightarrow \mu^+ \mu^-$ measurement

• LHCb search for with full Run 2 data released 23rd March :

Search for $B^0 \rightarrow \mu \mu$

- Combined with results from ATLAS (2018) and CMS (2019)
- Results compatible with SM at 2σ level [arXiv:2103.13370]

$B^0 \rightarrow K^{*0} \mu \mu$ angular analysis

$B^0 \rightarrow K^{*0} \mu \mu$ angular analysis

• Try to use observables where theoretical uncertainties cancel e.g. Forward-backward asymmetry A_{FB} of θ_{I} distn

Form-factor independent obs.

- At low and high q², (leading order) relations between the various form factors allow a number of form-factor "independent" observables to be constructed
- E.g. in the region $1 < q^2 < 6 \text{ GeV}^2$, relations reduce the seven form-factors to just two allows to form quantities like $P_0(A^L A^{L*} = A^R A^{R*})$

$$P_{5}' \sim \frac{Re(A_{0}^{L}A_{\perp}^{L_{+}} - A_{0}^{R}A_{\perp}^{R_{+}})}{\sqrt{(|A_{0}^{L}|^{2} + |A_{0}^{R}|^{2})(|A_{\perp}^{L}|^{2} + |A_{\perp}^{R}|^{2} + |A_{\parallel}^{L}|^{2} + |A_{\parallel}^{R}|^{2})}}$$

which are form-factor independent at leading order

 In fact, can form a complete basis (P^(') series) in which there are six form-factor independent and two formfactor dependent observables (F_L and A_{FB})

"Global" fits

- Several theory groups have interpreted results by performing fits to b→sµµ data
- Consistent picture, tensions solved simultaneously by a modified vector coupling (ΔC₉ != 0) at >3σ but discussion of residual hadronic uncertainties (...)

$B^0 \rightarrow K^{*0} \mu \mu$ angular analysis

- Published updated analysis adding 2016 data to Run I ana.
 - Double dataset cf previous analysis [PRL 125 (2020) 011802]
 - Analysis of remaining Run II data in progress (further doubling)

• Vast majority of observables in agreement with SM predns, giving some confidence in theory control of form-factors

$B^0 \rightarrow K^{*0} \mu \mu$ angular analysis

[PRL 125 (2020) 011802]

- P₅' continues to show significant discrepancy wrt SM prediction
- Coherence between observables improved cf Run I analysis tension with SM in angular analysis alone 3.3σ

$B^+ \rightarrow K^{*+} \mu \mu$ angular analysis

- Angular analysis now performed for analogous K*+ decay mode with K*+ \rightarrow K_S⁰ π +
- Lower statistics but message is identical in this decay tension with SM is 3.1σ

Could the SM predn be wrong?

- Largest individual uncertainty on P₅' from cc̄-loop effects
- Theorists have looked critically at their predictions O_{1,2} operators have a component that could mimic a NP effect in C₉ through cc loop
- Parameterisation to theory and auxiliary data to try and determine cc effect

What if SM predn are correct?

- Need a new vector contribution \rightarrow adjusts C₉ Wilson Coefficient; C₉^{NP}= -C₁₀^{NP} (V-A) also considered (...)
- Difficult to generate in SUSY models :

"[C₉ remains] SM-like throughout the viable MSSM parameter space, even if we allow for completely generic flavour mixing in the squark section"

(but recent publicity has seen some resurrection)

- Models with composite Higgs/UED have same problem
- Could generate observed deviation with a Z' or LQ

Lepton Universality Ratios

Lepton Universality Ratios

- In the SM couplings of gauge bosons to leptons are independent of lepton flavour
- Branching fractions differ only by phase space and helicitysuppressed contributions
- Ratios of the form: $R_{K^{(*)}} := \frac{\mathcal{B}(B \to K^{(*)} \mu^+ \mu^-)}{\mathcal{B}(B \to K^{(*)} e^+ e^-)} \stackrel{\text{SM}}{\cong} 1$
 - − free from QCD uncertainties affecting other observables \rightarrow O(10⁻⁴) uncertainty [JHEP07 (2007) 040]
 - Up to O(1%) QED corrections [EPJC76 (2016) 8,440]

