

Veera Lipsanen 13.2.2024

Seminar in Particle Physics and Astrophysical Sciences

Outline

- 1. Background
 - a. Solar wind
 - b. Magnetosphere
 - c. Magnetic local time
 - d. ULF waves
- 2. Creating a ULF wave index
- 3. How the index can be used
- 4. Future studies

Solar Wind

- Constant outflow of plasma from the Sun
- Drags out magnetic field and forms the interplanetary magnetic field (IMF)
 - rotation of the Sun causes the IMF to twist
- Divided into
 - slow (300-500 km/s) and dense wind
 - fast (500-800 km/s) and tenuous wind

Interplanetary coronal mass ejections (ICMEs)

- Massive eruptions of plasma
- Can cause intense geomagnetic storms
- Ejecta:
 - magnetic field changes smoothly
 - if fast enough can create a sheath region
- Sheath:
 - turbulent plasma
 - magnetic field field variations
 - enhanced magnetic field

ICME structure, Kilpua et. al (2017)

High Speed Streams (HSSs)

- Extended periods of fast solar wind
 - originate from large regions of open magnetic fields
- Fast wind can catch slower flow ahead
 - stream interaction region (SIR) is formed
 - particle density and IMF strength are increased
- Can cause geomagnetic storms
 - not as strong as ICMEs

Geomagnetic storms

- A disturbance or change in the magnetosphere
 - can last several days
- SYM-H index
 - indicator for geomagnetic activity
 - negative value means weakened magnetic field

Substorms

- Energy release from the magnetotail into the ionosphere caused by a disturbance in the magnetosphere
 - last for a few hours
- AE index
 - indicator for substorm activity
 - measure of magnetic activity in the auroral zone

Magnetic local time

- Parameter used to organize data with respect to the position of the Sun
 - a 24-hour clock around Earth
 - MLT=12 (noon) always points directly at the Sun
- Divided into four sections:
 - Day (9-15 MLT)
 - Dusk (15-21 MLT)
 - Night (21-3 MLT)
 - Dawn (3-9 MLT)

Ultra-low frequency (ULF) waves

- Pulsations of Earth's magnetosphere
 - frequencies in 2-5000 MHz range
- Pc5 (2-7 mHz) ULF waves are of special interest
 - period comparable to drift period of energetic electrons in radiation belts → acceleration
 - can change electron fluxes
- Energy transfer between solar wind and magnetosphere

Different plasma waves in Earth's magnetosphere, NASA

ULF wave generation and distribution

- Fluctuation of dynamic pressure in solar wind
 - mostly on the dayside
- HSSs can drive Kelvin-Helmholtz instabilities
 - occur at dawn and dusk
- Dawn-dusk asymmetry: pc5 more prominent on dawnside
- Substorm activity
 - nightside

A pre-existing "global" ULF wave index: T_{GR}

- Created by Kozyreva et.al (2006)
 - 1-hour resolution
 - magnetic latitudes of 60-70°
 - no MLT-dependence
- Stations are selected from 3-18 MLT
 - nightside is fully omitted
 - cross-correlation for 00–24 and 03–18 MLT sectors i
 high
- Only the station with the peak power is selected

Creating a MLT dependent groundbased ULF wave index

Magnetometer data

- SuperMAG offers data from nearly 600 magnetometers
 - offers 1-min and 1-sec resolution data
 - data is in the same coordinate system
- Magnetometers between magnetic latitudes of 60-70°
 - peak ULF intensity
- Small problem: only a few magnetometers in northern Russia

Red dots are stations between 60-70 MLAT.

Preparation of data

- Take data from the needed time interval
 - for my thesis I used only small intervals
 - if time interval is longer than few days the data has to be divided into shorter intervals
- Data has to be inspected first
 - if there is a data gap longer than 40 minutes, that station is left out
 - shorter data gaps can be interpolated

Wavelet transform

- Decomposes a time series into time and frequency space
 - variations of power within a time series can be studied
 - translate and dilate a chosen wavelet function
- Python module PyCWT
 - routines for wavelet analysis using fast fourier transform
- Takes a long time for a long time series

Figure: Upper panel has magnetic field, lower panel wavelet power

Finishing touches

- Take an average power over the pc5 frequencies
- Divide the power into the four MLT sectors
 - each minute the stations are divided and the ULF power is averaged across stations
- In the end we should have four different ULF indices with 1-minute resolution

How the index can be used

ICME 24.10.2011

- during ejecta AE index correlates best with nightside
- z-component of IMF correlates better in sheath region
- Dawn-dusk asymmetry

1.00

HSS 6.10.2015

ULF index

P

Bz

Tgr

- After SIR, AE index and nightside have the highest correlation
- During SIR velocity has high correlation with day and dawn, after SIR correlation decreases

AE

SYM

n

Dawn-dusk asymmetry

-1.00

-0.75

-0.50

-0.25

-0.00

-0.25

-0.50

-0.75

-1.00

Future studies

- Create a yearly index
 - How activity of the Sun affects
- Study non-linear dependencies
- Study phenomena that have smaller time-scales
 - Foreshock transients

Summary

- ULF waves are generated around the Earth by different mechanisms
- Previous ULF wave index was not global or MLT-dependent
- New created index is global and MLT-dependent
 - can be used to study where wavepower is coming from
- Results show that wavepower differs in MLT sectors

Thank you!

