Lattice measurements of the static quark-antiquark potential and holographic bulk reconstruction

Aatu Rajala

Seminar in Particle Physics and Astrophysical Sciences, 26.3.2024

Structure		

- 2 Lattice field theory
- 3 Holographic duality

4 Results

Quark-antiquark potential •0000		
Structure		

- 2 Lattice field theory
- 3 Holographic duality

Lattice field theory 00000 Holographic duality 00000 Results 000000 Future works & Summary 0000

Quantum chromodynamics (QCD)

- QFT of the strong interaction
- 2 types of particles
 - quarks (fermions)
 - gluons (gauge field)
- Interesting properties
 - Gluon self-interactions
 - Color confinement

Quark-antiquark potential 00000				
Quark-antique	ark notential	shows confi	nement	

• A static quark-antiquark pair

• A is a constant

Quark-antiquark potential 00000				
Quark-antiqua	ark potential	shows confi	nement	

• A static quark-antiquark pair

Cornell potential

$$V(r) = A + \frac{B}{r} + \sigma r$$

- A is a constant
- $\frac{B}{r}$ is the electric potential

Quark-antiquark potential 00000				
Quark_antique	ark notential	shows confi	nement	

• A static quark-antiquark pair

ornell potential
$$(r) = A + \frac{B}{r} + \frac{\sigma r}{\sigma}$$

• A is a constant

C V

- $\frac{B}{r}$ is the electric potential
- σr from strong interaction

 Quark-antiquark potential
 Lattice field theory
 Holographic duality
 Results
 Future works & Summary

 00000
 00000
 00000
 00000
 00000
 00000

Linear term gives rise to confinement

• The attractive self-interaction of gluons forces the color field into a narrow tube

[Mark Thompson, Modern particle physics]

- Constant energy density \rightarrow linear term σr
- $\bullet\,$ Trying to separate the pair requires infinite energy $\to\,$ quarks confined

Quark-antiquark potential 0000●		
Wilson loop		

• The static potential can be related to a QFT operator called the Wilson loop

$$W(\mathcal{C}) = \operatorname{tr}\left[\exp\left(i\int_{\mathcal{C}}A_{\mu}\mathrm{d}x^{\mu}\right)\right]$$

Quark-antiquark potential 0000●		
Wilson loop		

• The static potential can be related to a QFT operator called the Wilson loop

$$W(\mathcal{C}) = \operatorname{tr}\left[\exp\left(i\int_{\mathcal{C}}A_{\mu}\mathrm{d}x^{\mu}
ight)
ight]$$

• To compute the expectation value of a QFT operator a path integral needs to be evaluated

$$\langle W(\mathcal{C}) \rangle = \int \mathcal{D}A W(\mathcal{C}) e^{iS(A)}$$

Lattice field theory •0000 Holographic duality

Results

Future works & Summary 0000

Structure

- Quark-antiquark potential
- 2 Lattice field theory
- 3 Holographic duality

4 Results

5 Future works & Summary

Lattice field theory

Holographic duality

Results

Future works & Summary 0000

Evaluating the path integral

• How can you calculate the path integral?

Lattice field theory

Holographic duality

Results

Future works & Summary 0000

Evaluating the path integral

- How can you calculate the path integral?
 - You can't at least not directly

Lattice field theory

Holographic duality

Results

Future works & Summary 0000

Evaluating the path integral

- How can you calculate the path integral?
 - You can't at least not directly
- In perturbation theory integral expanded to a series w.r.t to the coupling
 - requires weak coupling
- Lattice field theory allows estimation in non-perturbative, high coupling regime

Lattice field theory

Holographic duality

Results 000000 Future works & Summary 0000

Putting QFT on a lattice

- The basic idea of lattice field theory is to replace continuous space-time with a discrete lattice
 - $x_{\mu} = an_{\mu}$, $n_{\mu} = 0, 1, ..., N_{\mu}$
- Periodic boundary conditions to deal with edges
- No value set for a
- Fermions at lattice site

Lattice field theory

Holographic duality

Results 000000 Future works & Summary 0000

Putting QFT on a lattice

- The basic idea of lattice field theory is to replace continuous space-time with a discrete lattice
 - $x_{\mu} = an_{\mu},$ $n_{\mu} = 0, 1, ..., N_{\mu}$
- Periodic boundary conditions to deal with edges
- No value set for a
- Fermions at lattice site
- Gauge fields at links (link variables)

Lattice field theory

Holographic duality

Results 000000 Future works & Summary 0000

Putting QFT on a lattice

- The basic idea of lattice field theory is to replace continuous space-time with a discrete lattice
 - $x_{\mu} = an_{\mu},$ $n_{\mu} = 0, 1, ..., N_{\mu}$
- Periodic boundary conditions to deal with edges
- No value set for a
- Fermions at lattice site
- Gauge fields at links (link variables)

