“On Facing up to the Semantic Challenge”

1. INTRODUCTION

Rick Grush recently wrote a pgper on the theoretica constraints of representational
accountsin neuroscience (Grush, 2001). In it he presents computationa neuroscience
with the following challenge: How to distinguish between computation - understood as
computational processing of ”genuinely semantic” information - and any other complex

causal process, merely governed by a computationally tractable rule?

Obvioudly, there are countless physical systemsthat are not computers but in which there
nevertheless occur state transitions that can be modeled or simulated computationally.
How exactly is one then to distinguish computational systems from computable systems
(i.e. systems that perform computations form systems that can be described by
computations)? The natural answer would be to invoke a semantic notion of
computation. The semantic notion of computation holds that computations (performed by
the system) are information processing operations over semantically evaluable “mental”
entities, contents (here understood as abstract objects), represented in a physical medium
(Piccinini 2004). This of course charges one with providing theory of menta content

appropriate for the purposes of computational neuroscience, neurosemantics.

Indeed, Grush frames the problem (and his own solution) in terms of semantics,
specificaly, in terms of a distinction between what he calls a-semantics and e-semantics
(arsemantics is isomorphism between the causal neural processes and some abstract
algorithm, e-semantics is isomorphism between the causal neural process and the
physical causal processes of the environment). He argues that recent computational
neuroscience treats computation and representation a-semantically, but that thisis
inadequate and should be replaced with amore genuinely semantic notion of computation

and representation, e-semantics.



In this paper | discuss Grush’s challenge and his solution in terms of a slightly different
distinction between what | call “horizontal” and “vertical” approachesto assigning a
semantics to neural activity. The main point | will argue for isthat Grush’ s proposed
aternative to asemantics (which, in the terminology introduced here, is vertical), his e-
semantics, isaversion of horizontal content-assignment, but that what one needs to fully
address the semantic challenge of computational neuroscience, should be a vertical
semantics. However, what oneredly needsis a“top-down vertical” semantics - call it c-
semantics - rather than the sort “bottom-up” vertical semantics such as the a-semantics
rightly criticized by Grush.

My negative argument against e-semantics and my positive argument for a c-semantic
construal of computation and representation is based on considerations concerning the
poverty of the stimulus hypothesis and the veridicality assumption (Akins, 1996)

prevaent in contemporary neurosemantics and computational neuroscience

2. NEUROSCIENCE AND COMPUTATION: THE SEMANTIC
CHALLENGE

There are many types of automata that can compute information, i.e. implement
algorithmic computations, by their state transitions. Computational neuroscience is
founded on the computational hypothesis of the mind/brain: that complex neural systems
are such automata, and that understanding this property of the brain is useful for

accounting for much of the intelligence we find in the behavior of organisms.

In alocus classicus of the approach, Churchland, Koch & Sejnowski (1990) define the
assumption thus (cf. Churchland & Sejnowski, 1992 and Cummins (1989)):

(D) “In amost general sense we can consider a physical system asa
computational system just in case there is an appropriate (revealing) mapping

between some a gorithm and associated physical variables. More exactly, a



physical system computes a function f(x) when there is (1) a mapping between
the system’ s physical inputs and X, (2) a mapping between the system’s
physical output and y, such that (3) f(x) = y”

According to definition (1) all it takes for a system to compute a function f — al that is
required to make the system “a computer” —isfor its causa processesto be appropriately
equivalent to some agorithm in this sense. Computationality is here clearly identified
with computability: if the state transitions conform to some regularity that can be
formally captured by function f, then that causal process computes the function f.

The trouble with this account is basically that computable state transitions occur in

countless systems that are not computers. Indeed, any computable causal process trivially
redlizes any algorithm describing its behavior reasonably accurately®. What, then, beyond
(assumed) computability makes neural systems computational in the sense computational

neuroscience isinterested in?

The natural responseisto fall back on the semantic notion of computation (as defined in
Piccinini 2004a, 2004b), and insist that the difference between genuine computation and
mere computability isthat in semantic computation the entities which computational
relations are defined over are (mental) representations, i.e. entities which are semantically
related to each other and/or the external world?. The semantic notion of computation and

representation thus prevents our notion of computation from becoming vacuous.

Thisisthe solution discussed by Grush, and as far as | can see endorsed by many
computational neuroscientists aswell. For example, Sejnowski et al. (1988) state that:

! Asdso discussed, for example, by Putnam and Searle (for historical references see Piccinini, 2004ab).

