Estimating the stellar masses of NLS1 galaxies using multifrequency data

Inkeri Syrjärinne

5.2.2025

PAP301 Seminar in Particle Physics and Astrophysical Sciences

Table of contents

Active galactic nuclei (AGN)

- Galaxies with active supermassive black holes (SMBHs)
- Typical characteristics:
 - Very high luminosities
 - Broad emission lines
 - Variability
 - Jets
- Categorisation: blazars, quasars, radio galaxies and Seyfert galaxies

Structure of the AGN

1. Supermassive black hole

2. Accretion disk

o Matter orbiting the black hole

3. Broad-line region (BLR)

- Right outside the accretion disk
- Matter very hot and fast -> broad emission lines due to Doppler broadening

4. Dusty torus

• A donut-shaped dust cloud that absorbs most of BLR emission

5. Narrow-line region (NLR)

• Outside the torus, matter colder and less dense -> narrow emission lines

Categorisation

- Blazars
 - Seen from small angles
 - Usually massive ellipticals
- Quasars
 - Seen from slightly larger angles
 - \circ Usually massive ellipticals
- Radio galaxies
 - Seen from large angles (usually)
- Seyfert galaxies
 - Type 1: seen from small angles
 - Type 2: seen from large angles
 - O Spiral galaxies

Jets in AGN

- A result of interaction between the magnetic field and matter in the accretion disk
 - Not completely understood but magnetic reconnection plays a role
- An AGN can have one or two jets, sizes vary from parsecs to megaparsecs
- Some jets are relativistic (move close to the speed of light)
- The old jet paradigm: only massive elliptical AGN can have relativistic jets
 - $\,\circ\,$ This has been proven wrong

Jet in M87 (NASA, ESA and the Hubble Heritage Team)

Detecting jets: two emission mechanisms

Synchrotron radiation

- Charged particles in the magnetic field of a relativistic jet
- Produces non-thermal radio emission and the very recognisable synchrotron spectrum

Inverse Compton process

- Relativistic electrons collide with photons, increasing the photons' energy
- $_{\odot}\,$ Photons move up to gamma-ray frequencies
- $_{\odot}\,$ Only happens in very powerful jets

The synchrotron spectrum (Carroll and Ostlie 2017)

X-ray: NASA/CXC/SAO; visual: NASA/STScl; radio: NSF/NRAO/VLA.

Visible Light

X-ray Light

Multi-wavelength

Radio Light

q

Narrow-line Seyfert 1 galaxies (NLS1s)

- Type 1 Seyfert galaxies but their broad line region emission lines are narrow
- SMBH mass only around 10⁶-10⁷ M_sun
- Disk-like host galaxies
- Most probably young, unevolved AGN
- Against all expectations gamma-ray emission has been observed in some NLS1s

 $_{\odot}$ This means they can host relativistic jets!

 ${\scriptstyle \odot}$ Jet paradigm debunked

NLS1 properties

J0354-1340 (Vietri et al. 2022)

Only 15 % have been observed to emit at radio frequencies

○ Jets are even more rare

- However, no major physical differences
 between jetted and non-jetted NLS1s
- Also very high variability (time scales only a few days) which makes studying them harder
 - An on-going NLS1 detection campaign has been operating at the Metsähovi Radio Observatory for more than 15 years
- We want to understand what leads to the formation of a powerful jet

Stellar masses of NLS1s

- Stellar mass is the total mass of stars within a galaxy
- Only a few stellar mass estimates of NLS1s exist so far
- Knowing the stellar masses help with understanding the properties of the host galaxies of NLS1s
- Maybe there are differences between non-jetted and jetted NLS1s? Or differences between radio detected vs non-radio detected sources?
- One way to estimate the stellar mass is by using the spectral energy distribution (SED) of a galaxy

CIGALE

- A python Code Investigating GAlaxy Emission (Noll et al. 2009, Boquien et al. 2019)
- Calculates SEDs of galaxies based on galaxy emission models
- Produces modelled SEDs and compares them with observed SEDs through Bayesian statistical analysis
- Also estimates physical quantities, such as stellar mass

CIGALE (Come I THROU	bivestigating Gilaxies Inussion) UGH AN ENERGY BUDGET	
æ	R	
UX		
Yr	Wavelength	
	CIGALE (Conse)	CIGALE (Conv Investmation GALAXIES EMISSION) THROUGH AN ENERGY BUDGET