	Lattice field theory 000●0			
Path integral	on the lattic	e evaluated	with Mo	onte Carlo

- Path integral on the lattice is in theory analytically computable
- The amount of parameters makes it impossible in practice
- Monte Carlo sampling can be used to estimate them
 - Random sample configurations U drawn from dist. $P(U) \propto e^{-S[U]}$
 - Evaluate measured observables at samples
 - Take the mean to estimate the expectation value

Lattice field theory

Holographic duality

Results

Future works & Summary 0000

My lattice simulations

- \bullet Lattice of size 16^4 with β between 6.0 and 7.0
- The W.loop is measured in tens of thousand of configurations for separations between r = 1 and 7
- The Cornell potential is fitted and compared with experimental data to define *a* and get continuum units
- Has been measured before to high precision. My implementation purely educational.

	Holographic duality ●0000	
Structure		

- 2 Lattice field theory
- 3 Holographic duality

4 Results

Lattice field theor

Holographic duality

Results

Future works & Summary 0000

What is holographic duality?

- Equivalence
 - a QFT in 4D flat space-time ↔string theory in higher dimensional curved space-time
- QFT lives on the boundary of higher dimensional space-time
- At strong coupling string theory reduces to supergravity
 - Non-perturbative QFT calculations with "easy" gravity computations

Results

Future works & Summary 0000

Building a holographic model

• Traditionally:

- Educated guess for gravity side
- work out QFT quantities
- Compare with data
- 🕘 reiterate
- Recently the inverse approach has been adopted:
 - Start with QFT data
 - Construct gravity side from data
 - Omputations with constructed gravity dual
 - Called bulk reconstruction

Lattice field theory

Holographic duality

Results 000000 Future works & Summary 0000

Holographic Wilson loop

• Extend a string from the loop into the bulk

 $\langle W
angle pprox e^{-S_{NG,min}}$

• Simply minimization of classical action

Lattice field theory

Holographic duality

Results 000000 Future works & Summary 0000

Bulk reconstruction from $q\bar{q}$ -potential

• Metric based on AdS-BH:

$$ds^2 = rac{L^2}{z^2}(-f(z)dt^2 + g(z)dz^2 + d\vec{x}^2),$$

- f(z) and g(z) from BH multiplied by an exp. of power series
- Using a machine learning method the coeffs. from the metric are optimized to fit the lattice data of R, V(R)
- Done with two terms in the power series, no further computations

Lattice field theory

Holographic duality

Results ●00000

Future works & Summary 0000

Structure

- Quark-antiquark potential
- 2 Lattice field theory
- 3 Holographic duality

Quark-antiquark potential Lattice field theory Holographic duality Results 00000 Future works & Summary 00000 Unscaled lattice data in good agreement with previous results

• Unscaled data in agreement with (Bali & Schilling (1992))

• Differences & uncertainties grow as separation increases

Lattice field theory

Holographic duality 00000 Results 00●000

Future works & Summary 0000

Scaled potential at different temperatures

- Energy increases with temp.
- a gets smaller as temp. increases

		Results 000●00	
C II I	 		

Scaling has correct form but slight deviations

General form similar to (Necco & Sommer, hep-lat/0108008)
Deviations likely due to limited data

Lattice field theory 00000 Holographic duality 00000 Results 0000●0

Future works & Summary 0000

Holographic model for static potential

- The constructed holographic models fit the data well
- Form follows the Cornell potential with the extension beyond the data being linear
- Method seems to work

		Results 00000●	
-			

Reconstructed metric behaviour as temperature grows

- very little change in f(z)
- No clear temperature behaviour

		Future works & Summary ●000
Structure		

- 2 Lattice field theory
- 3 Holographic duality

4 Results

		Future works & Summary 0●00
Future works		

- Ways to improve both parts
 - Lattice measurements
 - more configs., more R, bigger system, additional terms etc.
 - Bulk reconstruction
 - errors, different base metric, bigger data set
- Using the constructed metrics compute different QFT quantities
 - Sensitive to deconfinement phase transition
- Reconstruction can also be made using these observables
 - More difficult to obtain lattice data
 - Progress in entanglement entropy
- Holography has entered a new era of precision

		Future works & Summary 0000
Summary		

- Linear term in potential gives rise to confinement
- Lattice field theory used to evaluate path integrals and measure static potential
- From lattice data corresponding holographic models constructed \rightarrow new predictions
- Lattice measurements had correct form, errors due to limited data set
- In constructed metrics f from BH, no clear temperature behaviour in g

[Karl Jansen, homepage]