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Outline
• Motivation: radiation belt 

dynamics, ULF wave acceleration, 
drift-periodic signatures


• Theoretical framework for fast 
transport: the drift kinetic 
description


• Numerical framework: spectral 
methods 


• Results: simulations in three 
different systems, comparison to 
analytical results
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[Birkeland, 1913]



Radiation belts
• Radiation belts are trapped populations 

of high-energy particles around the planet


• Earth’s radiation belts: stable proton belt 
at , highly varying electron belt 
at 


• Particles are continuously added to and 
lost from the belts due to particle 
precipitation and wave-particle 
interactions


• The variability of the radiation belts is a 
major space weather concern for satellite 
operators

1.5 − 3RE
4 − 10RE
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[NASA, 2013]



Particle motion in the magnetosphere
• Three types of motion:


• Gyro motion around the magnetic field line 
(  s)


• Bounce motion between magnetic mirror 
points (  s)


• Drift motion around the Earth (  min)


• Bounce motion results in the formation of the 
radiation belts


• Drift rates  & 

10−3 − 1

10−1 − 101
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∼ L =
r

RE
∼ E

[Kilpua and Koskinen, 2022]
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Radiation belts are particle accelerators
• Ultra-low frequency (ULF) waves in the 2-25 mHz (Pc4-Pc5) 

range accelerate radiation belt particles to near-relativistic 
energies 


• Acceleration leads to particle losses and injections in and out 
of the belts


• Observational studies show wave-particle phenomena 
occurring on timescales comparable to particle drift periods: 
drift-periodic signatures
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Drift echoes
• Result from injections of 

energetic particles from the 
magnetotail and energization 
due to interplanetary shocks


• Show up as peaks in particle 
fluxes


• Pc5 event observed in 1968 
shows drift echoes in 
association with the ULF wave

6 [Kokubun et al., 1977]



Phase-mixing leads to zebra stripes
• Zebra stripes are signatures of drift echoes that appear as peaks and valleys in the 

distribution function


• Given a localized equilibrium distribution, patches of different densities will produce 
spiraling structures as they rotate with different velocities  phase-mixing→
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Drift resonance
• Occurs when ULF wave frequency 

( ) matches with integer multiples 
of the particle’s drift frequency ( ):





• Leads to spreading of the distribution 
function towards higher and lower  


• Transient event  amplifies the ULF 
wave signal

ωm
ωd

ωm − mωd = 0

L

→

8

[Osmane et al., 2023]



What has been done so far?
• Current models of radiation belts are diffusion models written as Fokker-

Planck equations  can’t describe particle phenomena on fast timescales 


• Many models use electromagnetic fields that violate Liouville’s theorem


• Recent approaches at modeling fast transport rely on F-P theory and assume 
stochasticity of field fluctuations


 aim to construct a physically sensible and computationally inexpensive 
model for fast transport  

 look for drift-periodic signatures

→

→

→
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Description for fast timescales: kinetic theory
• Kinetic theory is a statistical approach that describes 

particle motion using the 6D distribution function:





• Look for particles within the same phase-space 
volume element at a given time


• The time evolution of the distribution function is 
described by the Vlasov equation:


f( ⃗r, ⃗v, t) = f0( ⃗v, t)

equilibrium distribution

+ δf( ⃗r, ⃗v, t)

perturbation

∂f
∂t

+ ⃗v ⋅ ⃗∇ f −
q
m

( ⃗E + ⃗v × ⃗B ) ⋅
∂f
∂ ⃗v

= 0
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[Bellan, 2006]



Mead field
• Magnetic field model consisting of a background dipole 

field, and a symmetric and antisymmetric perturbation


• For equatorial particles:





• Conserves phase-space density  consistent with 
Liouville’s theorem

B = B0 + δB = (BER3
E

r3
− S(t) − ΣAm(t)reimφ) ̂z

→
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: Earth radius & 

magnetic field


: symmetric 

fluctuation


: asymmetric 

fluctuation


: azimuthal angle

RE, BE

S(t)

Am(t)

φ



Analytical theory of fast transport
• Fourier decomposition of the perturbed distribution function: 





• Time evolution for a wave mode :





