# Cosmological parameter estimation with weak gravitational lensing

Susan Rissanen

Cosmological parameters & weak lensing / Susan Rissanen



#### **Overview**

- 1. Motivation: the Euclid mission
- 2. Cosmological parameters
- 3. Weak gravitational lensing
  - 3.1 Shear components
  - 3.2 Cosmic shear
  - 3.3 Cosmic shear correlation functions
  - 3.4 E- and B- modes
  - 3.5 COSEBIs

- 4. Parameter estimation
- 5. Data pipeline
- 6. Results
- 7. Results discussion
- 8. Summary
- 9. References



## Motivation: the Euclid mission

- My task: test out a simple parameter estimation pipeline
- ESA's cosmology survey mission; mapping the Universe, abundant data
- Euclid is optimized to investigate some of the biggest mysteries in cosmology [1]
  - Shed light on the nature of dark matter and dark energy



Figure: Euclid's view of the Abell 2390 galaxy cluster featuring some lensing effects [2]



## **Cosmological parameters**

• Properties of the Universe described by different cosmological parameters:

| Parameter                            | Explanation                                                                                                                         |  |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
| $\Omega_m = \Omega_b + \Omega_c$     | Matter fraction, baryonic and (cold) dark matter.                                                                                   |  |
| $\sigma_8$                           | Amplitude of matter power spectrum fluctuations;<br>"clumpiness" of matter distribution, higher values<br>mean stronger clustering. |  |
| $S_8 = \sigma_8 \sqrt{\Omega_m/0.3}$ | Derived parameter minimizing estimation degeneracies. Lensing depends on both matter amount $\Omega_m$ and clustering $\sigma_8$    |  |
| $\Omega_{\Lambda}$                   | Dark energy fraction; in a flat universe, $\Omega_{\Lambda} = 1 - \Omega_m$ .                                                       |  |

• My focus on matter content and distribution



## Weak gravitational lensing

- Why weak lensing for cosmology?
  - Direct probe of total matter  $\Omega_m$  and clustering  $\sigma_8$
  - Evolution of the Universe with redshift of lensed galaxies
- Mass curves spacetime (assume GR) ⇒ light bends around massive objects
- Galaxy images distorted  $\Rightarrow$  amount and direction described by **shear**,  $\gamma$



#### Figure: Weak lensing [3]



### Shear components

- Complex number for mathematical convenience,  $\gamma = |\gamma| \exp(2i\phi)$
- Two components: tangential γ<sub>t</sub> and cross component γ<sub>×</sub>, defined relative to the angular separation direction between galaxies as [5], γ<sub>t</sub> = ℝe[γ exp(-2iφ)], γ<sub>×</sub> = Im[γ exp(-2iφ)]
- Galaxy pair separated by an angular separation vector  $\bar{\theta}$  making an angle  $\phi$  (polar angle) with the horizontal axis



Figure:  $\gamma_t$ ,  $\gamma_{\times}$  separated by  $\phi$ . January 28, 2025



Figure: Cosmic shear: shear due to lensing from the gravitational influence of larger cosmic structures



#### **Cosmic shear**

- Similar advantages as weak gravitational lensing: sensitivity to matter content, matter distribution and evolution of the Universe with redshift
- Describing pairs of galaxies lining up relative to each other
- Weak lensing distortions detectable by statistically analyzing many sources  $\Rightarrow$  correlation functions  $\xi_{\pm}(\theta)$



# Cosmic shear correlation functions

• Correlation functions: how similarly or differently galaxy pairs point when you look at ensembles of galaxies [5]:

$$\xi_{+}(\theta) = \langle \gamma_t \gamma_t \rangle(\theta) + \langle \gamma_{\times} \gamma_{\times} \rangle(\theta) \tag{1}$$

$$\xi_{-}(\theta) = \langle \gamma_t \gamma_t \rangle(\theta) - \langle \gamma_{\times} \gamma_{\times} \rangle(\theta).$$
(2)

- $\xi_+$ : how often galaxy pairs have *aligned* shear components
- ξ\_: how often galaxy pairs have *differences* in how their shear components are aligned



### E- and B-modes

- The  $\xi_{\pm}(\theta)$  can be decomposed into contributions from two sources: **E** and **B**-modes
  - E-modes correspond to the true shear field
  - B-modes cannot originate from lensing, but are due to systematic errors or higher-order effects (intrinsic shapes and alignment of galaxies)
- Cleanly separating these modes is crucial to extract cosmological information from cosmic shear
  - Distinguish the true lensing signal from contaminants





Figure: E- and B-modes of cosmic shear.

