Early Universe Production of Dark Matter

Contents

- Part I: Background
 - Basic cosmological concepts
 - Thermodynamics of the early Universe
 - Why dark matter?
 - What is dark matter?

• Part II: Machinery

- Cross section
- Number density
- Boltzmann equation
- Part III: Application
 - Freeze-out mechanism
 - WIMPs
 - Freeze-in mechanism
 - FIMPs

• Summary

The Bullet Cluster. Taken from Wikipedia.

Part I: Background

Part I: Background

- Basic cosmological concepts
- Thermodynamics of the early Universe
- Why dark matter?
- What is dark matter?
- Part II: Machinery
 - Cross section
 - Number density
 - Boltzmann equation
- Part III: Application
 - Freeze-out mechanism
 - WIMPs
 - Freeze-in mechanism
 - FIMPs

Basic cosmological concepts

- The Hot Big Bang model
 - Initially, a very small region of hot, dense plasma, which began to rapidly expand
 - Preceded by inflation?
- Structure formed out of primordial density perturbations
 - Baryonic matter clumped into gravitational wells due to dark matter (DM)
- Cosmic Microwave Background (CMB)
 - Nearly isotropic black-body radiation from the early Universe
 - Gives data for the cosmological parameters

The ΛCDM model

- The standard model of cosmology
 - $\Lambda = Cosmological constant (dark energy)$
 - CDM (cold dark matter)
- Major components:
 - Ordinary matter
 - Cold dark matter
 - Dark energy
- The cosmological parameters depend on the background cosmology
 - $\cdot\,$ For example, the abundance of dark matter
 - Background cosmology e.g. Friedmann-Lemaître-Robertson-Walker (FLRW)

Density parameter

• From the Einstein field equation

$$G_{\mu\nu} = 8\pi G_N T_{\mu\nu}$$

we can obtain the 1st Friedmann equation for a flat Universe

$$H^2 = \frac{8\pi G_N}{3}\rho$$

from which we can get the critical density

and finally define the density parameter Ω_i for species *i*:

$$\Omega_i \equiv \frac{\rho_i}{\rho_{cr}}$$

 $\rho_{cr} = \frac{3H^2}{8\pi G_N}$

- Describes the relative abundance of the species
- Modern estimate for CDM:

$$\Omega_{CDM} \approx 26.4 \% \qquad \frac{\Omega_{CDM}}{\Omega_{matter}} \approx 84.4 \%$$

 $G_{\mu\nu}$ = Einstein tensor $T_{\mu\nu}$ = energy-momentum tensor G_N = Newtonian gravitational constant H = Hubble parameter ρ = energy density

Nico Korkeamäki | Early Universe Production of Dark Matter

Thermodynamics of the early Universe (1/2)

- Universe was in (an approximate) thermal equilibrium in the past
 - But non-equilibrium dynamics important
- Condition for local thermodynamic equilibrium:

$\Gamma \gtrsim H$

- Γ = interaction rate of those interactions that maintain the equilibrium
- *H* = expansion rate of the Universe
- Once Γ falls below *H*, the species has decoupled
 - No significant amount of production / annihilation of the species

Thermodynamics of the early Universe (2/2)

• The energy and entropy densities:

$$b = \frac{\pi^2}{30}g_*(T)T^4$$
 $s = \frac{2\pi^2}{45}g_{*s}(T)T^3$

- * $g_{*(S)}$ is the (entropy) number of degrees of freedom present
- *T* is the temperature of the bath
- Adiabatic expansion approximation
 - Entropy per comoving volume is conserved
 - It follows that $T \propto a^{-1}$ (i.e. T falls as Universe expands)

Why dark matter?

- Observational evidence points to 'missing mass'
- · 'Dark' because interactions with standard matter weak at best
 - Strong & EM interactions effectively ruled out
 - * Doesn't interact with e.g. photons \rightarrow Difficult to observe
 - Only gravitational interactions for certain, possibly some other weak interaction
- Used/needed in e.g.:
 - Structure formation models
 - Explaining observed angular power spectrum of CMB

Evidence for dark matter

- Velocity curves of galaxies
- Gravitational lensing
- Bullet Cluster
- CMB

Velocity curve. Taken from <u>Wikipedia</u> under <u>CC 4.0</u>. Observations from starlight Observations from 100 21 cm hydrogen Velocity (km s⁻¹) Expected from 10,000 30,000 40,000 20,000 Distance (light years)

DM distribution from lensing. [NASA, ESA, M.J. Jee, and H. Ford (Johns Hopkins University)]

What is dark matter? (1/2)

- No confirmed observations
 - Some models predict it could be detectable already
- Various models to explain observed phenomena
 - New particle(s)?
 - Modified gravity?
 - Primordial black holes?

