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Abstract

Historical evidence shows that demographic forecasts, including

those of mortality, have often been grossly in error. One consequence

is that forecasts are frequently updated. How should individuals or

institutions react to updates, as these are, in turn, expected to be un-

certain? We discuss this problem in the context of a life cycle saving

and labor supply problem, in which a cohort of workers decides how

much to work and how much to save for mutual pensions. Mortality

is stochastic and point forecasts are updated regularly. A Markovian

approximation for the predictive distribution of mortality is derived.

This renders the model computationally tractable, and allows us to

compare a theoretically optimal rational expectations solution to a

strategy in which the cohort merely updates the life cycle plan to match

each updated mortality forecast. The implications of the analyses for

overlapping generations modeling of pension systems are pointed out.



1 Introduction

Demographic forecasts, including mortality forecasts, have historically been
more uncertain than has been generally believed (e.g. Alho (1990)). Yet
usually only point forecasts are discussed in the media. Even macroeconomic
analyses that purport to address questions of sustainability of policies have
often been carried out under a single population scenario.

During the past two decades attempts have been made to include stochas-
tic demographics into generational accounting that seeks to determine if cur-
rent tax and entitlement rules lead to the balancing out of public �nances in
the long run (e.g. Alho and Vanne (2006)), and into overlapping generations
models (Samuelson (1958)), whose computational versions can provide re-
alistic representations for national economies that include a pension system
(cf. articles in Alho et al. (2008)).

Overlapping generations models involve individual or household optimiza-
tion with respect to savings and labor supply. The decisions are dynamic in
nature, and they depend on expectations about future demographics. A
key issue is how exactly those expectations are assumed to be formed when
mortality is stochastic.

In Alho et al. (2008) it was assumed, for technical simplicity, that the
decision maker knows future demographics without error. In such a set-up,
the decision maker formulates a life cycle saving and labor supply plan for
each sample path of mortality and never revises it.

More recently, Lassila et al. (2012) applied, apparently for the �rst time,
what they call "the updated point forecast" approach to the overlapping
generations computations. In this approach, the decision maker learns the
most recent point forecast every period, assumes that it is without error,
and optimizes accordingly. This is a major step forward, since the perfect
foresight assumption is of course problematic in the context of stochastic
demographics.

In the updated point forecast problem, the feasibility of the numerical
calculations hinges on the assumption that the cohort behaves as if the up-
dated forecast were without error. One can argue that this is probably the
way most societies react to changing forecasts (cf. Alho (2013)). However,
it is clear that this is not the theoretically optimal approach, since one can
always do at least as well by taking into account the possibility of future
updates in the optimization. The latter is the so-called rational expectations
approach that was �rst proposed by Muth (1961). However, in general,
the consideration of stochastic demographics with fully rational expectations
leads to very complicated, if not intractable, computations (caused by the
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"curse of dimensionality"). 1

We will compare life cycle savings and labor supply decisions under dif-
ferent informational assumptions. In particular, we will compare decisions
made under rational expectations about future mortality with those made
using updated point forecasts. In the rational expectations problem, the
decision maker is assumed to know exactly the conditional distribution of
future mortality, given the current mortality. This information is provided
to her in the form of a stochastic forecast. Since our model is Markovian, and
since the state space is not overly large, we can overcome the computational
problems related to rational expectations (cf., Filar and Vrieze (1997)).

The �rst question we aim to answer is to what extent the updated point
forecast problem can be interpreted as providing a good approximation of
the rational expectations solution.2 We will consider how much the con-
sumer loses, in welfare terms, by considering only point forecasts instead of
stochastic forecasts with rational expectations. In addition, we will be able
to compare the optimal savings and labor supply decisions in the two cases.

A related question of independent interest is, should individual consumers
be interested in demographic uncertainty. If the answer to this question
is positive, the public should be provided stochastic demographic forecasts
instead of the usual point forecasts.