2] e. an account where the notion of mental representation or semantic information is taken as more
fundamental, and computation defined derivatively, rather than the other way round. Computation isto be
defined, in the first instance, with explicit reference to mental entities (representations) and operations
which operate on the contents of said representations (e.g. Fodor (1981, 1998)). In short: the semantics of a
computation are essentia to the identity of that computation, and content is constitutive of a computation in
that changing the contents defines adifferent computation, whereas changing the vehicles only makes a
difference at the level of representation/algorithm. In externalist or “broad” semantics with which | will be
concerned with in this paper, facts aout reference arein turn constitutive of content, Dretske (1981,1988),
Fodor (1990), Millikan (1989).



“Mechanical and causal explanations of chemical and electrical signalsin the
brain are different from computational explanations. The chief differenceisthat a
computational explanation refers to the information content of the physical signals
and how they are used to accomplish atask.”

Assuming the semantic notion of computation we can see why the solar system, for
example (Grush’s example), does not “compute” anything in accordance with the laws of
Kepler, Newton or Einstein. (Some of) its state transitions may be computable in the
sense of being governed by rules that can be framed in computationa terms. The system
can be simulated computationally but is not computational, in the sense of “performing’

those computations in any substantive sense.

Not all computational modeling of neural processes counts as computational
neuroscience, then. It is quite possible, and indeed common, to model physiological

mechanisms, rather than mechanisms at “the representational level” of the brain.

This, of course, means one needs an explicit and non-circular definition of representation
and semantic information. To do computational neuroscience in the full sense one needs
to be “assigning semantics’ to the internal states of the brain that your computational

account of the mind and behavior rests on®,

Y et, looking at one example of contemporary neuroscience (Koch, 1990), Grush (2001)

observes that:

“The [computational account] involving the bullfrog ganglion cell appearsto
involve no more than would be involved in any example of computer-simulation-
cum-experimental-testing endeavor, of the sort familiar in computational physics,

economics, meteorology, and dozens of other areas.” Grush (2001, p.162).

% With human-built models we can ,of course, refer to the designer’ sintentions and interpretations, a course
that is not available in naturalizing semantics of brain states.



The computational description in question involves nothing in the way of a genuinely
semantic account of the signals and signal processing operations discovered in the
intricate physiology of the neural tissue, as required by the semantic view of

computation.

The upshot of Grush’s analyses is that computationa neuroscienceisin dire need of a
principled and workable notion of representation, and the neuroscience itself does not
provide an account of what it isto ”semantically compute” something, it presupposes
one; hence “the semantic challenge’.

2.1. Grush’s Solution: a-semantics and e-semantics

Grush suggests we should think of the semantic challenge in terms of a-semantics,
isomorphism to an algorithm, and e-semantics, isomorphism between environmental
variables and the variables of an internal system used in the brain to ”stand in for” the
environmental system. In a-semantic, quasi-computational, neuroscience the
computational account presents the system as corresponding to, “representing”, any
algorithm that it can (“revealingly”) be considered an instantiation of.

Grugh'’s contention is that what definition (1) above captures, is merely the “a-semantics”
of a system, when what you need to do genuine computational neuroscience in the full-
blooded sense is semantics of acompletely different sort: “ e-semantics’.

The problem is that, as the name suggests, a-semantic accounts are not really semantic at
all, and the ubiquity of computability threatens to turn the whole idea of computational
neuroscience vacuous. Allowing aneura process to be” computational” merely on the
grounds that it conforms to some agorithm istoo weak. What Grush proposes we need

are e-semantic accouts - accounts where you can see that:



2 “The brain (or parts thereof) computes in the sense that it processes
information - it deals with what genuinely are information-carrying states —
e.g. states that carry information about objects or states of affairsin the
environment” . (Grush, 2001, p.158).

“[1]f there were some principled means to determine which states are representing
aspects of the environment [...] We would have the means to distinguish those
systems that are genuinely computational in the required sense, and there would
be no danger of computational neuroscience being assimilated without residue
into the general category of computer simulation studies.” (Grush, 2001, p.162).

What we need, then, is anaturalistic theory of how neurons acquire meaning,
neurosemantics, and the current brand neurophysiological modeling research isn’t going
to provide one (Grush, 2001, pp. 168-169).