What is dark matter? (2/2)

- No significant EM or strong interactions with standard matter (SM)
- Interacts with SM at best on the weak scale
 - Not necessarily via *the* weak interaction itself
 - Possibly not at all (other than gravitationally)
- Non-relativistic at matter-radiation equality (cold DM)
 - Structure formation reasons
- Stable over cosmological time scales

Part II: Machinery

• Part I: Background

- Basic cosmological concepts
- Thermodynamics of the early Universe
- Why dark matter?
- What is dark matter?

Part II: Machinery

- Cross section
- Number density
- Boltzmann equation
- Part III: Application
 - Freeze-out mechanism
 - WIMPs
 - Freeze-in mechanism
 - FIMPs

Cross section

- Needed in our calculations for e.g. $2\leftrightarrow 2$ processes
- Thermally-averaged cross section (times velocity) can be expressed as:

 $\langle \sigma v \rangle = \sigma_0 x^{-n}$

- σ_0 is a constant
- x = m/T is a new 'time variable' (mass / temperature)
- *n* refers to specific wave annihilations (e.g. 0 refers to s-wave)
- Relevant for our DM particle candidate:

 $\sigma \propto g^4/m^2$

- g is the coupling strength
- m is mass
- Note: great freedom in both g and m if not constrained by other means
 - Or given by some model

Number density (1/2)

- The quantity of interest: abundance of DM
- Particle species in thermal equilibrium with a bath:
 - Non-relativistic number density equation (CDM):

$$n = g \left(\frac{mT}{2\pi}\right)^{3/2} e^{-m/T}$$

• n = number density

- g = number of degrees of freedom
- m = mass of the species
- T =temperature of the bath
- Particle species in an expanding volume:
 - Number density in a comoving volume element: $N^{\mu} = nu^{\mu} = (n, 0, 0, 0)$
 - Demanding conservation $(\nabla_{\mu}N^{\mu} = 0)$ leads to:

 $\dot{n} + 3Hn = 0$

• H = Hubble parameter

Number density (2/2)

• Finally, consider the process:

 $\chi + \overline{\chi} \leftrightarrow \psi + \overline{\psi}$

• We can keep track of the evolution of species of interest as follows:

$$\frac{1}{a^3} \frac{d(n_{\chi} a^3)}{dt} = -\langle \sigma v \rangle \left[n_{\chi}^2 + \left(n_{\chi}^{eq} \right)^2 \right]$$

- $\chi(\bar{\chi}), \psi(\bar{\psi})$ DM and SM particles (bar: antiparticle)
- *a* is the scale factor
- $\langle \sigma v \rangle$ is the annihilation rate factor
- *eq* refers to equilibrium abundance

The Boltzmann equation (1/4)

- We can now move on to consider the main machinery of our work:
 - The covariant relativistic version of the Boltzmann equation
- With it, we can calculate non-equilibrium dynamics of a system
 - Here the comoving number density of a DM particle species in an expanding Universe

The Boltzmann equation (2/4)

• In its simplest form:

$$\hat{L}[f] = C[f]$$

- \widehat{L} is the Liouville and C the collision operator
- *f* is the relevant distribution function
- Upon integration over a volume in phase space:
 - LHS: Time evolution of the number density:

$$\frac{g}{(2\pi)^3} \int \hat{L}[f] \frac{d^3p}{E} = \dot{n} + 3Hn$$

• RHS: Includes interactions:

$$\frac{g}{(2\pi)^3} \int \boldsymbol{C}[f] \frac{d^3 p}{E} = -\int \left\{ \left(\prod_j d\Pi_j \right) (2\pi)^4 \delta^{(4)} \left(\sum_i p_i - \sum_f p_f \right) \left[\left(|\boldsymbol{M}|_{i \to f}^2 \right) \left(\prod_i f_i \right) \left(\prod_f (1 \pm f_f) \right) - (i \leftrightarrow f) \right] \right\}$$