In Alho and Määttänen (2008) we considered a life cycle savings prob-
lem in which mortality was stochastic and followed a very simple Markovian
model that was essentially a discrete approximation to the log-bilinear model
of Lee and Carter (1992). In this paper, we provide a Markovian approxima-
tion to a more general mortality model that has been estimated for Finnish
females as described in Alho and Spencer (2005). We then expand the earlier
economic setting to include not only saving but also supply of labor. The
assumption will be that individuals enjoy both leisure and consumption and
the two have to be balanced to maximize utility. The analysis is carried out
for a cohort that has a funded pension system, or a tontine, in which the
cohort's savings accrue interest. Cohort survival is assumed to follow exactly
the survival probabilities obtained from the Markovian approximation. Or,
the model includes the so-called aggregate uncertainty in mortality, but the
idiosyncratic uncertainty that can be important in actual pension schemes is
left out. Therefore, the model includes the most important elements used in
computational overlapping generations models, such as that of Lassila et al.
(1997).

1See Hasanhodzic and Kotliko� (2013) for a discussion about the curse of dimension-
ality in overlapping generations models.

2This question relates our paper to a literature on boundedly rational decisions. For a
recent example, see for instance Winter et al. (2012)
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We will start by discussing the cohort's decision problem in terms of
a utility function, and give the full rational expectations formulation of the
work/saving problem. Then, we provide the formulation of the decision prob-
lem that assumes updated forecasts in a Markovian setting. This is followed
by a description of how, in general, one may obtain a Markovian approxima-
tion to a multidimensional predictive distribution. The results on expected
life time utility are given in terms of welfare equivalents and compared to
those that have been obtained earlier in a simpler setting. We conclude by
considering the implications of our �ndings on the application of computa-
tional overlapping generations calculations.

2 Decisions on Work and Savings and a Pen-

sion System

2.1 Utility Considerations

Consider a cohort of homogeneous individuals who enter working age at exact
time t = 0 and live during t = 0, 1, ..., T . As of s > 0, the individuals are
retired. During t = 0, 1, . . . , s − 1 the individuals have a time endowment
of one unit that is split between work and leisure. In the beginning of each
period t the members of the cohort decide how much to work, 0 ≤ wt ≤ 1,
and how much to consume, ct ≥ 0. The periodic utility is a function of
consumption and time worked, ut = u(ct, wt).

We assume that both leisure and consumption are necessary for utility to
be created, and the periodic utility function is of the form,

u(c, w) = ((cα(1− w)β)1−λ − 1)/(1− λ), (1)

where α > 0, β > 0, λ > 0 and λ 6= 1. For λ = 1 we have u(c, w) = log(cα(1−
w)β). Following de�nitions in Arrow (1971) this utility function is often
considered to represent constant relative risk aversion. I.e., given the other
parameters of the utility function, λ determines the degree of aversion to
relative risk.3 Parameters α and β, in turn, determine the relative importance
of consumption and leisure, respectively. Preferences are assumed to be time-
separable, i.e., the utilities of di�erent periods are additive.

Consumption is �nanced by wages that are proportional to the time
worked. Therefore, there is no limitation in assuming that the total wage
in a period is equal to the time worked w. If there were no saving for the

3Statisticians will notice that the functional form of the utility function is that of the
so-called Box-Cox transformation (Box and Cox (1964)).
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future, this would also be the consumption, or c = w. In this case the utility
can be re-expressed (with some abuse of notation) as u = ((wα(1−w)β)1−λ−
1)/(1 − λ). This is maximized at w∗ = α/(α + β). But, during retirement
ages wt = 0, so ut = u(ct, 0), where the consumption must be �nanced from
earlier savings.

De�ne At as the total savings remaining in the beginning of the period
t. They and any net savings during period t accrue interest at the rate r.
For de�niteness, we assume that the time worked is decided in the beginning
of the period, the wage is immediately paid and the consumption occurs
without delay. This leads to the cash �ow identity

At+1 = (1 + r)(At + wt − ct), (2)

where At + wt ≥ ct so there is no borrowing for consumption; wt = 0 in
retirement ages; and A0 = 0.

