

Interactions of different types of particles with matter

Interaction of radiation with matter basis of detectors

- Detector type presentation will be purpose driven e.g. what they are supposed to do (track particles, measure energy, identify particle type ...) !

Detector type selection based on several points:

- primary purpose of detector (measure, count, veto)?
- what needs to be measured & with which resolution (point, time, energy, momentum, velocity, etc ...)?
- what radiation/particle rate has detector to sustain?
- what is an acceptable dead time? dead-time-less?
- does environment limit choice somehow (limited space?, magnetic field?, restriction on output size?, etc...)
- area to be covered \leftrightarrow cost ?

Table 35.1: Typical resolutions and deadtimes of common charged par-ticle detectors. Revised November 2021.

	Intrinsinc Spatial	Time	Dead
Detector Type	Resolution (rms)	Resolution	Time
Resistive plate chamber	$50 \mu { m m}$	$50-1000 \text{ ps}^*$	10 ns^{\dagger}
Liquid argon TPC	$0.5\!\!-\!\!1\mathrm{mm}^{\ddagger}$	$0.01\text{-}1 \ \mu \mathrm{s}^{\$}$	¶
Scintillation tracker	${\sim}100~\mu{ m m}$	$100 \; \mathrm{ps/n^{\parallel}}$	10 ns
Bubble chamber	10–150 $\mu { m m}$	$1 \mathrm{ms}$	50 ms^{**}
Wire chambers (proportional and drift chambers)	50–100 $\mu {\rm m}$	5–10 $\mathrm{ns^{\dagger\dagger}}$	$2200~\mathrm{ns^{\ddagger\ddagger}}$
Micro-pattern gas detect.	$3040~\mu\mathrm{m}$	$510~\mathrm{ns^{\dagger\dagger}}$	$2200~\mathrm{ns^{\ddagger\ddagger}}$
Silicon strips/pixels	$\lesssim 10\mu{ m m}^{\$\$}$	few ns ¶ \ddagger	$\lesssim 50~{ m ns^{\ddagger \ddagger}}$

^{*}LHC: ~ 2mm gap, ~1ns. HL-LHC: ~ 1mm gap, ~350ps. Timing RPC: ~50ps [†]Limited by amplifier and discriminator bandwidth, usually around 100MHz

[‡]Detector geometry dependent

- [§]Using the scintillation signal
- No deadtime for medium

||n| = index of refraction.

**Multiple pulsing time. ^{††}For fast particles

^{‡‡}Depending/limited by the amplifying electronics [8]

§§Depending on electrode pitch, best values around 2–4 μ m have been achieved ¶¶Resolutions < 100 ps are reached in dedicated pixel developments

pdg.lbl.gov

Х

Momentum measurement

$$p_{T} = qB\rho$$

$$p_{T} (GeV/c) = 0.3B\rho \quad (T \cdot m)$$

$$\frac{L}{2\rho} = \sin \theta/2 \approx \theta/2 \rightarrow \theta \approx \frac{0.3L \cdot B}{p_{T}}$$

$$\Delta p_{T} = p_{T} \sin \theta \approx 0.3L \cdot B$$

$$s = \rho(1 - \cos \theta/2) \approx \rho \frac{\theta^{2}}{8} \approx \frac{0.3}{8} \frac{L^{2}B}{p_{T}}$$
sagitta *s* determined by 3 measurements with error $\sigma(x)$:
$$x_{1} + x_{3} \rightarrow \sigma(p_{T})|^{meas} \quad \sigma(s) \quad \sqrt{\frac{3}{2}}\sigma(x) \quad \sqrt{\frac{3}{2}}\sigma(x) \cdot 8p_{T}$$

$$s = x_2 - \frac{w_1 + w_3}{2} \implies \frac{\sigma(p_T)}{p_T} = \frac{\sigma(s)}{s} = \frac{\sqrt{2}\sigma(w)}{s} = \frac{\sqrt{2}\sigma(w) + p_T}{0.3 \cdot BL^2}$$

for N equidistant measurements, one obtains

(R.L. Gluckstern, Nuclear Instruments & Methods 24 (1963) 381)

$$\frac{\sigma(p_T)}{p_T} \bigg|_{T}^{\text{meas}} = \frac{\sigma(x) \cdot p_T}{0.3 \cdot BL^2} \sqrt{720/(N+4)} \quad \text{(for } N \ge 10\text{)}$$

