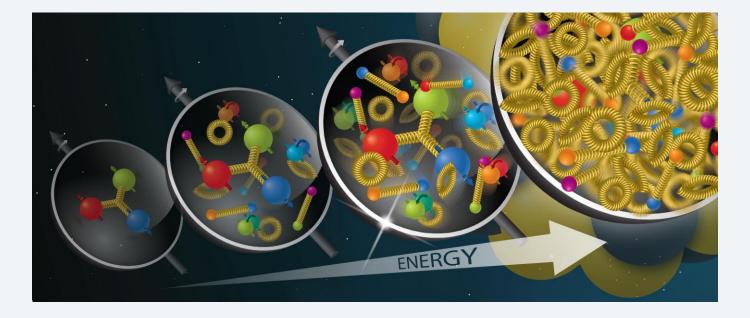
Gluon saturation effects in heavy quark production

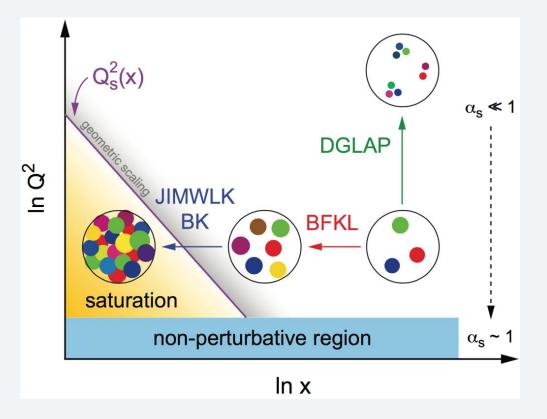
JARNO VIERROS IN COLLABORATION WITH JANI PENTTALA CHRISTOPHE ROYON

CONTENTS

- Introduction
 - Gluon saturation
- Prediction methods
 - Quark antiquark pair production process
 - BK and BFKL dipole amplitudes
 - · Inclusive and diffractive cross section formulas
 - Monte Carlo integration
- Comparison with data
 - Both inclusive and diffractive quark production measurements from HERA
- Prediction for new LHC heavy quark production measurement
- Conclusion


HADRON STRUCTURE

- Protons and neutrons consist of three valence quarks and a sea of gluons and virtual quarks
- At high energy scales gluon density increases due to gluon radiation
- Interactions between hadrons can be facilitated by the gluons
- Therefore, more gluons results in larger cross sections, i.e. greater probability for particles to interact
- Increase in energy scale
- ➢ increase in gluon density
- ➢ increase in scattering cross sections


GLUON SATURATION

- Increase in energy leads to rapid growth in gluon density and cross sections
- Cross sections growing too quickly would break the unitarity of QCD
- To prevent this, gluon absorption must limit the growth of gluon density at some energy scale
- This phenomenon is called gluon saturation

DETECTING GLUON SATURATION

- Gluon saturation is predicted by QCD
- There are models with and without saturation: BFKL, DGLAP, BK
- An observation of saturation requires:
 - Valid theoretical models
 - Clear difference between predictions given by saturation and non-saturation models
 - A cross section measurement that is precise enough to resolve the difference
- However, past experiments have not led to clear evidence of saturation

INCLUSIVE QUARK PRODUCTION

- Gluon saturation could be observable in ultraperipheral heavy quark production at the LHC
- One hadron emits a photon, which oscillates into a heavy quark dipole
- The dipole exchanges a gluon with the target hadron, which dissociates
- The interaction between the dipole and the hadron is sensitive to the gluon density of the hadron

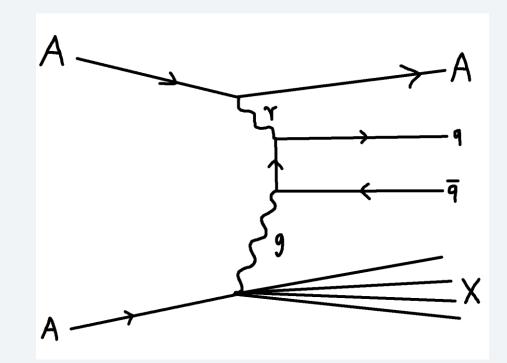
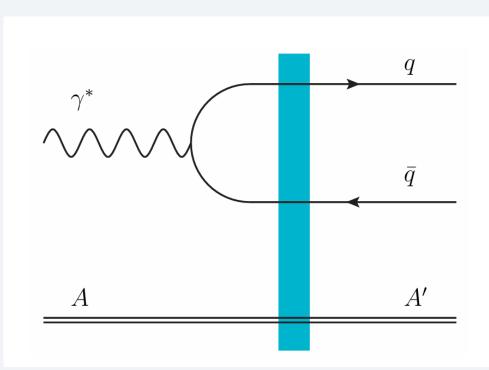



Diagram for quark production in inclusive photon nucleus scattering.

