GAS FLOWS AND STARBURST IN MERGING DWARF GALAXIES

Contents

Background theory

Dwarf galaxies The interstellar medium Star formation Stellar feedback Galaxy mergers Gas inflows and outflows Star clusters

Research

Motivation Simulation code Simulation set-up

Results

Gas flows Gas temperatures Star formation Star clusters

Rilla Laitila

Theory: Dwarf galaxies

- Low mass, stellar masses of $10^{2-9} M_{sun}$ (MW ~ $10^{12} M_{sun}$)
- Up to 80 % of the galaxies in our local volume
- Susceptible to the effects of their own evolution

Image credit [1]

Theory: The interstellar medium (ISM)

- Baryonic matter between stars in a galaxy
- Multiphase ISM gas can be divided into phases based on temperature and chemical state of hydrogen

Gas state	Temperature	Description
Cold	$\rm T \leq 300~K$	Star forming gas
Warm	$300~\mathrm{K} < \mathrm{T} \leq 20000~\mathrm{K}$	Atomic and ionized gas from PI
Warm-Hot	$20000\;{\rm K} < {\rm T} \le 300000\;{\rm K}$	Highly ionized, cooling SN gas
Hot	$\rm T>300000~K$	Very hot gas from SNe

Theory: Star formation

 Stars form when dense molecular clouds collapse under their own gravity

- Collapse happens when the cloud's mass exceeds Jeans mass $M_J \propto T^{3/2} \rho^{-1/2}$
- Star formation is highly inefficient $\rightarrow \varepsilon \sim 0.01-0.02$

Theory: Stellar feedback

- Stars heat, ionize and in other ways affect the surrounding gas, hindering future star formation
- Main sources:
 - SupernovaePhotoionization
 - \circ Stellar winds

Image credit [2]

Theory: Galaxy mergers

- Structure formation is hierarchical (or "bottom-up")
 - → larger structure forms through the merging of smaller structures
- The early Universe was smaller than the present Universe
 → distances between galaxies were smaller in the early Universe

→ Dwarf galaxies often undergo mergers

Theory: Gas inflows and outflows

<u>Inflows</u>

Interaction with a merger produces tidal forces

→ Gas is funneled to the centre

<u>Outflows</u>

Clustered supernova explosions create massive cavities in the ISM

→ 'Superbubbles' are able to drive gas out of the disk of the galaxy

Theory: Star clusters

 Star formation is often clustered since molecular clouds fragment before collapse

• A star cluster is essentially a group of stars

• Star clusters often disperse within 10 Myr

Research: Motivation

 Dwarf galaxies offer a great research ground for high resolution simulations and research regarding galactic evolution in the early Universe

Question:

How greatly does the merger interaction affect the radial gas flows, star formation and stellar feedback in a dwarf galaxy?

Research: Simulation code

High-resolution hydrodynamical simulation GRIFFIN (GADGET-3/SPHGal)

- GADGET-3: Smoothed particle hydrodynamics tree code
- SPHGal: Modification of GADGET-3, allows for realization of individual massive stars and subsequently offers a more realistic model of the effects of mass-dependent feedback, also improved treatment of baryonic processes
- Baryonic particle mass resolution of 4 M_{sun}!

For more details see references [3]-[6]

Research: Set-up

<u>Merger</u>

- 10:1 merger of dwarf galaxies
- Size is different, otherwise identical galaxies
- Prograde, in-plane orientation

<u>Isolated</u>

• Same as the larger galaxy in the merger system

Results: Significant gas inflows

 The mass of gas in the centre of the merger galaxy increases while the smaller galaxy is approaching pericentre

Results: Strong gas outflows

- The merger has much higher outflow velocities
- Indicates a greater number of supernova explosions

Results: Inflows VS outflows

- Median velocities are higher in the merger
- Merger is dominated by inflows up to t = 100 Myr, then dominated by outflows

Results: Increased star formation rate (SFR)

Results: Starburst

- The increased SFR in the merger leads to quenching of star formation
- The formed stellar mass in the merger is over a magnitude greater than in the isolated

Name	$M_{ m gas,IC}[{ m M}_{\odot}]$	$M_{ m gas,200Myr}[m M_{\odot}]$	$M_{ m *,IC}[{ m M}_{\odot}]$	$M_{ m *, formed} [{ m M}_{\odot}]$
isolated	4×10^7	$3.8 imes 10^7$	2×10^7	$2.6 imes10^5$
merger	4×10^7	$2.5 imes 10^7$	2×10^7	$3.7 imes 10^6$

Results: Massive star clusters

- The most massive cluster in the merger is ~ 5 times bigger than the most massive cluster in the isolated
- A merger interaction is likely required to create clusters that are massive enough to drive superbubbles and outflows

Results

Merger

→ Significant inflows and outflows

→ Hot gas and superbubbles

→ Increased star formation

→ Massive star clusters

(purposefully left blank for dramatic effect)

Isolated

Summary

- Merger interactions are frequent for dwarf galaxies
- Simulation results show that the interaction greatly affects the evolution of the galaxy
- Results provide concrete insight as to how galaxy mergers shape the evolution of low-mass galaxies, and subsequently the evolution of larger structures in the Universe.

References:

[1] Andrei Bacila, https://skyandtelescope.org/online-gallery/m81-m82-and-their-violent-past/ (visited 2/2/2025)

[2] X-ray: NASA/CXC/PSU/L.Townsley et al.; Optical: NASA/STScI; Infrared: NASA/JPL/PSU/L.Townsley et al.

[3] Volker Springel, The cosmological simulation code GADGET-2, *Monthly Notices of the Royal Astronomical Society*, Volume 364, Issue 4, December 2005, Pages 1105–1134, <u>https://doi.org/10.1111/j.1365-2966.2005.09655.x</u>

[4] Chia-Yu Hu et al., SPHGal: smoothed particle hydrodynamics with improved accuracy for galaxy simulations, *Monthly Notices of the Royal Astronomical Society*, Volume 443, Issue 2, 11 September 2014, Pages 1173–1191, <u>https://doi.org/10.1093/mnras/stu1187</u>

[5] Chia-Yu Hu et al., Star formation and molecular hydrogen in dwarf galaxies: a non-equilibrium view, *Monthly Notices of the Royal Astronomical Society*, Volume 458, Issue 4, 01 June 2016, Pages 3528–3553, <u>https://doi.org/10.1093/mnras/stw544</u>

[6] Chia-Yu Hu et al., Variable interstellar radiation fields in simulated dwarf galaxies: supernovae versus photoelectric heating, *Monthly Notices of the Royal Astronomical Society*, Volume 471, Issue 2, October 2017, Pages 2151–2173, <u>https://doi.org/10.1093/mnras/stx1773</u>

Thank you for listening Ask questions!