For example: L = 1 m, B = 1.4 T, $\sigma(x)$ = 175 μ m, N = 15

$$\frac{\sigma(p_T)}{p_T} \bigg|^{\text{meas}} \approx 0.26 \% \cdot p_T \quad (s \approx 5.25 \text{ cm / } p_T \text{ [GeV]})$$
$$\text{NB!} \frac{\sigma(p_T)}{p_T^2} \bigg|^{\text{meas}} = \text{constant (at least for large } p_T)$$

$$\theta_0 = \theta_{\text{plane}}^{\text{RMS}} = \sqrt{V[\theta]} = \theta_{\text{space}}^{\text{RMS}} / \sqrt{2}$$

distribution sufficiently described by a Gaussian though tails shows $\sin^{-4} \theta/2$ behaviour ("Moliere" distribution). approximative formula assumes Gaussian distribution.

Back to momentum measurements: contribution from multiple scattering ($\beta = 1 \& z = 1$) $\Delta p^{MS} = p \sin \theta_0 \approx p \cdot 0.0136 \frac{1}{p} \sqrt{\frac{L}{X_o}} \quad \text{[in GeV]}$ $\frac{\sigma(p)}{p_T} \bigg|_{D_T}^{MS} = \frac{\Delta p^{MS}}{\Delta p_T} = \frac{0.0136\sqrt{L/X_0}}{0.3BL} = 0.045 \frac{1}{B\sqrt{LX_0}}$ σ(p)/p independent of p ! σ(p)/p^{meas} total error σ(p)/p^{MS} For example: Ar ($X_0 = 110$ m), L = 1 m, B = 1.4 T

 $\frac{\sigma(p)}{p_T}\Big|^{MS} \approx 0.3 \%$

d

Position resolution of particle impact point.

One or several sensitive detector elements (e.g. wire in a wire chamber or strip in a silicon strip detector) will see the signal from particle passage depending on orientation of particle with respect to the plane of detector elements.

Let *d* be the spacing of detector elements. Position of particle impact point on the plane of detector elements then given with a precision of:

$$\sigma_{position} \leq \frac{a}{\sqrt{12}}$$

For binary readout (i.e. knowledge whether particle gave signal or not on a specific detector element) equal sign valid. For analog readout (i.e.

pulse height information)

position resolution is better. The theoretical lower limit is:

$$\sigma_{\text{position}} \approx \frac{d}{2\sqrt{12}} \approx \frac{d}{7}$$

assuming particle next to a wire only fires this wire & a particle passing between two wires fires only 2 wires.

NB! other effects like e.g. electronics noise or charge diffusion can deteriorate initial resolution significantly.

Further reading: R. Frühwirth et al., Data Analysis Techniques for High-Energy Physics

Detection of charged particles How do they loose energy in matter ?

Discrete collisions with atomic electrons of material

 $\left\langle \frac{dE}{dx} \right\rangle = -\int_0^\infty n_e E \frac{d\sigma}{dE} \hbar \, d\omega$

 n_e : electron density

Collisions with nuclei not important since average energy loss inversely proportional to target mass ($m_e << m_N$). classical derivation of energy loss given in W.R. Leo: Techniques for nuclear & particle physics experiments (Springer 1987) p. 22-23.

If energy transfer big enough ⇒ ionization, otherwise excitation.

Ionization & excitation basis for particle measurements

Instead of ionizing atom, under certain conditions photon can also escape material (marginal source of energy loss)

⇒ Emission of Cherenkov or Transition radiation. utilized for particle identification (see later).

