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Notation

We use the metric of signature (-1, 1, 1, 1)

Greek indices (α, β, ...) run from 0 to 3

Lower case Latin indices (a, b, ...) run from 1 to 3

Upper case Latin indices (A,B, ...) run from 2 to 3
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Introduction to General Relativity

General relativity as a theory of spacetime

General relativity, a theory of gravitation, was introduced by Albert
Einstein in 1915.

It is based on the principle of equivalence.

This leads to the concept of a curved spacetime, where the presence
of mass and energy distort the geometry of the universe.
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Introduction to General Relativity

The metric tensor defines a spacetime manifold

The metric tensor gµν(x) allows for a generalization of the dot
product of the ordinary Euclidean space.

The metric alone defines the nature of spacetime it encodes.

It can also be written in terms of the line element:

ds2 = gαβdx
αdxβ
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Introduction to General Relativity

The second derivatives of the metric describe curvature

The connection Γαβγ is a structure in the manifold that helps define a
covariant derivative.

Connection of the manifold depends on the first derivative of the
metric.

The Riemann tensor Rαβγδ describes the curvature of the spacetime.

The Riemann tensor depends on the derivative of the connection and
as such on the second derivative of the metric.
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Introduction to General Relativity

Einstein tensor and energy-momentum tensor are related

The Einstein tensor Gµν is a symmetric tensor containing information
about the manifold’s curvature.

The energy-momentum tensor Tµν describes the matter content of
the universe.

These are related via the Einstein equation.
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Introduction to General Relativity

Einstein equation - the equation of general relativity

The Einstein equation in geometrized units (where G = c = 1) is

Gµν = 8πTµν , (1)

where

Gµν = Rµν −
1

2
gµνR (2)

This equation relates the geometry of spacetime to the distribution of
matter and energy within it.
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Introduction to General Relativity

Solutions to the Einstein equation

There are many exact solutions to the Einstein equations:

Minkowski space, which is familiar from special relativity.

FLRW spacetime, which is used in cosmology.

Schwarzschild spacetime, which predicts the existence of black holes.
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Introduction to General Relativity

Minkowski space - the simplest solution

Minkowski space is the spacetime of special relativity, where there is
no gravity.

The metric of Minkowski space is

ds2 = −dt2 + dx2 + dy2 + dz2 (3)

We say that the distance is

timelike, when ds2 < 0

spacelike, when ds2 > 0

and lightlike (null), when ds2 = 0
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Introduction to General Relativity

Friedmann-Lemâıtre-Robertson-Walker (FLRW) spacetime

The FLRW universe is familiar from cosmology.

It describes a homogeneous and isotropic expanding (or contracting)
universe.

The FLRW metric is

ds2 = −dt2 + a(t)2
(

dr2

1− Kr2
+ r2dΩ2

)
, (4)

where K is the spatial curvature of the universe and a(t) is a scale factor.
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Hypersurfaces and why they are useful

Hypersufaces - the basics

Definition of Hypersurface

A 3-dimensional subsurface of 4-dimensional spacetime.

Defining equations in the 4D spacetime

Φ(xα) = 0 or xα = xα(ya)

A Hypersurface

can be thought of as some surface that exists in 4D-spacetime.

has a metric that describes it.

can be timelike, spacelike or null.
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Hypersurfaces and why they are useful

Why hypersurfaces: to study the junction conditions
geometrically

We take the boundary between the spacetimes to be a hypersurface.

Then the intrinsic properties of hypersurface, that are coordinate
independent, become interesting.