 \rightarrow Any significant deviation is a smoking gun for New Physics

$b \rightarrow c I_V LFU$ ratios

- A further anomaly is seen in LFU ratios with semileptonic
 b→clv decays
 - Tree-level processes in SM requires a huge NP effect, comparable with the SM amplitude
 - Drives idea of hierarchical effect: large NP effect in τ, smaller in μ where have measured b→sμμ decays and little/no effect in e modes
 - Theorists claim it is possible to make a NP explanation, coherent with $b \rightarrow s \mu \mu$
 - Good theoretical control due to factorisation of hadronic and leptonic parts – then theoretically pristine quantity e.g. in case of b→clv transition,

$$R(D^{(*)}) \equiv \frac{\mathcal{B}(\bar{B}^0 \to D^{(*)}\tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B}^0 \to D^{(*)}\ell^- \bar{\nu}_{\ell})}$$

Fit to $b \rightarrow c I_V LFU$ ratios

- Combination of LHCb results with those from Babar/Belle
- World average value SM predictions shows a 3.1σ tension very recent updates to SM theory from lattice

• (R_D,R_{D*}) update from LHCb coming; CMS...?

 $q^2 \left[\text{GeV}^2 / c^4 \right]$

Despite ~2.5 σ consistency with SM, measured values have generated some excitement – are precisely what would result from $\Delta C_9^e = 0$, $\Delta C_9^{\mu} = -1$ i.e. could account for angular data, BFs and $R_{K(*)}$ ratios by changing only C_9^{μ}

R_{K} LFU ratio update

Recently updated R_K measurement in 1.1<q²<6.0 GeV²/c⁴ region,

$$R_{\mathcal{K}} = \frac{\int_{1.1 \text{ GeV}^2}^{6.0 \text{ GeV}^2} \frac{\mathrm{d}\mathcal{B}(B^+ \to \mathcal{K}^+ \mu^+ \mu^-)}{\mathrm{d}q^2} \mathrm{d}q^2}{\int_{1.1 \text{ GeV}^2}^{6.0 \text{ GeV}^2} \frac{\mathrm{d}\mathcal{B}(B^+ \to \mathcal{K}^+ e^+ e^-)}{\mathrm{d}q^2} \mathrm{d}q^2}$$

- Previous measurement used 5fb⁻¹ data from Run1, 2015,16
- Update adds 4fb⁻¹ from 2017 and 2018, given cross-section difference effectively doubles number of B decays
- Measurement strategy identical to our previous analysis

R_{κ} Experimental challenge

- Primary difficult of analysis, controlling the differences between the electron and muon efficiencies
- Electrons lose a large fraction of their energy through Bremsstrahlung in detector material
 - Most e[±] will emit one energetic photon before magnet
 → Look for photon clusters in the calorimeter (E_T > 75 MeV) compatible with e[±] direction before magnet
 - Recover brem. energy loss by ^e/₂
 "adding" the cluster energy back to the e[±] momentum

R_K Experimental challenge

 Even after the Bremsstrahlung recovery electrons still have degraded mass and q² resolution

- L0 calorimeter trigger requires higher thresholds than L0 muon trigger, due to high occupancy
 - Use three exclusive trigger categories for e+e- final states: e[±] from signal-B; K[±] from signal-B; rest of event
- Particle ID and tracking efficiency larger for μ^{\pm} than e^{\pm} 33

R_k Analysis Strategy

Exploit double ratio wrt equivalent J/ψ decay modes in • order to cancel experimental systematic uncertainties

1

$$R_{K} = \frac{\mathcal{B}(B^{+} \to K^{+}\mu^{+}\mu^{-})}{\mathcal{B}(B^{+} \to K^{+}J/\psi(\mu^{+}\mu^{-}))} / \frac{\mathcal{B}(B^{+} \to K^{+}e^{+}e^{-})}{\mathcal{B}(B^{+} \to K^{+}J/\psi(e^{+}e^{-}))}$$

$$= \frac{N_{\mu^{+}\mu^{-}}^{rare} \varepsilon_{\mu^{+}\mu^{-}}^{J/\psi}}{N_{\mu^{+}\mu^{-}}^{rare} \varepsilon_{\mu^{+}e^{-}}^{rare}} \xrightarrow{N_{e^{+}e^{-}}^{rare} \varepsilon_{e^{+}e^{-}}^{J/\psi}} \xrightarrow{B^{+} \to K^{+}J/\psi(IS)(\ell^{+}\ell^{-})}$$