NB! electrons have to be treated separately since then $m_{projectile} = m_{target}$ making assumptions made in extraction of upcoming formulas not valid anymore. For electrons also photon emission via "bremsstrahlung" is a significant source of energy loss (see electromagnetic shower discussion)

Real detectors (limited sampling) do not measure $\langle dE/dx \rangle$ but energy ΔE deposited in a layer of finite thickness δx .

For thin layers (& low density materials):

- few collisions, some high energy transfers (" δ -electrons") - energy loss distribution, "Landau" distribution, show large fluctuations towards high losses due to these δ -electrons

For thick layers & high density materials: \rightarrow many collisions. \rightarrow (more) Gaussian(-like) distribution of energy loss.

Electrons drift towards anode wire (\approx stop & go, see later). Close to anode wire electric field sufficiently high (\sim MV/m) so that electrons gain enough energy for further ionization

exponential increase of number of electron-ion pairs.

 \rightarrow

Kenneth Österberg

From ionisation to gas amplification. Let $1/\alpha$ be the mean free path between each ionization $\alpha = \alpha$ (ε , density, gas type) → temperature, pressure gas amplification: $M = n / n_0 = \exp\left(\int_a^b \alpha(r) dr\right)$ Korff's approximation: $\alpha = p \times A \exp(-Bp/\varepsilon)$ Where *A* & *B* gas dependent constants and *p* pressure. $\frac{1}{\ln b}$ $M = \exp\left|\frac{AV_0}{B}\left(\ln\frac{b}{a}\right)^{-1}e^{-\frac{B}{a}}\right|$ V_0 $\underline{M} = e^{\int_{a}^{b} \alpha'(r) dr}$ (F. Sauli) 106 Ar:CO₂ Gas Amplification R A 80:20 % 1/Torr.cm V/Torr.cm 3 34 He 04 100 Ne 4 180 Ar 14 Xe 350 26 CO₂ 20 466 2 10 1000 1500 2000 Anode Voltage (V)

Choice of gas:

Dense noble gases. Energy dissipation mainly by ionization! High specific ionization.

De-excitation of noble gases only possible via emission of photons, e.g. 11.6 eV for Argon.

Above ionization threshold of metals, e.g. Copper 7.7 eV.

Operation modes:

- Ionization mode: full charge collection, but no charge multiplication.
- Proportional mode: above threshold voltage multiplication starts. detected signal proportional to original ionization → energy measurement (dE/dx), secondary avalanches have to be quenched. Gain $10^4 10^6$.
- Limited Proportional → Saturated → Streamer mode: strong photo-emission leading to secondary avalanches, merging with the original avalanche. requires strong quenchers or pulsed HV. High

gain(10^{10}), large signals \rightarrow simple electronics.

 Geiger mode: massive photo emission.
 full length of anode wire affected.
 Stop discharges by cutting down HV. Strong quenchers needed as well.

Multi wire proportional chamber (MWPC)

(G. Charpak et al. 1968, Nobel prize 1992)

Capacitive coupling of non-screened parallel wires? Negative signals on all wires? Compensated by positive signal induction from ion avalanche.

Address of fired wire(s) give only 1-dimensional info.

Triple GEM

15 (psig)

14.5

13.5

30

pitch = 100 µm

Entries

x/ndf 110.7

Constant

Nean

Samo

3231

/ 34

370.3

-0.2449E-02

0.1674E-01

Long term aging test for triple GEM No degradation after 2.7 C/cm² NIM A 478 (2002) 263

10

15

Accumulated charge (mC/mm²)

20

25

100

800

600

To reduce ageing effects, ion feedback and discharge probability, GEM-amplification is usually done in stacks of foils

instead increasing the thickness of the foils. This will also increase the gain of the detector.

In multiple-GEM detectors the drift is set to few mm with electric fields ~few hundred volts/cm

Distances between foils set to be 2 mm & electric field between foils ~ 2-4 kV/cm

To achieve the same gain as with single GEM system need over 100V less voltage over the GEM-foils.