• No ULF wave: RHS = 0


• Field perturbations are not assumed to be stochastic

δf = ∑
m

eimφδfm(r, t)

m
∂δfm
∂t

+ imΩdδfm
particle streaming

= −(γm − iωm)
δB
B0

e−iωmt+γmtr
∂f0
∂r

wave term
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: drift frequency


: ULF wave damping 

rate


: ULF wave 

frequency


: magnetic field 

amplitude


: background 

distribution gradient

Ωd

γm

ωm

δB/B0

∂f0/∂r



Numerical framework: spectral methods

• Global methods for solving partial differential equations 
numerically


• Use weighted residuals to approximate the solutions of the given 
problem over the domain


• Tau method approximates the function by a polynomial and seeks 
an exact solution by adding perturbation terms  to the equation


• The boundary conditions are enforced by the  term

τ

τ
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Dedalus
• Spectral PDE framework utilizing the tau method


• Written in Python


• Solves linear and nonlinear PDEs, eigenvalue 
problems, initial and boundary value problems on 
different bases and coordinate systems


• Using Dedalus to solve an initial value problem on a 
disk basis (polar coordinates)


• Minimal computational requirements: programs can 
be run on a laptop
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https://dedalus-project.org

https://dedalus-project.org


Model setup Model 
parameters 

• Particle energy and 
species:


3 MeV electrons 


• Field perturbation:


1 & 5 nT


• Slow damping rate


• Wave frequency:


no wave,


non-resonant wave &


resonant wave
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energy, fixed 
magnetic moment 
& time


distance in Earth 
radii


initial particle 
distribution: 
Gaussian 
centered around 




GitLab link for 
simulations

L = 6

Earth

https://version.helsinki.fi/satakala/msc-thesis-simulations/


Results: No wave,   ∂δfm
∂t

+ imΩdδfm = 0

• No wave  no field 
fluctuations or 
resonance


• Expect to see phase-
mixing of the distribution 
function


• Runtime 15 drift periods, 
time-step 1/15th of a 
drift period 


✔ Phase-mixing occurs at 
different rates w.r.t. L

→
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Results: non-resonant wave, ∂δfm
∂t

+ imΩdδfm = − (γm − iωm)
δB
B0

e−iωmt+γmtr
∂f0
∂r

• The perturbed distribution function can be solved exactly:





• A time-delayed oscillation  appears in the distribution 
function


• For small field perturbations the wave term vanishes  recover 
the same phase-mixed solution as before

δfm(r, t) ∼
δB
B0

r5(1 − cosΩdt)

∼ r5

→
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Non-resonant wave, large field perturbation
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•  nT


• Non-resonant frequency 
(10 mHz)


• Runtime 25 drift periods, 
time-step 1/40th of a 
drift period 


✔ Phase-mixing and non-
local transients in  

δB = 5

r



Non-resonant wave, small field perturbation

•  nT


• Non-resonant 
frequency (10 mHz)


• Runtime 25 drift 
periods, time-step 
1/40th of a drift period 


✔ Weak transients, 
similar to a system with 
no wave

δB = 1
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Results: resonant wave, ∂δfm
∂t

+ imΩdδfm = − (γm − iωm)
δB
B0

e−iωmt+γmtr
∂f0
∂r

• The resonant response shows exponential decay





• Same coefficient as in the non-resonant case  transients! 

• Transients will hide resonance for large , for smaller perturbations the 
transients disappear but the width of the resonant region shrinks  identifying 
resonance may be difficult

δfL
m = −

δB
B0

r5 eiωmt+γmt

growth/damping

− e−imΩdt

zebra stripes

+ mΩde−imΩdt ( eimΩdt−iωmt+γmt − 1
ωm − mΩd + iγm )

wave-particle resonance

→

δB
→
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Resonant wave

21

•  nT


• Resonant frequency (25 
mHz)


• Runtime 25 drift periods, 
time-step 1/40th of a 
drift period 


✖ No amplification of the 
wave or clear spreading of 
the distribution function


✔ Weak transients

δB = 1



Significance & future research
• Analytical and numerical results are in excellent agreement with each other


• The resulting model does not violate Liouville’s theorem, makes no 
assumptions of the nature of the wave signal & requires minimal 
computational tools


• The model is limited to equatorially trapped electrons  introduce angular 
dependence


• Further data analysis required to identify drift resonance


• Adding multiple waves to the system would allow for testing of current 
diffusion models

→
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