PROCESS FACTORIZATION

- The process can be factorized in two parts
 - 1. The photon fluctuates into a quarkantiquark pair
 - 2. The quark-antiquark pair interacts with the target hadron
- The first part is described by the light-cone wave function of the photon
- It can be calculated using perturbative QCD

Factorization of the process in the dipole picture. The blue rectangle depicts the nonperturbative interaction between the dipole and the target.

DIPOLE AMPLITUDE

- The second part of the process is given by the dipole scattering amplitude
- The dipole amplitude is a nonperturbative object
- However, its energy dependence can be described using perturbative evolution equations
- The dipole amplitude must be fitted to measurement data at some initial energy scale
- The evolution equations can then be used to calculate the dipole amplitude at other energy scales
 - The measurement at the initial scale affects predictions at all other scales

Evolution equations

- Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation
 - Linear
 - Does not include saturation
- Balitsky-Kovchegov (BK) equation
 - Nonlinear
 - Does include saturation

Dipole amplitude

INCLUSIVE FORMULA

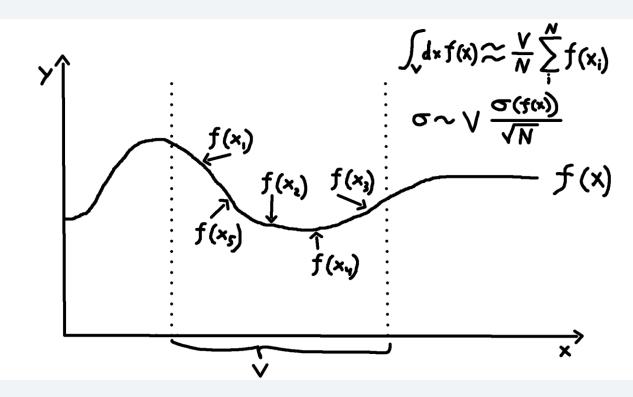
- The inclusive cross section is a function of two variables:
 - The Bjorken x
 - Photon virtuality Q^2
- The three integrations are done over:
 - The size and orientation of the dipole r
 - The impact parameter **b**
 - The fraction of photon momentum carried by the quark z
- The dipole amplitude depends on r, b and the shifted Bjorken x:

$$\tilde{x} = x \left(1 + \frac{4m_f^2}{Q^2} \right)$$

 $\sigma^{\gamma_{\lambda}^{*} \to q_{f}\bar{q}_{f} \to X} = \frac{4\alpha_{\rm em}N_{c}e_{f}^{2}}{\left(2\pi\right)^{2}}\int d^{2}\mathbf{r}d^{2}\mathbf{b}\int_{0}^{1}dzK_{\lambda}\left(\mathbf{r},\,z\right)N_{\tilde{x}}\left(\mathbf{r},\,\mathbf{b}\right)$ $K_{\lambda}\left(\mathbf{r},\,z\right) = \begin{cases} 4Q^{2}z^{2}(1-z)^{2}K_{0}\left(\epsilon\,|\mathbf{r}|\right)^{2} & \lambda = L\\ m_{f}^{2}K_{0}\left(\epsilon\,|\mathbf{r}|\right)^{2} + \epsilon^{2}\left[z^{2} + (1-z)^{2}\right]K_{1}\left(\epsilon\,|\mathbf{r}|\right)^{2} & \lambda = T \end{cases}$ $\mathbf{r} = \mathbf{x} - \mathbf{y}$ $\mathbf{b} = \frac{1}{2}(\mathbf{x} + \mathbf{y})$ $\epsilon^2 = m_f^2 + z \left(1-z\right) Q^2$ Modified Bessel function of the second kind Different cases for

Locations of the quark and antiquark relative to the nucleus Different cases for longitudinally and transversely polarized photons

