Constraining twin stars with ab initio calculations

Sofia Blomqvist 12.3.

PAP301 Seminar in Particle Physics and Astrophysical Sciences

Contents

Quantum Chromodynamics (QCD)

Neutron stars (NS) & twin stars

Constructing equation of state (EoS)

Results

Image by Nidhi Yashwanth from Pixabay

Contents

Quantum Chromodynamics (QCD)

Neutron stars (NS) & twin stars

Constructing equation of state (EoS)

Results

QCD is the theory of strong interaction

- SU(3) non-Abelian gauge field theory
- Quarks and gluons
- Asymptotic freedom
 - Coupling decreases for increasing energy

→ Deconfining phase transition (PT)

Beringer et al., PRD 86 (2012)

- Confined matter
 - → Hadrons
- Deconfined matter
 - → Quarks and gluons

Contents

Quantum Chromodynamics (QCD)

Neutron stars (NS) & twin stars

Constructing equation of state (EoS)

Results

Neutron stars: Matter under extreme conditions

- Mass $\sim 1.1-2.1 M_{\odot}$, radius $\sim 9-14 km$
- Densities extend beyond nuclear saturation density $n_0 \approx 0.16 \, \text{fm}^{-3}$
 - At core maximum 5-10 n₀
- Good approximation: T = 0

Equation of state determines the inner structure of neutron stars

- NS equation of state (EoS) e.g. p(ε)
- Structure equations from general relativity:
 - dp/dr & dm/dr
 - Solve for given EoS to obtain e.g. mass-radius (MR) curve

$$p(\epsilon) \Rightarrow M(R)$$

What do we know about the EoS?

- Chiral effective field theory (cEFT), e.g. conservative result at $1.1n_0$
- Perturbative QCD, stateof-the-art result at 40n₀

Quark Chemical Potential $\mu - \mu_{iron}/3$ (MeV)

Kurkela et al. ApJ 789 (2014)

What do we know about the EoS?

- Chiral effective field theory (cEFT), e.g. conservative result at 1.1n₀
- Perturbative QCD, stateof-the-art result at 40n₀

Intermediate densities:

→ Microscopic models or interpolation

Quark Chemical Potential $\mu - \mu_{iron}/3$ (MeV)

Kurkela et al. ApJ 789 (2014)

One-to-one mapping between EoS and MR-curves

Nättilä & Kajava (2022), 2211.15721

Twin stars are hypothetical compact objects

- Strong first order phase transition (PT)
 - Hadronic matter → quark matter
 - → Mass twin phenomenon
- Cores of quark matter on twin branch
- Instability region caused by the PT
 - Visible in e.g. mass-radius curve

Contents

Quantum Chromodynamics (QCD)

Neutron stars (NS) & twin stars

Constructing equation of state (EoS)

Results

Construct the EoS for 1.1-10n₀:

- 1. Polytropic EoS p₁(n)
- 2. Phase transition Δn
- 3. Polytropic EoS $p_2(n)$

Transform $p(n) \rightarrow p(\epsilon)$

Construct the EoS for 1.1-10n₀:

- 1. Polytropic EoS $p_1(n)$
- 2. Phase transition Δn
- 3. Polytropic EoS $p_2(n)$

Transform $p(n) \rightarrow p(\epsilon)$

Construct the EoS for 1.1-10n₀:

- 1. Polytropic EoS p₁(n)
- 2. Phase transition Δn
- 3. Polytropic EoS $p_2(n)$

Transform $p(n) \rightarrow p(\epsilon)$

Construct the EoS for 1.1-10n₀:

- 1. Polytropic EoS $p_1(n)$
- 2. Phase transition Δn
- 3. Polytropic EoS $p_2(n)$

Transform $p(n) \rightarrow p(\epsilon)$

The EoS is connected to known results at high and low densities

- **cEFT EoS** at $1.1n_0$ [Hebeler et al., ApJ 773 (2013)]
- Extrapolated pQCD result at 10n₀
 [Komoltsev, Kurkela, PRL 128 (2022)]

The EoS must fulfil constraints to be considered viable

- Theoretical constraints at low- and high-density limits
- Subluminality: c_s < 1
- Supports at least $2M_{\odot}$ stars
- Tidal deformability $\tilde{\Lambda}$ < 720
 - Obtain from NS-NS merger GW170817
 - Related to the tidal properties of the binary components

Generating twin star solutions

- Continuation to work by Gorda et al., ApJ 955 (2023)
- 1st ensemble: without any restrictions
- 2nd ensemble: 1,000,000 EoS with $1.1n_0 \le n_{PT} \le 2.5n_0$
 - Pick only solutions with twin branch
 - Impose astrophysical constraints
 - → 171 twin star solutions remain

Contents

Quantum Chromodynamics (QCD)

Neutron stars (NS) & twin stars

Constructing equation of state (EoS)

Results

Twin stars originate from a small parameter space

Solutions from 1st ensemble

(do not pass astrophysical constraints, only for comparison)

Solutions from 2nd ensemble

(pass astrophysical constraints)

EoSs exhibit differences in the size of the PT

- Compare to NS ensemble by Annala et al., PRX 12 (2022) (black outlines)
- Differences e.g. in the PT size and instability region (grey color)

Twin stars only marginally pass the astrophysical constraints

- Maximum masses 2-2.1M_☉
- Large radii on NS branch \rightarrow leads to large $\tilde{\Lambda}$

Twin stars obtain sizable cores of quark matter

Largest cores typically obtained for low-mass twins

Contents

Quantum Chromodynamics (QCD)

Neutron stars (NS) & twin stars

Constructing equation of state (EoS)

Results

- Systematic study of twin stars
 - Interpolation with polytropic EoS including an explicit first-order PT
 - Known results at high- and low densities and astrophysical constraints
- Twin stars
 - Obtain small parameter space
 - Marginally pass astrophysical constraints
 - → Do not seem to be a very probable scenario

- Polytropic EoS does not replace realistic EoS
 - Serves as heuristic guidance
- Use different approach in a future study (e.g. c_s^2 interpolation)
- Observation of twin stars would serve as a signal of a first-order PT in the QCD phase diagram

Thank you!