C. Buttner et al, NIM A 409(1998)79; S. Bachmann et al, NIM A 443(1999)464

Kenneth Österberg

TOTEM T2 detector

One T2 quarter assembled & ready at CERN for installation in 2009

One half of T2 telescope at IP5 before CMS end-cap closure in 2010

Particle Physics Experiments 2025 Position detectors & Tracking

Drift chambers

First studies: T. Bressani, G. Charpak, D. Rahm, C. Zupancic, 1969. First operational chamber: A.H. Walenta, J. Heintze, B. Schürlein, NIM 92 (1971) 373.

Kenneth Österberg

VI/36

0

VI/39

Kenneth Österberg

Si sensor

Silicon detectors Solid state detectors have a long tradition in measurement

of energy (Si, Ge, Ge(Li)).

Interested in their use

as precision trackers !

ATLAS SCT

Some characteristic numbers for silicon

- \triangleleft band gap energy: $E_{gap} = 1.12 \text{ eV}$.
- ✓ E_{creation}(electron-hole pair) = 3.6 eV (~ 30 eV in gas)
 → large number of charge carriers per unit energy
 loss → good energy resolution
- $end{aligned}$ high specific density (ρ = 2.33 g/cm³) → compact
- Inigh mobility: μ_{electron} = ~1400 cm²/Vs, μ_{holes} = ~ 450 cm²/Vs (depends somewhat on doping concentration and temperature) → fast charge collection (< 30 ns)</p>
- detector production by microelectronic techniques → small dimensions → high spatial resolution
- rigidity of silicon allows thin self supporting structures. typical thickness 250–300 µm → ~ 24 000 32 000 e⁻-hole pairs (average)
 But no charge multiplication mechanism!!

Semiconductor: valence band (nearly) filled & conduction (conductance) band (nearly) empty

Kenneth Österberg

Important features

- Macroscopic features of a good semiconductor sensor are
 - ✓ Low capacitive load → low noise in readout electronics
 - ✓ Low leakage current → low noise in readout electronics
 - Good charge collection
 - ✓ High speed

current density

J vs current *I*: $I = J \cdot A$

Characteristics of the diode Capacitance (C-V) structure

The capacitance of the diode influences the noise of the readout electronics by loading the amplifier

The capacitance of the pnjunction is given by

$$C_j = \frac{\epsilon_R \epsilon_0}{W_D} \cdot A$$

The capacitance of the junction will decrease when reverse bias voltage is applied until full depletion is reached.

WE WANT LOW CAPACITANCE!

Characteristics of the diode Leakage current (I-V) Structure $\tau_g \propto T^{-0.5} e^{+|\Delta t|/kT} *$

diffusion current

Electrons generated in the p+ region and holes generated in the n+ region diffuse to the junction and are collected by electrodes. Small effect for Si but large for Ge at room \Rightarrow Ge temperature.

$$J_s = q \sqrt{\frac{D_p}{\tau_p}} \frac{n_i^2}{N_D}$$
 detectors
must be
cooled !!

where D_p is the diffusion constant for electrons in the p+ region and τ_p is the lifetime of the electron

• Leakage current (I-V)

generating current(cont.)

The current is also sensitive to temperature. 7 K decrease in T halves current. Lower T \Rightarrow increase generation life time $\tau_g \Rightarrow$ Si detector cooled !!

✓ surface current

Surface current is a contribution on complex effects happening in the boarder between the semiconductor and surface oxide. The current level is very dependent on processing quality and handling. Δt = energy difference between trap and intrinsic Fermi levels generating current

This is the dominated current in a good sensor. The current is due to generation-recombination in the depleted region.

$$V_g = q g W \mathbf{D}$$
 per area

 \Rightarrow Ge g is the generation rate dependent detectors of the intrinsic carrier

see e.g. A. Chilingarov, JINST 8 (2013) P10003

Pixel detectors that combine separate sensor and electronics, fabricated with different processes, are a hybrid technology.

The hybrid geometry of the detector introduces substantial material into the detection volume.

This can be traced to the demands this design makes on the power budget through: sensor bias, analog and digital architecture, and data transmission.

This translates to copper conductors and cooling systems, and reduced positional resolution.