$$= \text{Measurement then statistically dominated} \xrightarrow{4\pi} \xrightarrow{B^{+} \to K^{+}\psi(2S)(\ell^{+}\ell^{-})} \xrightarrow{ISS}(\ell^{+}e^{-}) \xrightarrow{ISS}(\ell^{+}e^{-}) \xrightarrow{ISS}(\ell^{+}e^{-})}$$

$$= \text{Measurement then statistically dominated} \xrightarrow{4\pi} \xrightarrow{B^{+} \to K^{+}\ell^{+}\ell^{-}} \xrightarrow{ISS}(\ell^{+}e^{-}) \xrightarrow{ISS}(\ell^{$$

$R_{\ensuremath{\mathsf{K}}}$ selection and backgrounds

- Particle ID and mass vetoes used to suppress peaking bkgrds from exclusive B-decays to negligible levels e.g.
 - $B^+ \rightarrow D^0 (\rightarrow K^+ e^- v) e^+ v : cut on m_{K^+ e^-} > m_{D0}$
 - B→Kπ⁺(→e⁺)π⁻(→e⁻): cut on electron PID
- BDT to reduce combinatorial bkgrds
- Residual bkgrds suppressed by choice of m(K⁺|⁺|⁻) window
 - $\quad B^+ {\rightarrow} \ K^+ J/\psi(e^+e^-)$
 - Partially reconstructed dominated by $B \rightarrow K^+\pi^-e^+e^-$ decays

Constrain fractions between trigger categories and calibrate simulated templates using data

Check estimates using data control regions, altering fitted regions

Efficiency calibration

- Simulation is calibrated based on control data for the following quantities:
 - Trigger efficiency
 - Particle identification efficiency
 - B⁺ kinematics
 - Resolutions of q^2 and $m(K^+e^+e^-)$

Verify procedure through host of cross-checks

 Overall effect of these calibrations is a relative shift of the R_K result by (+3±1)% [would be 20% without the double ratio method]

$r_{J/\psi}$ cross-check

• Test control of the absolute scale of the efficiencies by instead measuring the single ratio,

 $r_{J/\psi} = \frac{\mathcal{B}(B^+ \to K^+ J/\psi(\mu^+ \mu^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))}$

where we do not benefit from the double ratio cancellation

- $r_{J/\psi}$ measured to be lepton universal at 0.4% level
- Measure $r_{J/\psi} = 0.981 \pm 0.020$ (stat+syst)
 - compatible with unity for new and previous datasets and in all trigger samples
 - result is independent of the decay kinematics
 - binning in quantities that would expect bremsstrahlung and trigger to depend on see completely uniform result

Differential $r_{J/\psi}$ cross-check

Differential $r_{J/\psi}$ cross-check

Also test $r_{J/\psi}$ in 2D bins

 $B^+ \rightarrow K^+ e^+ e^- B^+ \rightarrow J/\psi (e^+ e^-) K^+$

- Flatness of 2D r_{J/w} plots gives confidence that efficiencies understood across entire phase-space
- If take departure from flatness as genuine rather than fluctuations bias expected on R_{k} is 0.1%

Systematic uncertainties

- Dominant sources: ~ 1%
 - Choice of fit model
 - Associated signal and partially reconstructed background shape
 - Statistics of calibration samples
 - Bootstrapping method that takes into account correlations between calibration samples and final measurement
- Sub-dominant sources: ~ 0.1%
 - Efficiency calibration

. . .

- Dependence on tag definition and trigger biases
- Precision of the q^2 and $m(K^+e^+e^-)$ smearing factors
- Inaccuracies in material description in simulation
- Total relative systematic of 1.5% in the final R_K measurement → uncert. stat. dominated by factor ~3

Extracting R_{K}

• R_K is extracted as a parameter from an unbinned maximum likelihood fit to $m(K^+\mu^+\mu^-)$ and $m(K^+e^+e^-)$ distributions in $B^+ \rightarrow K^+l^+l^-$ and $B^+ \rightarrow J/\psi(l^+l^-)K^+$ decays

R_K with full Run 1 and Run 2 LHCb data

The measured value of R_K is:

 $R_{K} = 0.846 \stackrel{+0.042}{_{-0.039}} (\text{stat.}) \stackrel{+0.013}{_{-0.012}} (\text{syst.})$

dominant systematic effect: fit model

 effects such as calibration of trigger & kinematics are at permille-level

p-value under SM hypothesis: 0.0010

```
significance: 3.1 \sigma (evidence)
```


March 2

23rd

Derived quantit^s²^{4/GeV2}

 Use R_K and previous measurement of [JHEP06(2014)133] to determine B(B

 $\frac{\mathrm{d}\mathcal{B}(B^+ \to K^+ e^+ e^-)}{\mathrm{d}q^2} = (28.6 \ ^{+1.5}_{-1.4} (\mathrm{stat}) \ \pm 1.4 (\mathrm{syst})) \times 10^{-9} \ c^4 / \,\mathrm{GeV}^2.$

 As previously, suggests electrons are more SM-like than muons – plays into hierarchical idea favoured by theory community

5 LHCb

SM prediction electrons 9fb⁻¹

muons

15

10

 3fb^{-1}

20

 $q^{2} \,[{\rm GeV}^{2}/c^{4}]$

Global fits revisited

Global fits revisited

• Using *just* the theoretically pristine observables, R_{K} , R_{K^*} and $BF(B \rightarrow \mu\mu)$, that no one argues about predictions for, exclude SM at 4σ level

A glimpse of the future

A glimpse of the future $-P_5$ '

- Can make ratio of $P_5'(e)$ and $P_5'(\mu) \rightarrow Q_5$
- Thus far, only done by Belle full angular analysis of B⁰→K^{*0}ee in progress at LHCb

A glimpse of the future – $B^0 {\rightarrow} K^{*0} \mu \mu$

- *Measure* the effect of cc loops
- At low q², ΔC₉(q²) term arises mainly from interference rare decay and J/ψ
- Measure phase of interference by fitting differential rate (and angles)
- LHCb has performed such a fit for B⁺→K⁺µ⁺µ⁻ [EJPC (2017) 77:161], considerably more complex for B⁰→K^{*0}µµ but principle the same

A glimpse of the future – Belle2

• "So when can Belle II confirm R_{K} ?"

Belle has analysed the full dataset (R_{κ} and R_{κ^*}).

Safe answer: 20 ab⁻¹ to get to the same size error bars. Unsafe answer: ~5 ish years.

Model Building

- Anomalies can be explained by invoking Z' or LQ majority of theorists seem to prefer LQ
 - Natural suppression of large effects on $\Delta F=2$ B-mixing

- 3rd gen. LQ are also in better shape wrt direct searches
- Which LQ?

Implications for direct searches

- Invoking only the LQ, U, and fitting all low-energy data enables a description of present data which is fully consistent with high- p_T searches [arxiv:2101.11626]
- LQ would then be within the reach of HL-LHC

A plug...

LHCb Upgrade II: R&D Progress

- Future **major** upgrade of the experiment, mainly for LS4 (~2030)
 - with some preparatory work in LS3 (~2025)
- Innovative Technology: precision timing, novel sensors, heterogeneous computing

LHCb Upgrade II : Opportunities

- Strong Support
 - LHCC Expression of interest (2017), Physics Case (2018)
 - Strong support in European Strategy (2020)
 - Framework Technical Design Report in preparation

Applications from new groups actively encouraged

- Major project after construction timescale of ATLAS/CMS/DUNE/Hyper-K
- Technical Associate membership: physics on other experiments while pursuing R&D on LHCb
- Synergy with future projects (EIC, FCC, CEPC...) many "firsts"
- Rad. hard CMOS detector
- Small pixel precision timing vertex
 Cryogenic cooled SiPMs detector
- ECAL with precision timing

- Hadron PID with fast timing
- GPU based triggering

Conclusions

Conclusions

- Interesting set of anomalies observed in B decays
- Near-term updates should clarify the situation and can help constrain some of the theoretical issues
- Wide range of new measurements will be added to broaden the constraints on the underlying physics
- At LHCb, Run-3,4 dataset will give ~50fb⁻¹ cf the 9fb⁻¹ results have shown today; beyond that hope to collect 300fb⁻¹ at a further LHCb upgrade