2.2 Markovian Mortality and Pension Scheme

Only a single cohort will be considered, so we can identify age with time.
The highest age is T , so that by exact age T +1 everybody dies. Deaths are
assumed to occur at the end of each period. We assume that mortality is a
stochastic process that is driven by a (non-stationary) Markov chain with a
�nite number of states d = 1, . . . , D. The states re�ect the level of mortality.
Speci�cally, the probability of surviving from exact age t to exact age t + 1
is St(d) if the state of the chain is d. The mortality state of period t = 0 is
chosen randomly with probabilities 0 < πd < 1 such that π1 + . . .+ πD = 1.
Thereafter, Pt(d, e) is the conditional probability that the state during age
t = 1, . . . , T is e, given that the state during period t−1 was d. Since nobody
survives to age T + 1, we take ST (d) = 0 for all d.

To match our simple cohort setting to the overlapping generations calcu-
lations, we now introduce a simple pension scheme that is �nanced by the
savings. We assume that a cohort insures itself against mortality risk by pool-
ing savings. Thus, the savings contributed by the deceased are redistributed
to those still alive.

We will ignore the complications arising from the �niteness of any such
cohort in real life, and assume that the cohort depletion exactly follows the
Markovian mortality process. It follows that the cash �ow identity above will
be modi�ed to the form

At+1 = (1 + r)(At + wt − ct)/St(e) (3)

when mortality in age/period t happens to be e = 1, . . . , D and the pension
system exists.
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3 An Individual's Use of Forecasts in Decision

Making

We will now consider the decision problem from the perspective of a single
member of the cohort. Her work/saving plan from any year t > 0 onwards
conditions on her being alive at t, and the state of the mortality process at t
is assumed to be known. (In reality, for a �nite cohort the state can only be
estimated with some error.)

3.1 Rational Expectations Problem

In the rational expectations problem the decision maker is assumed to know
exactly the conditional distibution of future mortality, given the current mor-
tality. Let the discount factor be φ > 0 and let Vt = Vt(A, d) be the total
discounted expected utility from exact age t = 1, . . . , T onwards given that
the total savings at t are A and mortality during period t− 1 was d. Then,
because preferences are assumed to be time-separable, we have the recursion

Vt(At, d) = maxc,w{u(c, w) + φ
D∑
e=1

Pt(d, e)St(e)Vt+1(At+1, e)}, (4)

where the future savings At+1 are determined via the cash �ow identity (3)
for each value of e. To de�ne the expected utility at t = 0, replace the
transition probability Pt(d, e) by πe, on the right hand side of (4).

3.2 Updating Forecasts Problem

We compare the above rational expectations problem to two alternatives in
which the decision maker has less information. (a) She only learns the initial
point forecast for future mortality at t = 0. In each period she makes a
life cycle saving and labor supply plan for the rest of her life. She is not
given any further information about the evolution of mortality. However,
she does update her saving and labor supply plan periodically, because the
return from the tontine re�ects the actual level of realized mortality and is
typically di�erent from what she expected. (b) She learns the most recent
point forecast every period and updates her future consumption and labor
supply plan accordingly, given that she is alive at t. In both these cases,
the decision maker does not take into account that she may later change her
mind.
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Unlike in the case with rational expectations, the work/saving problem
can now be solved in a forward looking manner, without resorting to recursive
methods.

Consider a time y ≥ 0 and let St|y,d be the point forecast for the one-year
survival probability at a future age/time t ≥ y given that at exact time/age
y mortality was in state d. To maximize her future welfare with savings Ay
at t = y she needs to maximize the future discounted expected utility,

T∑
t=y

φt−y(
t−1∏
k=y

Sk|y,d)u(ct, wt) (5)

with respect to (ct, wt), y ≤ t ≤ T , subject to

At+1 = (1 + r)(At + wt − ct)/St|y,d, (6)

where At + wt ≥ ct, and d and Ay are known at t = y. Here period t utility
is weighted by the probability of being alive in period t conditional on being
alive in period y. The maximization amounts to solving a system of non-
linear equations that consists of the consumer �rst-order conditions and the
budget constraints. 4