Cosmological parameters & weak lensing / Susan Rissanen



#### **COSEBIs**

- Different statistical measures developed to separate E- and B-modes, but all required measuring  $\xi_{\pm}(\theta)$  down to arbitrarily small separation angles  $\theta$  between galaxies, which is impractical
- Efficient mode separation: *Complete Orthogonal Sets of E- and B- mode integrals*, COSEBIs
- Fully retain the cosmological information from the shear signals in a finite angular interval and are very sensitive to cosmological parameters related to matter content and matter distribution



## **COSEBIs** weight functions

• Mathematically, COSEBIs are defined with  $\xi_{\pm}(\theta)$  and their weight functions  $T_{\pm n}(\theta)$  for *n* modes [6],

$$E_{n} = \frac{1}{2} \int_{\theta_{\min}}^{\theta_{\max}} d\theta \, \theta[\xi_{+}(\theta) T_{+n}(\theta) + \xi_{-}(\theta) T_{-n}(\theta)]$$
(3)  
$$B_{n} = \frac{1}{2} \int_{\theta_{\min}}^{\theta_{\max}} d\theta \, \theta[\xi_{+}(\theta) T_{+n}(\theta) - \xi_{-}(\theta) T_{-n}(\theta)],$$
(4)

- COSEBIs can be linear or logarithmic depending on whether the  $T_{\pm n}(\theta)$  are polynomials in  $\theta$  or in  $\ln \theta$
- Log-COSEBIs generally more efficient due to requiring 5 data points (modes) per redshift bin to get the same amount of cosmological information as in  $\xi_{\pm}(\theta)$



Cosmological parameters & weak lensing / Susan Rissanen



#### **Parameter estimation**

- Cosmological parameter estimation requires the use of Bayesian statistics, maximum likelihood estimation and Markov Chain Monte Carlo sampling.
- The data vector (E-modes, *E<sub>n</sub>*) are compared to the values of theoretically predicted E-modes (*E<sub>n</sub>*<sup>obs</sup>), given a set of model parameters denoted by *π*.
  - Additionally, a covariance matrix  $Cov_{mn}$  for  $E_n$
- Essentially one minimizes the  $\chi^2$  function, given by [6],

$$\chi^2 = \sum_{m,n=1}^{N} [E_m^{\text{obs}} - E_m(\pi)] \text{Cov}_{mn}^{-1} [E_n^{\text{obs}} - E_n(\pi)]$$



## Data pipeline

- Galaxy data from a single simulated catalog developed by the *Marenostrum Institut de Ciencies de l'Espai* (MICE) [4]
  - · Contains the positions, redshifts, separation angle and shear
  - Not many simulations with shear publicly available  $\Rightarrow$  a rough approximate  $\mathrm{Cov}_{mn}$
- Theoretical predictions and parameter estimation using Cosmosis [7]







| Parameter          | Max Posterior | $\text{Mean}\pm\text{Std}$          | Median $\pm$ 68 Cl               |
|--------------------|---------------|-------------------------------------|----------------------------------|
| Ω <sub>m</sub>     | 0.253         | $\textbf{0.267} \pm \textbf{0.047}$ | $0.262\substack{+0.025\\-0.021}$ |
| $\sigma_8$         | 0.787         | $\textbf{0.775} \pm \textbf{0.045}$ | $0.777^{+0.021}_{-0.022}$        |
| $S_8$              | 0.723         | $\textbf{0.725} \pm \textbf{0.033}$ | $0.727\substack{+0.015\\-0.016}$ |
| $\Omega_{\Lambda}$ | 0.747         | $\textbf{0.733} \pm \textbf{0.047}$ | $0.738^{+0.021}_{-0.025}$        |