Using these intrinsic properties we can formulate the junction
conditions in a purely geometric way.
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Hypersurfaces and why they are useful

First fundamental form of the hypersurface

The intrinsic metric of hypersurface, also called the first fundamental
form, is a projection of the metric in 4D spacetime:

hab = gαβe
α
a e

β
b , (5)

for time- and spacelike case, and

σAB = gαβe
α
Ae

β
B , (6)

for the null case. Here eαa = ∂xα

∂ya are the basis vectors in hypersurface.
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Hypersurfaces and why they are useful

Second fundamental form of the hypersurface

The second fundamental form, also known as extrinsic curvature, tells us
how the hypersurface is embedded in the external 4D spacetime:

Kab ≡ nα;βe
α
a e

β
b (7)

This carries information about the derivative of the metric in the normal
direction. But this is not useful in null case, and we need to define
transverse curvature:

CAB = −Nαe
α
A;βe

β
B (8)

where Nα is a transverse null vector of the hypersurface.
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The junction conditions and how to get them

What is the situation like?

We have the following situation:

We now want to see if the following distribution forms a valid
distributional solution to the Einstein equation:

gαβ = Θ(l)g+
αβ +Θ(−l)g−

αβ (9)

Figure from A Relativist’s Toolkit by Poisson
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The junction conditions and how to get them

The derivative of the metric gives the first junction
condition

The derivative of the metric becomes

gαβ,γ = Θ(l)g+
αβ,γ +Θ(−l)g−

αβ,γ + εδ(l)[gαβ]nγ (10)

where [gαβ] is the jump of metric across the hypersurface. This means that
the connection of the spacetime would have a term proportional Θ(l)δ(l),
which is not distributionally defined. This gives the first junction condition:

[gαβ] = 0 (11)

⇒ [gαβ]e
α
a e

β
b = 0 (12)

[hab] = 0 (13)
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The junction conditions and how to get them

Are there any Singularities?

The first junction condition itself won’t be enough to rid us of
singularities in curvature.

This is because the Riemann tensor depends on the second derivative
of the metric.

The singularity appears in the form of the Dirac delta function.
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The junction conditions and how to get them

Second junction condition gets rid of all singularities

To get rid of this singular part, the term proportional to the delta
function must be zero.

Turns out this is the same as demanding that the jump in extrinsic
curvature across the hypersurface be zero.

This gives us the second junction condition:

[Kab] = 0
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The junction conditions and how to get them

Is there a physical explanation for the singularity?

In the case that the second junction condition is not satisfied, we can
provide a physical explanation.

The delta function in the Riemann tensor implies a delta function in
the energy-momentum tensor.

Thus the delta function singularity can be interpreted as there being a
singular thin shell of matter at the hypersurface.
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The junction conditions and how to get them

Example: Oppenheimer-Snyder collapse

Model of the collapse of a star into a black hole.

The exterior spacetime (V+) is the Schwarzschild and the interior
spacetime (V−) is FLRW.

ds2+ = −fdt2 + f −1dr2 + r2dΩ2 (14)

ds2− = −dτ2 + a2(τ)(dχ2 + sin2 χdΩ2) (15)
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The junction conditions and how to get them

Example: Oppenheimer-Snyder collapse

Figure: The Oppenheimer-Snyder spacetime.

Figure from A Relativist’s Toolkit by Poisson
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The junction conditions and how to get them

Example: Oppenheimer-Snyder collapse

From the junction conditions, we get the relationships between the
coordinates of the two spacetimes and by combining them, we get

M =
4π

3
ρR3 (16)

where R is the radius of the hypersurface in the region V+. It can also be
written in terms of coordinates of V−:

R(τ) = a(τ) sinχ0 (17)

where χ0 is the value of χ at hypersurface in the coordinates of V−.
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The junction conditions and how to get them

Other applications

Black hole universe

Cosmological phase shift

Brane worlds picture of the universe
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The junction conditions and how to get them

Summary

Hypersurfaces are convenient for describing the junction conditions.

The junction conditions demand the jump in intrinsic metric and
extrinsic curvature to be zero across the two sides of the hypersurface.

When the jump in extrinsic curvature is not zero, we find that there is
a singular thin layer of matter on the hypersurface.
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The junction conditions and how to get them

Thank you for your attention!
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