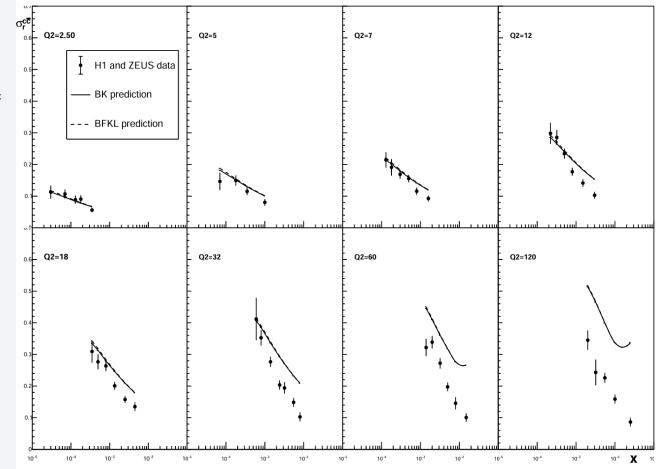
COMPUTATION


- The dipole amplitudes have been computed from fits to vector meson data and stored in tables by Jani Penttala
- Different protons and lead ions have their own tables
- Due to the difference in their evolutions, the BK and BFKL models also have separate tables
- The integrals are computed using GSL VEGAS Monte Carlo integration

GNU Scientific Library (GSL)

MONTE CARLO INTEGRATION

- Monte Carlo integration is a numerical method for calculating multidimensional definite integrals
- The function is evaluated at random points in the integration volume
- Integral is estimated by the mean of the results multiplied with the integrated volume
- Advanced algorithms sample more points from areas where function changes rapidly
- Integration time doesn't depend exponentially on number of dimensions like in most deterministic methods



INCLUSIVE $c \overline{c}$ **DATA COMPARISON**

- The formula can be tested by comparing it with measurements of the reduced cross section
 - Reduced cross section is a linear combination of longitudinal and transverse polarization cross sections
- The data on the right is from photon proton collisions at H1 and ZEUS
- The prediction is valid at small Q^2

Jarno Vierros

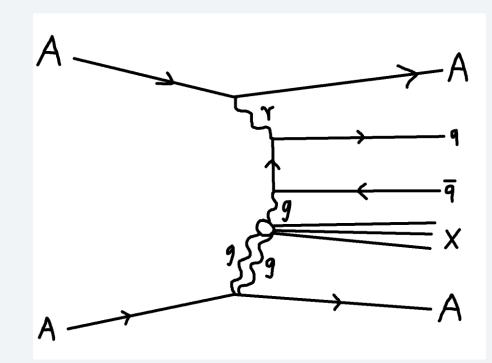
- However, the Q^2 dependence is unexpected and requires further study
- The difference between BK and BFKL is negligible because no saturation is expected for protons at this low energies

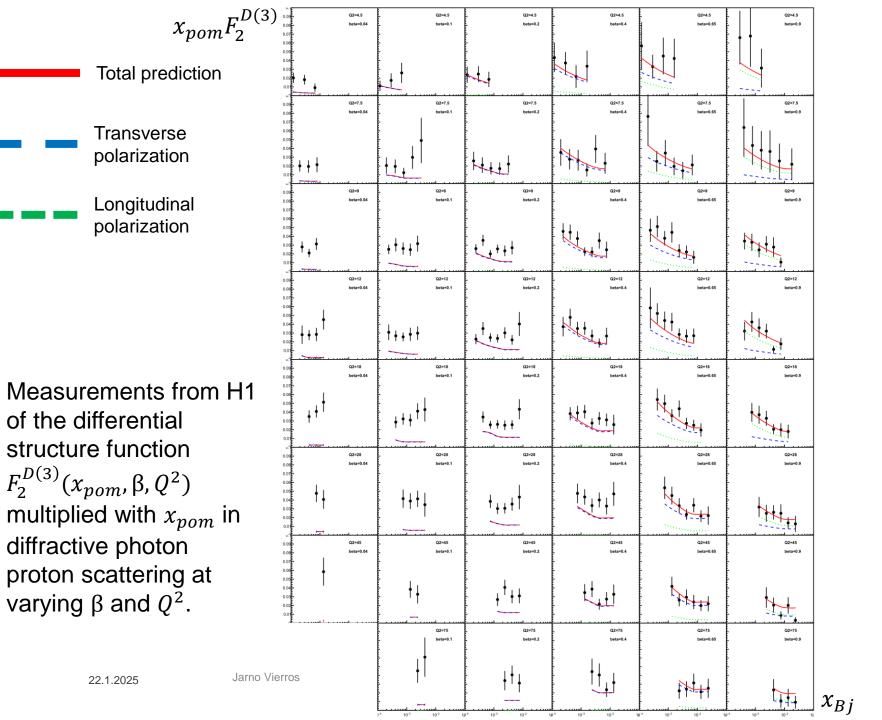
12

Reduced $c\bar{c}$ production cross section measurements in inclusive photon proton scattering at H1 and ZEUS with varying Q^2 .