- Model parameter values:  $\Omega_m = 0.25$ ,  $\sigma_8 = 0.8$ ,  $S_8 = 0.73$  and  $\Omega_{\Lambda} = 0.75$
- Only  $\Omega_m$ ,  $\sigma_8$  sampled since  $S_8 = \sigma_8 \sqrt{\Omega_m}$  and in a flat universe  $\Omega_{\Lambda} = 1 \Omega_m$
- True values lie within about one std (1 $\sigma$ ) of the means  $\Rightarrow$  reasonably good
- Uncertainties relatively small,  $S_8$  particularly well-constrained  $\Rightarrow$  also good





Cosmological parameters & weak lensing / Susan Rissanen





Figure:  $\Omega_{\Lambda}$  posterior distribution plot

Figure:  $\Omega_{\Lambda} - \sigma_8$  contour plots



## **Results discussion**

- Results confirm that COSEBIs efficiently probe the matter parameters and yield accurate estimations for values of Ω<sub>m</sub>, Ω<sub>Λ</sub>, S<sub>8</sub> and σ<sub>8</sub> (despite the lack of data)
- Degeneracy between Ω<sub>m</sub> and σ<sub>8</sub> expected in weak lensing studies; cosmic shear is sensitive to their combination, S<sub>8</sub>, the most
  - A lower  $\Omega_m$  can be compensated for by a higher  $\sigma_8$  and vice versa
  - More elliptic contour implies more correlation between the parameter pair; high correlation expected with  $\Omega_m, \sigma_8$
  - Smaller or tighter contours imply better constraints
- Combining weak lensing with other probes (CMB, galaxy clustering) can potentially improve results and degeneracies



#### Summary

- Dark matter and dark energy need to be studied more  $\Rightarrow$  the Euclid mission
- Cosmic shear is a powerful tool for studying the matter distribution and evolution of the Universe
  - Sensitive to matter content, clustering and evolution of the universe
- Shear signal is not free of contaminants  $\Rightarrow$  need to separate E- and B-modes  $\Rightarrow$  COSEBIs
- Results suggest that COSEBIs indeed yield accurate results and do their job at separating E- and B-modes and confirm that the data processing and parameter estimation pipeline is solid even though Cov<sub>mn</sub> was only approximate



## Thank you! When the universe tries to photobomb your selfie cravitional Gravitinallensing e a your selfie

#### Figure: Gravitational lensing meme drawn by my good friend ChatGPT

Cosmological parameters & weak lensing / Susan Rissanen

January 28, 2025 22/24



#### **References I**

[1] URL: https:

//www.esa.int/Science\_Exploration/Space\_Science/Euclid\_overview.

- [2] URL: https://www.esa.int/ESA\_Multimedia/Images/2024/05/Closer\_ Euclid\_view\_of\_Abell\_2390.
- [3] URL: https://www.esa.int/ESA\_Multimedia/Images/2023/05/What\_Euclid\_ will\_measure\_weak\_lensing.
- [4] P. Fosalba et al. "The MICE Grand Challenge light-cone simulation III. Galaxy lensing mocks from all-sky lensing maps". In: *Monthly Notices of the Royal Astronomical Society* 447.2 (Dec. 2014), 1319–1332. ISSN: 0035-8711. DOI: 10.1093/mnras/stu2464. URL: http://dx.doi.org/10.1093/mnras/stu2464.



### **References II**

- [5] Martin Kilbinger. "Cosmology with cosmic shear observations: a review". In: *Reports on Progress in Physics* 78.8 (2015), p. 086901. URL: https://doi.org/10.1088%2F0034-4885%2F78%2F8%2F086901.
- [6] Schneider, P., Eifler, T., and Krause, E. "COSEBIs: Extracting the full E-/B-mode information from cosmic shear correlation functions". In: A&A 520 (2010), A116. DOI: 10.1051/0004-6361/201014235. URL: https://doi.org/10.1051/0004-6361/201014235.
- [7] J. Zuntz et al. "CosmoSIS: Modular cosmological parameter estimation". In: Astronomy and Computing 12 (2015), pp. 45–59. ISSN: 2213-1337. URL: https: //www.sciencedirect.com/science/article/pii/S2213133715000591.