Introduction to NIST's Module-Lattice-Based Key-Encapsulation Mechanism standard (ML-KEM)

Anna Jokiniemi

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Faculty of Natural Sciences

Module-Lattice-Based Key-Encapsulation Mechanism / Anna Jokiniemi

NO

04/12/2024

Contents

- Threat of quantum computers to cryptography
- ML-KEM generally
- Key-Encapsulation Mechanisms (KEM)
- Module-Lattice problems (ML)
- Provable security

- Science of encrypting and decrypting data, so that only the intended recipient can access it
- For instance, phones handle a large amount of sensitive information and rely on various cryptographic methods
- This field is crucial, and we should all take an interest in it

- Sufficiently powerful quantum computers may become a reality within the next 20 years
- They can break many modern cryptographic methods
- Once such quantum computers are available, a significant amount of personal data could be at risk

- Harvest now, decrypt-later attacks
 - The adversary stores data encrypted using today's methods, and decrypts it once quantum computers become available
- If the data encrypted today remains sensitive in the future, it must be encrypted using quantum-resistant methods

- Transitioning to quantum-resistant methods takes time as it involves creating new methods, testing and implementing them
- It is critical to begin the preparation and development of quantum-safe solutions now

- Historically, cryptographic methods were considered secure if the designer could not find any vulnerabilities
 - NOT A GOOD STRATEGY! Adversaries can be cleverer than the designers
- Instead, cryptographic methods should be studied by multiple scholars, and a trusted organization should evaluate and standardize them

The National Institute of Standards and Technology(NIST)

- A large agency of the United States Department of Commerce
- Provides cryptographic standards that are very widely used
 - Pretty much all other security organizations follow their recommendations
 - Their standards have a significant impact on cryptographic methods

04/12/2024

Faculty of Natural Sciences

ML-KEM generally

- NIST takes the quantum threat seriously and has recently standardized new quantum-safe mechanisms
- One of these quantum-safe standards is ML-KEM
- ML-KEM is a quantum-safe cryptographic method standardized by NIST

NIST

04/12/2024

Faculty of Natural Sciences

- Alice wants to send a message to Bob securely
- They use a symmetric key for both encryption and decryption
- Alice generates a key and uses it to encrypt the message
- She then gives both the key and the encrypted message to Bob
- Since Bob has the key, he can use it to decrypt the message

HELSINGIN YLIOPISTO

HELSINGFORS UNIVERSITET

UNIVERSITY OF HELSINKI

- Computationally efficient encryption method
- However, we need a secure way for Alice to transfer the key to Bob
 - For example, they could meet in person
- In many cases, there is no secure way to do this

Public key encryption

- We use a pair of mathematically linked keys
 - A public key for encryption
 - A secret key for decryption
- Bob generates a pair of keys: he makes one public (maybe on website) and keeps the secret key private
- Alice obtains Bob's public key and uses it to encrypt message
- Only Bob's secret key can decrypt the message

04/12/2024

Faculty of Natural Sciences

12

Key encapsulation mechanisms (KEM)

- Unfortunately, public key encryption methods are inefficient for large messages
- Instead, a combination of both methods is used
- Alice generates a symmetric key and uses it to encrypt a message
- She then sends the symmetric key to Bob using the public key encryption method
- Bob can now decrypt the symmetric key and use it to decrypt the message

04/12/2024

Faculty of Natural Sciences

- All cryptographic methods rely on problems that are assumed to be hard to solve without a key
- If you have the key, the problem becomes easy to solve
- ML-KEM is assumed to be secure if a module-lattice problem, known as the module learning with errors problem, is hard to solve for both classical and quantum computers

- A lattice is a set of points with a regular and repeating structure
- A module is a specific algebraic structure
- A module-lattice is a lattice on which a module structure has been imposed
- There are several problems related to modulelattices that are assumed to be hard for both classical and quantum computers

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Faculty of Natural Sciences

Module-Lattice-Based Key-Encapsulation Mechanism / Anna Jokiniemi

- A module-lattice problem that is assumed to be hard
- ML-KEM is based on this problem
- We will use polynomials of the form $f = f_0 + f_1 X + \dots + f_{255} X^{255}$, where the coefficients f_i are sampled from the set $\{0, 1, 2, \dots, q 1\}$ for some q
- Vectors and matrices whose elements are polynomials of the above form are elements of a module

Parameters of Module Learning With Errors problem

- Public parameters set by NIST: q is a prime, and n and m are integers
- We select a secret vector $\mathbf{s} = (s_0, s_1 \dots s_n)$, where each element is a polynomial of the previously defined form

• We sample a matrix
$$\mathbf{A} = \begin{bmatrix} a_{0,0} & \cdots & a_{0,n} \\ \vdots & \ddots & \vdots \\ a_{m,0} & \cdots & a_{m,n} \end{bmatrix}$$
, where each element is uniformly sampled

polynomial of the previously defined form. The matrix $oldsymbol{A}$ is made public

Parameters of Module Learning With Errors

- We form an error vector $e = (e_0, ..., e_m)$, where elements are 255-degree polynomials, whose coefficients are sampled such that most of them are small numbers from the set $\{0,1,2,\cdots,q-1\}$
- Error vector is kept secret