Consider a consumer who uses updated point forecasts. In order to deter-
mine her life cycle consumption and labor supply path for a given sequence
of mortality states dt for ages t = 0, . . . , T − 1, we proceed as follows. The
�rst state is given by probabilities πd. Given that d0 = d, the point forecast
for age-speci�c survival probabilities St|0,d at t ≥ 1 is, by the Chapman-
Kolmogorov equations (e.g., Çinlar (1975), p. 110), given by element d of
the column vector

(
t∏

k=1

Pk)St, (7)

where Pk = (Pk(d, e)) is the matrix of transition probabilities for period k,
and St = (St(1), . . . , St(D))T is the vector of one-year survival probabilities
for period t under the di�erent states of the mortality process. Given the
point forecast and A0 = 0, we can solve the deterministic work/saving prob-
lem described above. The result consists of consumption and labor supply
for all periods. However, we only store the �rst period allocation. Given c0,

4For reasonable parameter values, the no borrowing constraint is binding only in the
last period. Before retirement, the consumer needs to save in order to have something to
consume during retirement. After retirement, before the last period, if the consumer does
not save anything for next period, she would not be able to a�ord any consumption in the
following period. That cannot be optimal since the marginal utility of consumption goes
to in�nity as consumption goes to zero.
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n0, and d1, we determine A1 as well as the new point forecast. Then, we solve
again the optimization problem from t = 1 onwards, which in turn gives us
c1 and n1. This process is repeated until the last period.

The case in which the consumer uses only the initial point forecast is
analogous. In that case, however, the need to revise the life cycle plan stems
solely from surprises in the return to savings. In the absence of the tontine
(that is, with budget constraint (2)), the consumer using only the initial
point forecast would always �nd it optimal to stick to her initial life cycle
plan.

The primary problem we wish to answer is how much a decision maker of
type (a), and especially of type (b), is expected to loose utility as compared
to a decision maker who has access to the full rational expectations solution.

3.3 Intuition from a Three-Period Model

In order to understand when and how the uncertainty about mortality mat-
ters for the consumer, it is useful to consider a three-period version of the
model. In this case T = 2, and the �rst decisions relate to time t = 0. We
assume here that the consumer makes a labor supply decision at t = 0, 1 and
is retired during t = 2.

Suppose �rst that the tontine is not available. Let us �rst take the deci-
sions at t = 0 as given and consider the consumer's problem at t = 1. Given
rational expectations, and taking into account that the consumer is retired
during t = 2, we can write the consumer's problem at t = 1 as

max
c1,w1

{
u(c1, w1) + φ

D∑
e=1

P1(d, e)S1(e)u(c2, 0))

}
, (8)

where the budget constraint is c2 = (1 + r)(A1 + w1 − c1). De�ning S1 =
D∑
e=1

P1(d1, e)S1(e) as the expected survival probability from age t = 1 to

t = 2, the second term in brackets can be rewritten as φSu(c2, 0). In other
words, given current savings, an individual who makes her decision based on
expected survival makes exactly the same decision at t = 1 as an individual
who forms rational expectations (i.e. knows the values P1(d, e) and S1(e) for
e = 1 . . . D) based on the stochastic forecast.

However, at t = 0 the situation is di�erent. Since S1 depends on the
state d of the mortality process during the period t = 0, the optimal values
for c1 and w1 in (8) depend on it as well. For instance, one can show that if
d is such that the expected survival rate is low, the consumer will choose to
save relatively little. Thus, di�erent realizations of the mortality process can
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lead to di�erent levels of consumption and hours worked, and an individual
who takes demographic uncertainty properly into account achieves higher
expected welfare than an individual using only a point forecast.