DIFFRACTIVE QUARK PRODUCTION

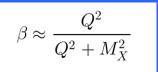
- In a diffractive process the target nucleus emits two gluons (a pomeron) and stays intact
- The cross section is much smaller than for the inclusive process
- However, sensitivity to gluon density is stronger
- Diffractive calculation uses a different dipole amplitude compared to inclusive




Diagram for quark production in diffractive photon nucleus scattering.

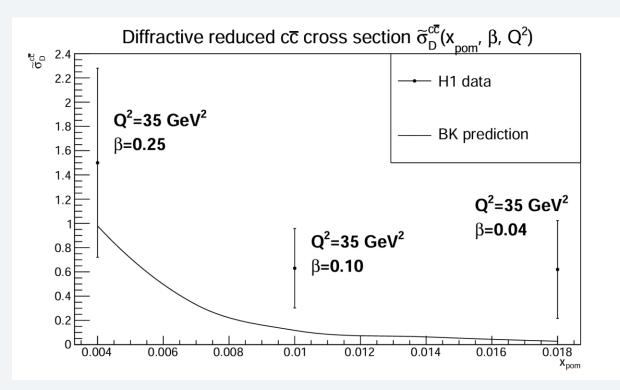
DIFFRACTIVE FORMULA

Dipole amplitude appears twice


- Here the complex conjugate coordinates \bar{r} and \bar{b} must be integrated separately
- Due to the pomeron, the cross section depends on two new independent variables:
 - Invariant mass of the diffractive system M_X
 - Momentum transfer t
- In the diffractive case instead of the shifted Bjorken x, the x_{pom} variable is used:

$$\tilde{x}' = x_{\text{pom}} = \frac{x}{\beta} = \left(Q^2 + M_X^2 - t\right) \frac{x}{Q^2}$$

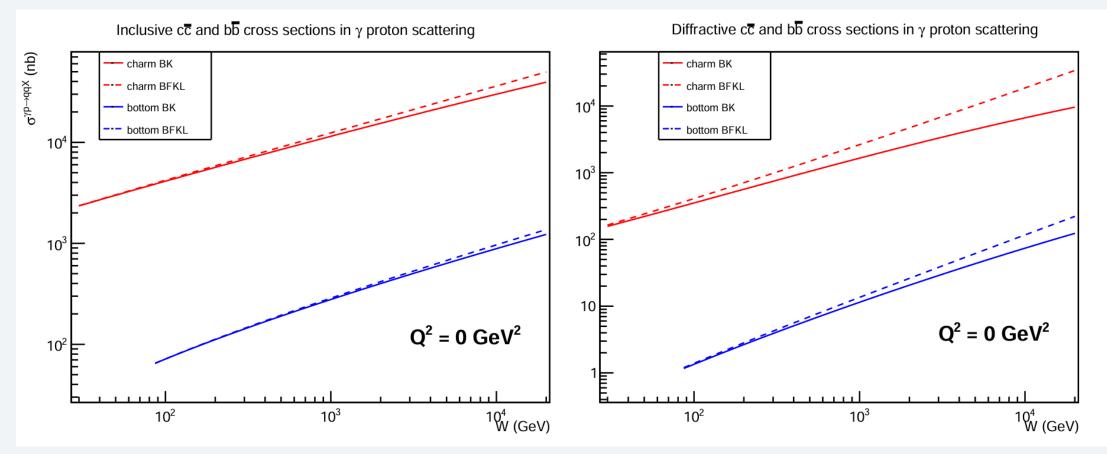
Diffractive data comparison


- Comparison between diffractive prediction and $x_{pom}F_2^{D(3)}$ measurements from H1
- $F_2^{D(3)}$ is another linear combination of the cross sections
- The diffractive cross section is integrated over t
- M_X^2 dependence is replaced with β :

- The prediction contains lightest quarks up to charm
- The prediction at low β is too small because of a large next to leading order contribution
- The agreement is good at high β

