

Use of a commercial CMOS-sensor in radiation detection and measurement

Niko Annala 9.4.2025

- Semiconductor radiation detectors

Radiation detection applications

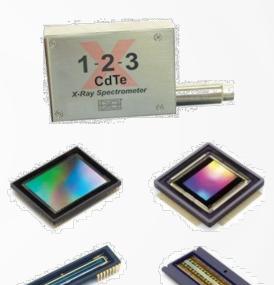
- CMOS sensor characteristics
- Test setup
- Results and Analysis
- Conclusion

Radiation detection applications

- Radiation detectors have many applications in fields such as:
 - Particle physics
 - Medical imaging
 - Nuclear energy
 - Radiation safety

The need for economical radiation detectors

- Despite the numerous fields and their applications even entry-level radiation detectors often cost several hundred euros, limiting accessibility for education, research, and hobbyist use
 - → This highlights a clear and growing need for affordable, reliable alternatives

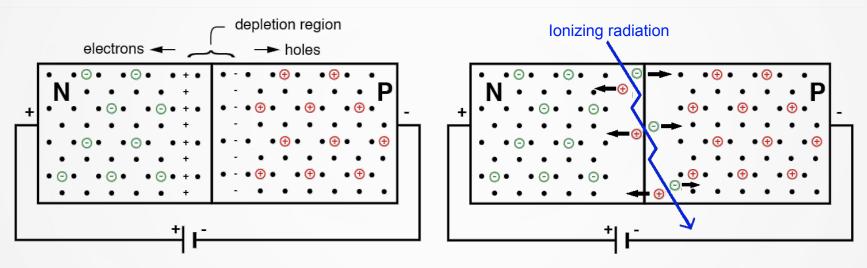


Semiconductor Detectors (SD)

- Recent advancements in the semiconductor industry have increased the popularity of semiconductor-based radiation detectors.
- Common SDs include:
 - Charge-coupled devices (CCD)
 - Silicon drift detectors (SDD)

Faculty of Science

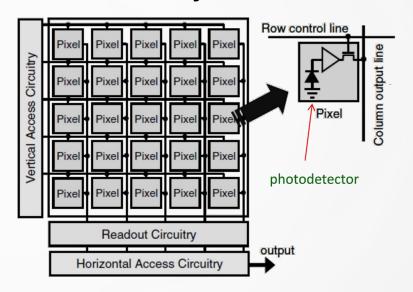
Complementary Metal-Oxide-Semiconductor (CMOS) sensors



Working principle of SDs

- Semiconductor sensors, like most semiconductor electronics, operate by joining two oppositely "charged" semiconductor materials together, forming a p-n junction
- In SDs, the p-n junction is operated under reverse bias, which widens the depletion region (also known as the active region in SDs)
- Ionizing radiation passing through this region generates electron-hole pairs
 - → These charge carriers are separated by the electric field, producing a measurable electrical signal

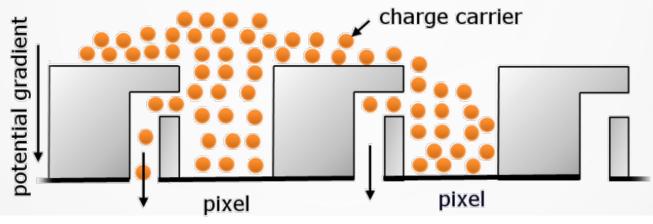
P-N junction in reverse bias operation


CMOS sensors

- Popularized by their adoption in consumer electronics
- Properties of CMOS sensors:
 - Active-Pixel Sensor (APS)
 - Low operating voltage
 - Pixel saturation or "blooming"

Faculty of Science

Worse signal-to-noise ratio (SNR) compared to CCDs


CMOS sensor layout

Blooming in CMOS sensors

- Highly energetic particles can deposit so much energy in a pixel that the resulting charge overflows into neighboring pixels
 - If the particle is fully absorbed, its total energy can still be estimated by summing the signal from the affected pixel and its neighbors

Faculty of Science

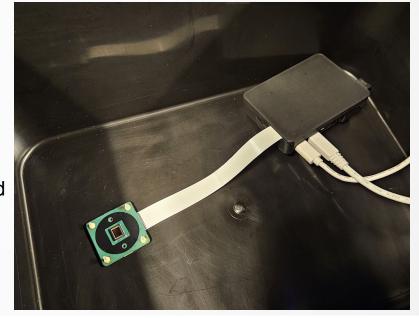
Sensor overview: Raspberry Pi HQ Camera

- The sensor was chosen for its commercial availability, low cost and extensive code libraries
- Sensor specifications:
 - Sensor size: 7.5 mm × 5.5 mm
 - Pixel size: 1.55 μm × 1.55 μm
 - o Resolution: 4056 × 3040 pixels
 - Sensor thickness: ~ 100 μm