The genera approach in informational semantics (Dretske, 1981, 1988, Eliasmith 2000,
Fodor, 1990, Grush, 1997, 2004, Millikan, 1989, Ryder 2002, 2004, Usher 2001, 2004) is
something like this: To get representation out of information you start out with a
(physical) account of the dependencies between environmental variables and neural
activity. The causally interacting elements (vehicles)* of the system to be described as
computational (the nervous system) are representations if they are by design isomorphic
to something else, and are used in the system to stand in for that something (Cf. Ryder
2002, 2004). Relying on the mathematical notion of isomorphism (see Gallistel 1990 for
aworked out example) and perhaps using the statistical notion of mutual information to
define “standing in for” (Eliasmith 2000, Usher 2001, 2004) provides means of
disambiguating what the individual brain states could stand in for.

This picture has considerable intuitive plausibility, and probably captures much of the

logic of representational talk in current neurocience. Y et | will next argue that the

4 Grush calls them articulants.



account of semantic relations between the brain and the world it givesis incorrect. The
problem with thisanalysisisthat it presupposes avery robust sense in which the content
of the representation must be “out there”, in the environment, and that the very function
of neural representations is to reflect with fidelity structures aready in the environment

(the”veridicality assumption”).

3. POVERTY OF THE STIMULUS AND THE VERIDICALITY
ASSUMPTION

For the purposes of this paper, | define “poverty of the stimulus’ as the hypothesis that
the extensions of most concepts do not constitute physica natural kinds, only the concept
constitutes a (cognitive) natural kind (e.g. Fodor, 1998). Likewise, by “veridicaity
assumption” | mean the converse hypothesis that the function of representation isto “pick
out” or find out real kindsin the environment, implicitly represented in the information
available to the organism viaits sensory apparatus’ (cf. e.g. Millikan 1998, Churchland &
Churchland, 2002).

If you are working within the framework of externalist® neurosemantics and the semantic
notion of computation, then you need to take a stance on the poverty of the stimulus
hypothesis. Asfar as | can tell, all current neurosemantics, including Grush’s e-
semantics, seem inconsistent with the poverty of the stimulus (and instead buy into a very

strong veridicality assumption).

® Thiswould imply that what are traditionally called secondary qualities are not just illusory, but that their
perception is a case of misrepresentation — the system working not as designed. Ryder (2002), for one,
explicitly andyses them in these terms.

®See footnote 2. All isomorphism based and function-to-stand in for type accounts considered here are
externalist in this sense.



The problem with thisisthat, empirically, it seems plausible that the poverty of the
stimulusistrue, and should therefore be taken into account as a constraint on
philosophical theory construction’.

Take, for example, color concepts. On the assumption of poverty of the stimulus, you
would not consider color properties (categories) such as red, purple and brown as

something in the environment, implicit in the structure of the physical energy impinging
on an organism. Color is amind-dependent property®, only “there” for a particular kind
of organism. Assessing the facts about color as a natural phenomenon must therefore take
into account not only the physical properties of the environment, but the cognitive

properties constituting the point of view of the organism.

From this perspective, in genuinely mental representation thereis“more information” in
the representation of adomain than is present or available in the domain itself - the distal
physical stimuli. This additional information that the “poverty” of the stimulus requires,
represents the organism’s contribution to the natural phenomenon (say, the ordering
relations that define a color space). And insofar as the information constitutes a cognitive
(as opposed to physiological) characterization of the organism, it is precisely what sets
apart the study of cognitive phenomenaand cognitive natural kinds from the study of the

physics of the organisms’ natural environment and/or brain.

The alternative (which follows from the veridicality assumption) isthat you end up with a
theory where representation reduces into mirroring or reflecting simple (though possibly
quite abstract) physical features of the environment, and the organism is charged with
finding the true classifications (physically natural ways of organizing the distal
environment into objects, categories, properties etc.). Arguably, thisisn’t a all what

brains do — we are capable of representing the environment under non-physical concepts.

" Of course, it is not possible within the scope of this paper to assess the empirical vaidity of the poverty of
stimulus assumption. Its ubiquity among researchers investigating two forms of cognition that are fairly
well understood, namely color perception and natural language, make it at thevery least alive
philosophica option. | will here simply assess some of its philosophically interesting consequences for
neurosemantics.

8].e. asecondary quality.



It isastrong empirica claim that the function of information gathering and processing
systemsisto find out about physical features of the environment (For agenera criticism
of “the naturalist camp’s” endorsement of the veridicality assumption, see Akins, 1996).