When a tontine is part of the model, there is a more direct reason why
uncertainty about aggregate mortality matters. Consider again the prob-
lem in period 1 but assuming that consumption in period 2 is determined
as ce2 = (1 + r)(A1 + w1 − c1)/S1(e). Since consumption in period t = 2
now depends on the state of mortality e during t = 1, the expected second
period utility φ

∑D
e=1 P1(d, e)S1(e)u(c

e
2, 0)) cannot be written using the ex-

pected survival probability only. Hence, the individual would bene�t from
taking the demographic uncertainty into account even in period 1.

4 Construction of the Markovian Approxima-

tion to the Predictive Distribution of Mor-

tality

The starting point of our empirical illustration is a numerical construction
of a Markovian approximation to the predictive distribution of age-speci�c
mortality for females in Finland, with jump-o� time January 1, 2009, for
years 2010-2090. The lead time of the forecast is 80 years, and the ages
considered are 25-104. Single year data are combined to produce survival
probabilities for �ve-year periods corresponding to ages 25−29, . . . , 100−104.
Thus, there are 16 ages/periods in all.

The point forecast is based on an o�cial forecast produced by Statistics
Finland, but both age and lead time have been extended by extrapolation.
This is in keeping with the way the original forecast was made. The uncer-
tainty estimates were produced as discussed in Alho and Spencer (2005), i.e.,
they re�ect the historical error in extrapolation estimates in past age and
sex-speci�c mortality data for ten European countries during, roughly, the
20th century, and the so-called scaled model for error was assumed.

The calculations were as follows. First, 300,000 samples from the 80× 80
dimensional predictive distribution were generated and single year survival
probabilities were computed. Second, �ve-year survival probabilities were
obtained for the cohort in question by multiplying appropriate single-year
survival probabilities along a diagonal of the Lexis diagram. This produced
300,000 samples from the predictive distribution of each of the 16 survival
probabilities. Third, for each �ve-year period, the distribution was split into
deciles d = 1, . . . , D, with D = 10, so for the the �rst age/period we have
the probabilities πd = 1/10. Fourth, for each age/period t = 0, . . . , T with
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and decile d, the average survival probability St(d) was estimated. Fifth,
for t = 1, . . . , 15 transition probabilities Pt(d, e) were estimated from the
observed transition frequencies.

5 Calibration of the Model for Labor Supply

and Saving

In order to analyze the model numerically, we still need to choose meaningful
values for the economic parameters α, β, λ, r and φ. In addition, we need to
specify the retirement period.

We set the retirement period at s = 8, which corresponds to real age
65-69. We set the interest rate at r = 0.10. Since unit time in our model
corresponds to �ve years, this implies an annual real interest rate of about
2%.

The parameters α, β and λ are functionally dependent in the sense that
substitutions α := cα, β := cβ, (1−λ) := (1−λ)/c for any c > 0 only change
the value of the utility function by a multiplicative factor of c. Since this
does not in�uence optimality, we set α = 1− β, where 0 < β < 1.

We are thus left with three parameters, β, λ and φ. The parameter β
determines the utility weight of leisure relative to consumption. Given β,
the parameter λ determines both the intertemporal elasticity of substitu-
tion, which measures the extent to which an increase in the real interest rate
induces consumers to substitute future consumption for current consump-
tion, and the degree of risk aversion towards consumption �uctuations (Hall
(1988)). One can show that the intertemporal elasticity of substitution in
consumption is given by 1/(1 + (1 − β)(λ − 1)), or it is inversely related to
λ. The degree of risk-aversion is in turn inversely related to the elasticity of
substitution in consumption. Hence, risk aversion increases with λ.

The value of λ is usually determined based on empirical results about
the intertemporal elasticity of substitution in consumption. However, as the
empirical estimates vary widely, we will consider a wide range of values,
λ = 1, 5, 10, 15. For each value of λ, we choose β and φ so that the time
allocation between leisure and work and the amount of retirement savings
are realistic in the model. As a result, in the parametrizations we consider,
the intertemporal elasticity of substitution varies from 1 at λ = 1 to 0.21 at
λ = 15. This range covers values typically used in related models and also
most of the empirical estimates reviewed in Auerbach and Kotliko� (1987).