Image from Raspberry PI product page

Sensor "dead layer"

- The sensor is covered by a ~1mm protective glass layer, which blocks alpha particles completely
- Beta (electrons) particles and gamma rays can still penetrate this layer and be detected effectively

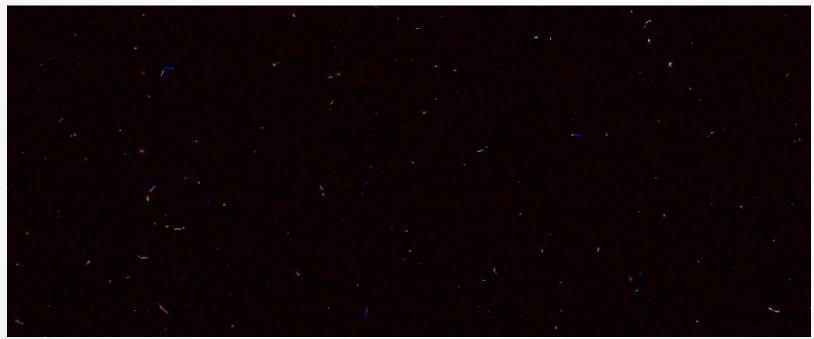

First radiation detection test

- The first tests of the sensor's radiation detecting capabilities were performed by holding a test source (Fe-55) directly on top of the sensor inside a dark room and observing the image feed:
 - We were able to observe tiny flickering dots in the image that disappeared as the source was moved away from the sensor
 - → This confirmed that the sensor was responding to ionizing radiation

Data collection test setup

- The sensor was placed inside a dark box and a small tray with an opening was placed on top of the sensor
- Three sources (Am-241, Ba-133 and Cs-137) were tested, one at a time:
 - Each source was placed on the tray, and images were captured with a 10-second exposure time
 - These images are shown in the next slides

Americium-241



Barium-133

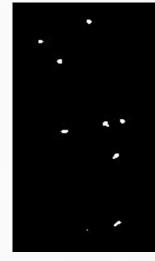
Cesium-137

Preliminary Results

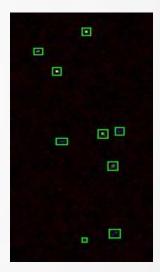
- The images show clear detections of beta and gamma particles
- The dead layer prevents the detection of alpha particles
- The number of hits roughly correlate with source activities
 - At least with Am-241 and Ba-133, the electron trails make Cs-137 hit counts difficult to estimate

Electron trails from Cs-137

Gamma particles of varying energies from Ba-133



Analysis (work in progress)


- The image data analysis is performed using the OpenCV python library
- Here is an example of how the hit counts were estimated from the images
 - Estimating deposited energies from these counts should be straightforward

Starting image

Gaussian threshold

Connected components

Conclusions

- The CMOS sensor shows promise as low-cost radiation detector
- To fully assess the sensor's energy measurement capabilities, further analysis is required
- Future experiments could explore whether the sensor's image-sensing capability can be combined with radiation detection to determine the radiation's point of origin

Thank you for listening!

References

Knoll, G.F. (2010) Radiation Detection and Measurement. 4th Edition, Wiley, Hoboken, 217.

Lin, J., Wang, F., Wang, J. et al. An investigation of γ radiation detection with a CMOS imaging sensor. Sci Rep 14, 23399 (2024). https://doi.org/10.1038/s41598-024-75096-8

L. Servoli et al. . Use of a standard CMOS imager as position detector for charged particles , Nucl. Instr. and Meth. A 215 (2011) 228-231, 10.1016/j.nuclphysbps.2011.04.016

Megat Harun Al Rashid Megat Ahmad . Detection of ionizing radiations using CMOS sensor from consumer camera device. Chapter 1: The gamma radiation. TechRxiv. May 31, 2023.

Slide 3: PET scanner image from Positron's product page

Slide 5: Top image from AmpTek product page and Bottom image from Teledyne DALSA

Slide 7: Modified from:

https://www.allaboutcircuits.com/textbook/semiconductors/chpt-2/the-p-n-junction/

Slides 8 & 9: "Application of CMOS sensors in radiation detection", S. Ashrafi, url=<u>https://particles.ipm.ac.ir/conferences/2018/dae/pdf/Ashrafi.pdf</u>