Data collection

- Initial sample of 4000 NLS1s
- This was filtered only to galaxies with far-infrared observations $_{\odot}$ -> 175 galaxies left
- Far-infrared region arises from star formation processes
 - o Optical and UV radiation absorbed by dust clouds and re-emitted in far-infrared
- After this, I collected multifrequency observations for the remaining sources

Observational data

Instrument/survey	Wavelength region	Amount of observations
Herschel	Far-IR	137
IRAS	Far-IR	32
2MASS	Near-IR	117
WISE	Near-IR, mid -IR	169
Spitzer IRAC	Near-IR, mid -IR	35
SDSS	Optical	170
PanSTARRS	Optical	169
Swift UVOT	UV, optical	11
VLASS	Radio	36
LOFAR	Radio	63
Swift-XRT	X-Ray	11

Fitting process

- CIGALE produces best-fit models that are created based on parameters and modules chosen by the user
- Because some sources use different modules, I had to divide my sources into 3 groups:
 - 1. Sources with no radio and x-ray data
 - 2. Sources with also radio data
 - 3. Sources with radio- and x-ray data
- These groups were run separately
- Although this was done for practical reasons, comparing the results for different groups proved to be interesting

Module	Parameter	Values	Description
sfhdelayed	Age main	200,500,700,1000,2000,3000,4000,5000	Stellar Age
		Myr	
	$ au_{main}$	$1500,\!2000,\!4000,\!5000,\!7000,\!10000,\!12000$	E-folding time of the main
		Myr	stellar population
	Age burst	20,100 Myr	Age of the late burst
	τ_{burst}	$20,50,100 { m Myr}$	E-folding time of the late
			burst
	f_{burst}	0.0, 0.01, 0.015, 0.02, 0.05	Mass fraction of the late
			burst
bc03	IMF	1 (Chabrier)	Initial mass function
	Z	0.02	Metallicity
nebular	log U	-2.0	Ionisation parameter
$dustatt_modified_$			
starburst	E(B-V)	0.05, 0.3, 0.5, 1.1	Colour excess of the nebular
	lines		lines
	δ	-0.6, -0.2, 0.0	Power law slope
dale2014	α	0.5, 1.5, 3.0	Alpha slope
	fracAGN	0.0	AGN fraction
skirtor2016	i	30,70	Inclination
	fracAGN	0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99	AGN fraction
	E(B-V)	0.0, 0.2, 0.4	Exctinction in polar direc-
			tion
radio	qir_sf	2.4, 2.6	Value of the FIR/radio cor-
			relation coefficient for SF
	R_AGN	0,10,100,(1000)	Radio-loudness
x-ray	alpha_ox	-1.9, -1.7, -1.5, -1.3, -1.2, -1.1	

2/5/2025

Best model for J123113.12+120307.2 (z=0.116, reduced χ^2 =2.3)

Removing bad fits

- The goodness of the fit is evaluated by the reduced chi-squared statistic that is computed for the best-fit model
- After the first few runs, I removed sources with too high (X² > twice the median) or too low (X² < 0.5) chi-squared values
 - $_{\odot}$ Too high X^2 means that the data doesn't fit the model well
 - A very low X^2 means that the fit is "too good" most likely due to very few observations. This makes the result unreliable.
 - $\circ~$ After removing sources with bad fits, I was left with 138 galaxies

Too high and too low chi-squared values

Results

- Average stellar mass of all 138 sources: 3.0 × 10¹⁰ M_sun
 - $_{\odot}$ This is consistent with typical spiral galaxy stellar masses
- For the individual groups:
 - \circ Group 1 (no radio or x-ray): 2.66 × 10¹⁰ M_sun
 - Group 2 (radio): 3.84 × 10¹⁰ M_sun
 - \circ Group 3 (radio and x-ray): 2.50 × 10¹⁰ M_sun
 - No major differences but it seems that Group 2 has slightly larger stellar masses

Uncertainties

- I could have used more parameter options but the computing time would've been too long
 - Even a supercomputer was not able to complete the run without the memory running out
- I used the same parameters and modules for all sources but naturally the results would be better if the parameters were tailored for each individual source
- However:
 - 1. The time this would take is unrealistic
 - 2. The results couldn't be compared with each other

Conclusions

- Narrow-line Seyfert 1 galaxies are young and small AGN that surprisingly seem to be able to host relativistic jets
- These sources are extremely interesting because studying them can help us understand jet formation better
- Estimating the stellar masses is a step towards understanding the host galaxies of NLS1s
- The stellar mass was estimated for 138 sources. Unfortunately, my conclusions are still not fully ready
- In the future, it would be interesting to compute the stellar masses individually for each source to get a more reliable value