Regarding time allocation, we want individuals in working age to devote
1/3 of their time endowment to work.
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As for savings, we base our calibration on the Wealth Survey that was
conducted by Statistics Finland in 2009. The average annual earnings of
Finnish households of age 25-64 was 42,000 e. (Household age is de�ned
as the age of the highest-earning member of the household.) The average
private net wealth of households in age group 60-64, which corresponds to
the last working period in the model (t = 7), is 230,000 e. In addition,
households have pension entitlements. In the mandatory earnings related
pension system the ratio of average pension to average wage income is around
60% in Finland. Given the average annual income of 42,000 e, this implies
an average annual pension of approximately 25,000 e. Given the assumed
interest rate r = 0.10 and the mortality process, the present value of an
annual pension of 25,000 starting at age 65 is approximately 550,000 e.
Hence, total household wealth in age group 60-64 is 780,000 e. Thus, the
ratio of the average wealth in age group 60-64 and average wage income
during a �ve year period is 780, 000/(5 × 42, 000) ≈ 3.7. In terms of the
model parameters, the average wage income is 1/3 (recall that the wage rate
and the time endowment were normalized to 1), so the average savings at
t = 7 should be about 1.2.

The required utility weight of leisure is (roughly) the same for all values
of λ we considered. Taking β = 0.73, individuals below retirement age devote
very close to 1/3 of their time endowment to work.

The discount factor φ, in contrast, depends markedly on λ, because λ
also a�ects the degree of substitutability between consumption and leisure.
It turns out that when λ is large, individuals choose to lower consumption
abruptly at retirement because increased leisure is a good substitute for con-
sumption. As a result, increasing λ but keeping φ would lead to a decrease
in savings. To keep the savings at target, we need to increase φ with λ.
The result is that for λ = 1, 5, 10, 15, the calibrated discount factors are
φ = 0.94, 1.14, 1.45, 1.75, respectively. 5

Figure 1 displays the average per capita consumption and saving by age
for the top quintile of life expectancies (dashed lines) and bottom quintile
of life expectancies (solid lines), as computed from 1000 simulated paths.
The average lifespans are 14.5 and 12.9 model periods, respectively. The
calibration corresponds to λ = 5.6

5Admittedly, discount factors of 1.45 and 1.75 are very high. These high values re�ect
the fact that we want to compare di�erent informational assumptions also under very
high risk aversion. Assuming a utility function that is separable between consumption
and leisure would weaken the link between retirement savings and risk aversion. However,
the utility function considered here is very common in the related literature.

6Curves for labor supply are almost identical for the two quintiles, and are not displayed.
The curves are downward sloping for model ages 0-7.
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Figure 1: Average life cycle Savings and Consumption, for low mortality
(dashed) and high mortality (solid). Curves for Savings start from zero.

The savings pro�les re�ect standard life cycle consumption smoothing.
Consumers accumulate savings during working life in order to be able to
�nance consumption during retirement. The upward trend in the consump-
tion pro�les relates to the fact that the calibrated discount factor is relatively
high. For e.g. λ = 1, the discount factor would be smaller and the consump-
tion pro�les downward sloping, except for the very last periods. The fall in
consumption from t = 7 to t = 8 relates to the increase in leisure that is
associated with retirement.

There is not much di�erence between the average pro�les for low and high
mortality paths until model age 9 or so. This re�ects the fact that updates
in mortality forecasts reveal information about the cohort's average lifespan
only gradually. The di�erences become signi�cant in older ages. A high
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average lifespan implies higher average savings and lower consumption in all
ages. Partly because of di�erences in the return from the tontine between
high and low mortality paths, di�erences in per capita consumption are large
in very old ages. In the very last period, there is no longer uncertainty about
the remaining lifetime and in the absence of a bequest motive it is optimal
to consume all savings. However, the share of the cohort that survives to
the last period, which corresponds to real ages 100-104, is quite small on all
simulated mortality paths.

6 E�ect of Informational Assumptions on Wel-

fare and Allocation

We �rst analyze how important it is for the consumer to take demographic
uncertainty into account, in terms of expected lifetime utility.