Initiatives to reduce power consumption in hybrid detectors:

- reduce material per detector layer
- integrate power conductors in mechanical support
- introduce special powering systems including DC-DC converters and serial powering of modules.

A different solution: monolithic detectors....

Most promising technology: MAPS

Monolithic Active Pixel Sensors^{1,2} (MAPS) use an nchannel MOSFET transistor (NMOS) embedded in an epitaxial p-layer (thickness 15 microns) similar to standard CMOS chips. The nwell of the transistor collects the electrons generated by charged particles from a thin depletion layer through diffusion only.

¹ R.Turchetta, et al., Nucl. Instr. and Meth. in Phys. Res. A 458: 677-689, 2001. ² I. Peric, Nucl. Instr. and Meth. in Phys. Res. A 582: 876-885, 2007.

Particle Physics Experiments 2025 Position detectors & Tracking

Purpose of silicon trackers

The role of the tracking detector is to image with the highest possible precision the trajectories of charged particles.

Their many applications in a particle physics experiment:

- 1. Reconstruct vertices: identify cases where 2 or more tracks emerge from a common point. The primary vertex indicates the initial hard interaction. The secondary vertex signals that a particle decay occurred at that vertex typically a heavy particle: c, b, τ .
- 2. Reconstruct the curvature of tracks in a known magnetic field to infer their momentum p. The sign of the curvature gives the particle's electric charge.
- 3. Measure track impact parameter: gaps between vertices, or events where the momentum emerging from a secondary vertex does not point to the primary vertex these indicate intermediate particles.
- 4. Measure finite particle lifetimes to identify production of b-hadrons or tau leptons.
- 5. Provide a trigger for events of special interest.

CMS high pileup event with 78 reconstructed vertices

Position detectors & Tracking

Kenneth Österberg

Radiation damage in silicon sensors

A major issue for 10^{15} LHC detectors ! $3x10^{14}$ cm⁻² Some definitions 10^{14} T-mj 10¹³ • fluence: $\Phi = dN/dA [cm^{-2}]$ • dose: D = dE/dm [Gy = J/kg] 10^{12} Specification of absorbed dose / fluence not sufficient.⁰ Damage depends both on particle type $(e,\pi,n,p,\gamma...)$ & energy ! Many effects & parameters involved (not all well understood)! entlang der Damage caused mainly by stand e non ionising energy loss Bulk effects: Lattice damage, vacancies & interstitials. Surface effects: Charge build-up, increased surface leakage currents (controllable by careful fabrication & design

e.g. multiple guard rings).

Kenneth Österberg

How to cope with the radiation damage ? Possible strategies (utilized by LHC collaborations):

- Geometrical: build sensors such that they stand high depletion voltage (up to 1000 V)
- Environmental: sensors at low temperature (-20°C).
- \rightarrow Slower reverse annealing. Lower leakage current.
- Defect engineering. RD50 http://rd50.web.cern.ch/RD50/ Introduce specific impurities in silicon, to influence defect formation. Example Oxygen Diffusion Float Zone Oxygenated (DOFZ) silicon generally used in LHC detectors. Gain a factor 3. Development still going on with e.g. Czochralski silicon

that naturally contain more oxygen.

New detector concepts

3D detectors \rightarrow "horizontal" biasing. Lower depletion voltage, faster charge collection & better radiation hardness

More advanced methods (cont.)

http://cern.ch/rd42

New materials

Diamond. Grown by Chemical Vapor Deposition. Bandgap large (~6 eV). No doping required! Naturally radiation harc ATLAS & CMS use diamond detectors as luminosity monitors

comparable resolutions & S/N ratios with silicon... but become polarized @ large particle fluxes

S/N-ratio vs irradiation for diamond & 3D pixel detector with same electronics

Latest development: use solid state detectors also for time-of-flight (TOF) ("4D-vertexing") due to their compactness, reliability & variable segmentation

Timing resolution
proportional to
capacitance (lowLGAD (
adding d
adding d
a

LGAD (gain \sim 5–20) achieved by adding extra highly doped layer