But thisis what you get if you begin with the ” actual referent”, as Grush’s e-semantics
and all current neurosemantics seems to do, and then base your semantics on causal
history, isomorphism and what natural (physical)  kind the referents belong to, all that is

left for the organism is for it to "take in” that whichis” given”.

Suppose you had arobust physiological theory that allowed you to identify putative
representational vehicles (i.e. neurd response classes) in the brain with great accuracy
and reliability. To get asemantics assigned to the responses (taking the responsesto be
representations) you could define the referent as the (physical) stimulus properties to
which your vehicles show the greatest statistical dependence with (perhaps by a mutual
information measure, as discussed by Eliasmith 2000 and Usher 2001, 2004). In other
words you need to generalize to denotation’. The veridicality assumption implies that the
correct way is to take the denotation of the vehicle to be the physical kind to which the

referent belongs.

Millikan (1998, p.57) puts this clearly:

“It isnot amatter of logic, of course, but rather of the makeup of the world, that |
can learn from one observation what color Xavier' s eyes are or, say, how the
water spider propelsitself. It is not amatter of logic that these things will not vary
from meeting to meeting. [...] most of the knowledge that carries over about
ordinary substancesis not certain knowledge but merely probable knowledge|...]

But no knowledge whatever carries over about nonsubstance kinds.”

® Taking the dista categories (in the context of neurosemantics) as given under amentaistic description
would be circular, and prejudge precisely the crucid issues; namely, what it is for there to be intensions and
what the intension of a particular representation is. The environment must be environment under a

physi calistic description.

19 Thisiswhere the disjunction and misrepresentation problems comesin to standard information
semantics. The statistical depedendence approach is explicitly designed for this step.



The very representational content of the vehicle would be determined by the real category
structure of the world behind the sensory “evidence” available to the organism. Yet,
according to the poverty of stimulus hypothesis, there is no such physical category
structure (i.e. there is nothing specific that, say, brown things have in common
physically). There isno natural class that would allow you to “generdize to denotation”
based on a sample of the stimuli belonging to a class (say, brown things). Knowing that a
motley selection of objects all fall under the concept BROWN does not enable you to
pick out the denotation (all brown things) from the environment without further

information, based on just their physical properties (surface reflectances, say)™.

Not assuming the referents constitute a sample of areal physical kind (poverty of the
stimulus) leaves you logically with two options. One would be to assume that they
therefore must constitute an ”unnatural” (nominal) distal physica category. But this does
not seem to offer the right solution. For we are committed to naturalizing cognition, so
what we would want is atheory of colors. The other option is to assume that the theory of
colorsis (in part) atheory of organisms with color vision (standard view in color
science), and it seems the natural one.

It does not follow from naturalism, however, that the theory that alows you to generaize
to denotation must be a physical one, less so atheory of the distal stimuli. Consider
Millikan again (ibid.):

“There are various contemporary interpretations of the underlying reasons why
there are such things asreal kindsin nature|[...] what makes something a natural
kind isthat there is some such reason: kinds are not natural if they yield inductive
knowledge by accident. . [...] If a[representation] isto have genuine ‘rich
inductive potentia’ it had better attach not just to a pattern of correlated
properties, but to aunivoca explanatory ground for correlation.”

1 Plus some general striving toward economy of representation.

10



It isnot part of commitment to naturalism — or even externalism - as such, that the source
of correlation, or “the univocal explanatory ground for correlation”, must be entirely
externd to the organism’s brain. What is required for akind to be real (for the animal) is
for encounters with it to license induction to new encounters. But note that the brain of
the organism (and all information within) is an important constant across contexts. The
properties need to “carry over” —but what needs to carry over is represented properties.
Our encounters with a brown object do license inductive inferences about further
encounters — but this is really as much in virtue of our brain’s peculiar color constancy
mechanisms, rather than any physica properties of brown objects as such. Indeed, in the
case of colors at least, physical properties (e.g. spectra distribution or surface

reflectance) are precisely the kinds of things we cannot expect to carry over™.

4. CONCLUSIONS

What lessons are we to draw for computational neuroscience and how does this all relate
to the distinction between horizontal and vertica semantics, mentioned at the beginning
of the paper? Let me take up the distinction between horizontal and vertical semantics
first.