Our welfare measure is the so-called consumption equivalent variation. It
gives the constant percentage change in periodic consumption (in all periods)
that is needed to make the expected lifetime welfare in the comparison case
as high as in a benchmark case. For instance, in order to compute the welfare
cost of not taking aggregate mortality risk into account, we �rst generate a
large number of aggregate mortality paths that are all consistent with {St, Pt |
t = 1, . . . , T}. We then �nd the optimal life cycle consumption and labor
supply paths for each simulated mortality path under di�erent informational
assumptions. Finally, we ask how much we should increase the consumption
of a low information consumer (in every period and in all mortality paths)
in order to make her average lifetime utility across all mortality paths the
same as that of a decision maker with rational expectations.

Table 1 compares expected lifetime utilities associated with the initial
point forecast, updated point forecasts, and perfect foresight with the ex-
pected lifetime utility associated with rational expectations. The welfare
cost of using only the initial point forecast, instead of having rational expec-
tation based on stochastic forecasts, increases rapidly with λ and ranges from
0.3% to 7.8% in terms of consumption. Thus, depending on λ the welfare
loss is potentially very large.

Interestingly, the welfare loss diminishes drastically when the individual
uses updated point forecasts. Indeed, for moderate values λ = 1 and λ =
5, the welfare cost of using updated point forecasts instead of stochastic
forecasts is less than 0.001%. In these cases, a consumer who makes her
savings and labor supply decisions based on updated point forecasts reaches
virtually the same expected lifetime utility as a consumer who is able to form
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Table 1: Relative welfare cost (%) as compared to rational expectations, as
a function of λ.

λ 1 5 10 15
Initial point forecast 0.3 0.8 2.8 7.8
Updated point forecasts 0.0 0.0 0.3 0.7
Perfect foresight -0.3 -0.8 -1.2 -1.5

rational expectations based on stochastic forecasts.
Obviously, a consumer that has perfect foresight does even better than a

consumer with rational expectations, as indicated by a negative welfare cost
in the last row of Table 1. In the model, having perfect foresight improves
expected lifetime welfare between 0.3% to 1.5% relative to rational expec-
tations that are based on stochastic forecasts. It is interesting to note that
this welfare cost increases much slower with λ than the one associated with
using only the initial point forecast. Intuitively, an individual that relies on
the initial point forecast only, may have a very biased view about mortal-
ity through her entire life. In contrast, the beliefs of an individual using
updated forecasts (either stochastic forecasts or point forecasts), converges
towards the perfect foresight information as she gets older.

Why is it the case that updated point forecasts su�ce? In other words,
why is it not necessary to take uncertainty into account in this set-up? In-
tuitively, there is not much that an individual can do to mitigate the e�ects
of the uncertainty about future mortality. All she can can do is to increase
savings so as to increase consumption in cases where average life time is
exceptionally long. That, however, comes at the cost of having lower con-
sumption earlier in life. Moreover, the uncertainty about average lifetime
diminishes over time and the individual has time to adjust her savings plans
as new information arrives.

In the simpler setting of Alho and Määttänen (2008), smaller welfare
losses were seen also when comparing the use of initial point forecast and
stochastic forecasts. One reason why some of the welfare losses are larger
in the current setting is the presence of the tontine. When we eliminate the
tontine, especially the welfare losses related to the use of the initial point
forecast relative to rational expectations (results not shown) become much
smaller than those presented above. As described in Section 3.3, an individual
that uses only the initial point forecast in the presence of the tontine may
have a very poor estimate not just about the survival probability, but also
about the future return to her savings.
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It should be carefully noted that these results are relative, given the
economic setting. For example, the availability of the tontine does improve
welfare, in a major way. Our calculations show that in the case of rational
expectations and λ = 5, for instance, the average welfare is 9 % higher with
the tontine than without it. This is in line with the literature on annuities
(e.g. Brown (2001)). The tontine allows the consumers to avoid leaving
'accidental bequests'. At the same time, it helps them smooth consumption
over time by e�ectively increasing the return on savings at old age. The
increase in welfare associated with the tontine is very similar in magnitude
for all informational assumptions.