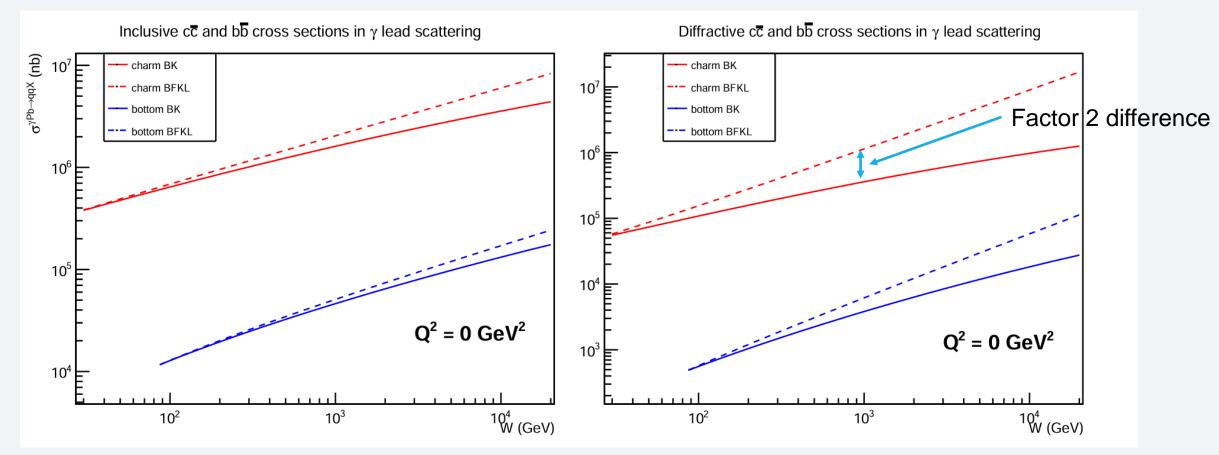
DIFFRACTIVE CHARM DATA COMPARISON

- The diffractive formula can be compared with specifically charm production cross section measurements from H1
- Here again t is integrated and M²_X is replaced with β
- The precision of the measurements is not sufficient to tell much about the validity of the prediction


Reduced $c\bar{c}$ production cross section in diffractive photon proton scattering measurements from H1

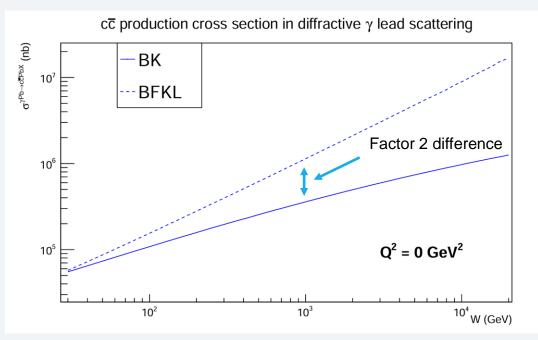
LHC MEASUREMENT

- MIT is analyzing charm quark production cross section measurements in photon lead scattering in the CMS detector
- Due to the large center of mass energy at the LHC and the use of lead ions there is a chance of detecting saturation effects
- The LHC measurement is ultraperipheral, so the photon virtuality is effectively zero: $Q^2 = 0$
- For the diffractive process both t and M_X^2 are integrated
- Bottom quark measurements may also be analyzed later


LHC PROTON SCATTERING PREDICTION

Predictions for heavy quark production cross sections in photon proton scattering with BK evolution (saturation) and BFKL evolution (no saturation).

22.1.2025


LHC LEAD SCATTERING PREDICTION

Predictions for heavy quark production cross sections in photon lead scattering with BK evolution (saturation) and BFKL evolution (no saturation).

CONCLUSION

- A clear observation of gluon saturation would be a major achievement
- A significant difference is predicted between BK and BFKL models in diffractive charm production cross section in photon lead scattering
- However, it will depend on measurement precision if the difference is sufficient
- The prediction can be improved further:
 - Adding contribution from $q\bar{q}g$ final state to improve prediction at small β and large Q^2
 - Better dipole amplitude fits
 - Full next to leading order calculation is in progress

Predictions for charm quark production cross sections in photon lead scattering with BK evolution (saturation) and BFKL evolution (no saturation).

SOURCES

- Inclusive $c\bar{c}$ cross section measurement
 - Abramowicz, H., Abt, I., Adamczyk, L. et al. Combination and QCD analysis of charm and beauty production cross-section measurements in deep inelastic ep scattering at HERA. Eur. Phys. J. C 78, 473 (2018).
 - <u>https://doi.org/10.1140/epjc/s10052-018-5848-3</u>
- Differential structure function $F_2^{D(3)}(x_{pom}, \beta, Q^2)$ measurement
 - H1 Collaboration. Inclusive measurement of diffractive deep-inelastic ep scattering. Z Phys C - Particles and Fields 76, 613–629 (1997).
 - https://doi.org/10.1007/s002880050584
- Diffractive cc̄ cross section measurement
 - Aktas, A., Andreev, V., Anthonis, T. et al. Diffractive open charm production in deep-inelastic scattering and photoproduction at HERA. Eur. Phys. J. C 50, 1–20 (2007).
 - <u>https://doi.org/10.1140/epjc/s10052-006-0206-2</u>