One may think of horizonta “information coding” asthe causa process of activating an
“indicator state” (that is, aneural response class whose activation is causally/statistically
dependent on its referent)™. Looking at information coding vertically, on the other hand,
one looks for entities within the organism which can be considered to represent the value

of some variable - the fact that the entity/vehicle was in such-and-such state would “stand

12 Now, it could turn out, as a matter of empirical fact, that the information added to the categorization over
and above the sample of brown things and physical regularities in this case would only serve to make the
distal categories more accidental, or random. The additional information needed to specify the appropriate
way to generalize to denotation might be a brute incompressiblelist of reflectances belonging to the
category or not. In such a case the contribution of the organism would reflect just so many independent
accidents of ontogenetic and phylogenetic history - there would be no theory of the contribution of the
organism, and color would not turn out to be anatural phenomenon after al. (To be more precise, no theory
of colors - say the nature of the cognitive kind BROWN - would be forthcoming, which amounts to the
same thing). | see no warrant for such pessimism.

3 And/or whose structure is designed to be isomorphic with its “intended referent”

11



for” the fact that the value of the variable was such-and-such - and in genuinely semantic
contexts the variables would be elements of a menta representation of some domain.
That is, “content (concepts, propositions, properties...intensions) coded into the

organism”.

Philosophically, these are two quite different ways of looking at representation and
information (cf. Cummins, 1996), invoking two very different (and complementary)
notions of ” representation”, which perhaps need to be kept separate more carefully than is

customary in neuroscience.

Now, a-semantics and c-semantics are both verticd, while Grush’ s e-semanticsis
horizontal. The difference between a-semantics and c-semantics is that in asemantics the
algorithmic computations are a representation of the organism, whereas in c-semantics

the organism is arepresentation of the computations.

In a-semantics, the internal physical configurations of neural tissue and their state
transitions can be seen as instantiations of some variables and some a gorithm, and what
the dgorithm is, isinterpreted as it were “bottom up”, starting from the brain states
(vehicles). The problem is that, as stated, this “interpretation” does not present the
variables and agorithms as part of amental representation of any domain. Add this
requirement, and you get either e-samantics or c-semantics, which (assuming
externalism) make essential reference to the environment of the organism, and are
therefore genuinely semantic.

The difference between c-semantics and e-semantics, on the other hand, isthat in e-
semantics the organism’ s internal states (representations or vehicles), have the function of
standing in for something physical - something that is redly “physically out there” in the
environment. The veridicality assumption built into e-semantics requires that the same
theory (the same formal structure) characterize both the external environment and the
organism’s vehicles (isomorphism). c-semantics by contrast makes essential reference to

cognitive mechanisms of the organism, that are not merely a reflection of structure in the

12



environment but represent a systematic and genuine contribution of the organism to
semantic content. What is represented, content, is a function of both the environment and
the organism, the contribution of the organism making up for poverty of the stimulus

which blocks pure isomorphism/veridicality based accounts.

In sum, if you subscribe to both the poverty of the stimulus and externalist semantics the
mental variables represented are not reducible to the physical state of the environment
(poverty of the stimulus), but nor do they supervene on the “narrow” state of the
individual's brain, either (externalism).

Distinguishing between a-semantics and c-semantics enables us to see that Grush’s
solution does not exhaust the options. In fact, it could be argued that by confounding &
semantics and c-semantics Grush isblurring precisely that distinction which is crucial to
understanding the difference between mere computable regularity and semantic

computation - what we set out to elucidate in the first place.

Thereis, then, an important difference between the “vertical” and the *horizontal”
reading of information and that this distinction should probably receive wider recognition
than is currently the case in computational neuroscience if it isto have in its foundations
a coherent notion of semantic computation. What is more, there are two ways of looking
at “going vertical”: a-semantics, as discussed by Grush, and c-semantics, of which c-
semantics only is agenuinely semantic way of looking at the brain. It can aso be
maintained that vertical (c) semanticsis more “genuinely” semantic than horizontal (€)
semantics, at least insofar as e-semantics commits to the veridicality assumption which
precludes a systematic “contribution of the organism” to the structure and content of
mental representation.

If you accept externalism, then the information (content) encoded in the brain isnot a
higher level description of the physical processesin the brain. But if you believein
poverty of the stimulus as well, then this content is not a higher level description of the

environment, either. Providing an account of what it is would be adequately to face up to

13



the semantic challenge of computational neuroscience. Pace Grush, the inadequacy of a
semantics as a semantic theory therefore does not stem from the fact that it is not
horizontal ,but that it is vertical in “wrong direction”.

14
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