• We form an equation with an error of the form

$$\boldsymbol{s} \cdot \boldsymbol{A} + \boldsymbol{e} = \boldsymbol{c} \pmod{X^{255} + 1}$$

• The vector *c* is made public

Module Learning With Errors equation

- Everything in the equation is public except for ${\it s}$ and ${\it e}$

 $\boldsymbol{s} \cdot \boldsymbol{A} + \boldsymbol{e} = \boldsymbol{c} \pmod{X^{255} + 1}$

- It is assumed to be very hard to solve *e* without knowing *s*, even with a quantum computer
- But if **s** is known, it becomes easy to solve *e*
- As long this assumption about hardness holds, ML-KEM can be considered secure

ML-KEM's working principle

- Let's form a KEM based on this hard problem
- Alice can hide the symmetric key she wants to send to Bob in the error vector, and only Bob with the secret vector, can retrieve it
- Now, you understand what ML-KEM is and its simplified working principle

04/12/2024

Faculty of Natural Sciences

Why we only assume the problem to be hard to solve?

- You may notice that we always say a problem is **assumed** to be hard
- It is impossible to prove that something cannot be solved; we can only prove that it can be solved by solving it
- But we must at least aim to model the hardness of the problem, so that we get some sense on its hardness

Provable security

- We model the hardness of a problem
- Modelling requires assumptions and simplifications, as with modeling any real-life phenomena
- Over the past 20 years, this field has faced criticism for the simplifications and presenting findings as if the methods were proven secure
- Today, empirical evidence is preferred

The two most widely used security notions. Added only for illustration [2]

GAME IND-CPA

 $(pk, sk) \leftarrow \text{Gen}$ $b \stackrel{\$}{\leftarrow} \{0, 1\}$ $(m_0^*, m_1^*, st) \leftarrow \mathsf{A}_1(pk)$ $c^* \leftarrow \mathsf{Enc}(pk, m_b^*)$ $b' \leftarrow \mathsf{A}_2(pk, c^*, st)$ 06 return $\llbracket b' = b \rrbracket$ $\begin{array}{l} \hline \textbf{GAME IND-CCA} \\ \hline 07 \ (pk, sk) \leftarrow \text{Gen} \\ 08 \ b \stackrel{\$}{\leftarrow} \{0, 1\} \\ \hline 09 \ (K_0^*, c^*) \leftarrow \text{Encaps}(pk) \\ \hline 10 \ K_1^* \stackrel{\$}{\leftarrow} \mathcal{K} \\ \hline 11 \ b' \leftarrow \mathsf{A}^{\text{DecAPS}}(c^*, K_b^*) \\ \hline 12 \ \textbf{return} \ \llbracket b' = b \rrbracket \end{array}$

04/12/2024

Faculty of Natural Sciences

Provable security of ML-KEM

- Because empirical evidence is favored, the documentation [3] on provable security is short and lacks intermediate steps, making it hard to follow
- My thesis aims to clarify the provable security of ML-KEM

The two most widely used security notions. Added only for illustration [2]

GAME IND-CPA

 $(pk, sk) \leftarrow \text{Gen}$ $b \stackrel{\$}{\leftarrow} \{0, 1\}$ $(m_0^*, m_1^*, st) \leftarrow \mathsf{A}_1(pk)$ $c^* \leftarrow \mathsf{Enc}(pk, m_b^*)$ $b' \leftarrow \mathsf{A}_2(pk, c^*, st)$ 06 return $\llbracket b' = b \rrbracket$ $\begin{array}{c} \hline \hline 07 & (pk, sk) \leftarrow \mathsf{Gen} \\ 08 & b \stackrel{\$}{\leftarrow} \{0, 1\} \\ 09 & (K_0^*, c^*) \leftarrow \mathsf{Encaps}(pk) \\ 10 & K_1^* \stackrel{\$}{\leftarrow} \mathcal{K} \\ 11 & b' \leftarrow \mathsf{A}^{\mathsf{Decaps}}(c^*, K_b^*) \\ 12 & \mathbf{return} \llbracket b' = b \rrbracket \end{array}$

GAME IND-CCA

04/12/2024

UNIVERSITY OF HELSINKI

Faculty of Natural Sciences

Summary

- Threat of quantum computers
- Introduced ML-KEM and how it works
- Discussed provable security and my thesis topic

THANK YOU FOR LISTENING!

[1] National Institute of Standards and Technology. FIPS 203: Federal Information Processing Standards Publication Module-Lattice-based Key-Encapsulation Mechanism Standard. Available online at https://doi.org/10.6028/NIST.FIPS.203.ipd. Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8900. Aug. 2024.

[2] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. "A Modular Analysis of the Fujisaki-Okamoto Transformation". In: Theory of Cryptography - 15th International Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part I. Ed. by Yael Tauman Kalai and Leonid Reyzin. Vol. 10677. Lecture Notes in Computer Science. Springer, Cham, 2017, pp. 341–371. isbn: 978-3-319-70499-9. doi: 10.1007/978-3-319-70500-2_12

[3] Roberto Avanzi et al. CRYSTALS-Kyber Algorithm Specifications And Supporting Documentation (version 3.01). Version 3.01. Jan. 2021. url: https://pq-crystals.org/kyber/data/kyber-specification-2021-01.pdf