The Boltzmann equation (3/4)

- The equation can be greatly simplified by assuming:
 - T-invariance
 - Maxwell-Boltzmann -statistics
 - Final-state particles coupled strongly to plasma
- Also introducing the thermally-averaged cross section, we get:

 $\dot{n} + 3Hn = -\langle \sigma v \rangle \left[n_{\chi}^2 - \left(n_{\chi}^{eq} \right)^2 \right]$

The Boltzmann equation (4/4)

- We can modify this further still with:
 - Comoving number density Y = n/s
 - * s is the entropy per comoving volume
 - Dimensionless variable x = m/T
 - Parameter λ
- Now the equation reads:

$$Y' = -\lambda x^{-j-2} (Y^2 - Y_{eq}^2)$$
$$Y_{eq} = 0.145 \left(\frac{g}{g_{*s}}\right) x^{3/2} e^{-x}$$

- * $j = 0,1, \dots$ refers to s,p,\dots -wave annihilation
- This is a so-called Riccati equation
 - No analytical solutions
 - Initial value = equilibrium value

Part III: Application

• Part I: Background

- Basic cosmological concepts
- Thermodynamics of the early Universe
- Why dark matter?
- What is dark matter?

• Part II: Machinery

- Cross section
- Number density
- Boltzmann equation

Part III: Application

- Freeze-out mechanism
 - WIMPs
- Freeze-in mechanism
 - FIMPs

WIMPs (1/2)

- WIMP = Weakly Interacting Massive Particle
 - (Most) popular model of particle dark matter
 - Interacts weakly with SM
 - Mass range generally from a few GeV to ${\sim}100~{\rm TeV}$
- Should be detectable even with current detectors
 - Failure to do so at this point a disappointment

WIMPs (2/2)

- Relic abundance via the freeze-out mechanism
- Estimated abundance gives the cross section of the weak scale
- Popular candidate: lightest neutralino of supersymmetry
 - Combination of superpartners of neutral gauge bosons and Higgs particles

Freeze-out (1/3)

- Not known by which mechanism DM abundance came to be
 - Not even known if DM was coupled to visible sector
- Freeze-out: a thermal production mechanism
 - The mechanism by which e.g. electrons obtained their relic abundance
- Particles initially in thermal equilibrium with primordial plasma
 - Nonzero initial abundance
 - Particles and antiparticles continuously created and annihilated

Freeze-out (2/3)

- As Universe expands and temperature falls, particles decouple from plasma
 - Low T: No significant production (Boltzmann-suppressed)
 - Expansion: Distances greater, no pair to annihilate with
- Relic abundance approaches a constant value
 - Assuming no other significant processes
 - If species remained in equilibrium, they would 'die out'
 - Recall exponential decay

Freeze-out (3/3)

- A figure might help to visualize the general trend:
 - Colored curves: Y for various cross sections (red highest)
 - Dashed curve: equilibrium curve for Y
 - Note the trends mentioned
 - Asymptotic behavior
 - Exponential decay

FIMPs

- FIMP = Feebly Interacting Massive Particle
- Small coupling strength
- Relic abundance via the freeze-in mechanism
- 'Somewhat like neutrinos'

Freeze-in

- 'Opposite' of freeze-out
- Particles initially *not* in thermal equilibrium
 - (Near-) zero initial abundance
- DM particles now accumulate over time
- But as T falls, the processes by which they are created become suppressed
 - · Relic abundance again asymptotically approaches a constant value

Summary

- A lot of indirect evidence for dark matter exists, but exact nature is unknown
- The covariant relativistic Boltzmann equation
 - Allows us to calculate non-equilibrium dynamics (e.g. DM abundance)
- Freeze-out
 - Thermal production mechanism
 - Nonzero initial abundance
 - Particles decouple from plasma
- Freeze-in
 - Non-thermal production mechanism
 - (Near-) zero initial abundance
 - Particles accumulate over time
- In both mechanisms:
 - Relevant process becomes Boltzmann-suppressed as Universe expands and cools
 - Abundance asymptotically approaches a constant value

Thank you!

NASA, ESA, M.J. Jee, and H. Ford (Johns Hopkins University)