It is possible that even if expected lifetime utility were almost the same
with rational expectations and updated point forecasts, households decisions
could be very di�erent for some mortality paths. Figure 2 compares house-
hold savings under rational expectations to household savings under updated
point forecasts, single point forecast, and perfect forecast among the simu-
lated mortality paths. Here we are again assuming λ = 5. The comparison is
between savings in each age along each path. The �gure displays (a Gaussian
kernel estimate of) the density of the distribution of di�erences in savings
relative to the average savings in the rational expectations case. A positive
di�erence means savings are higher with rational expectations.

The solid density in Figure 2 reveals that a consumer with rational ex-
pectations has higher savings in each age than a consumer who bases her
decisions on the updated forecast only.7 On the other hand, the latter de-
cisions track quite closely those based on rational expectations. Most of
the di�erences are less than 10% of average savings. These �ndings suggest
that at least for moderate values of the risk-aversion parameter, solving a
consumer's problem based on updated point forecasts provides a reasonable
proxy for the the rational expectations solution even on a path by path basis.

Decisions based on the initial point forecast are characterized by the
dashed density. Negative values, i.e. inadequate saving is fairly frequent,
and, for some paths the values are well outside the range shown the �gure.
In particular, in some (rare) cases, a consumer who relies on the initial point
forecast alone, saves far too much for the future, when the actual mortality
is exceptionally high.

These results are complemented by the perfect forecast solution given by
the dotted density. A decision maker who knows the mortality path she is on
(although not her own lifetime) saves half of the time more and half the time
less than the one who is "only" able to form rational expectations. Again,

7This is true of all simulated data points, which is not obvious from the smooth kernel
estimate.
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the largest di�erences are observed at very old age. The welfare implications
(in terms of expected lifetime welfare) of these mistakes are not as large as
one might infer from the �gure, since only a small fraction of the cohort is
alive in those periods.

Figure 3 compares labor supply under rational expectations and alterna-
tive informational assumptions. Since labor supply is assumed to be always
zero from model age 8 onwards, the comparison is between labor supply in
each model age from 0 to 7. Again, the comparison is made along each sim-
ulated path. The solid curve is the density of the relative di�erence in labor
supply under rational expectations and updated point forecast. The largest
di�erences are less than 2%. On the other hand, a consumer with rational
expectations works in almost all cases more than an individual who bases
her decision on the updated point forecast only. I.e., under rational expec-
tations individuals both work and save more than those who only consider
point forecasts, early in life. Naturally, savings and labour supply decisions
are interrelated. A higher labor income allows consumers to save more.

In the case of labor supply, even the solution based on the initial point
forecast is usually quite close to the rational expectations solution. This is
partly because labor supply decisions are made relatively early in life when
the most recent forecast is unlikely to di�er much from the forecast that
was made in the beginning of the cohort's working life. Again, di�erences
between the rational expectations solution and the perfect foresight solution
are on average much higher. For instance, if consumers knew already during
working life that their future mortality will be very low, they would choose
to work a lot.

Our model is a partial equilibrium one in the sense that the interest
and the wage rate are exogenously �xed. In principle it is possible that the
welfare results would be very di�erent in a general equilibrium version of the
model where the wage and the interest rate are determined endogenously. A
standard way to endogenize the wage and the interest rate would be to assume
that they are determined as marginal productivities of aggregate labor supply
and capital stock which corresponds to aggregate savings. (Naturally, this
also requires postulating a production function.) However, as shown above,
both the per capita labor supply and savings that are associated with either
the rational expectations solutions or the updated point forecast solution are
always relatively close to each other. Hence, the dynamics of aggregate labor
supply and capital stock would be very similar in both cases. This suggests
that general equilibrium e�ects are unlikely to change the welfare results
concerning the updated point forecast solution vis-a-vis rational expectations
substantially.
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7 Discussion

We have compared the relevance of having available a full stochastic forecast
for mortality as opposed to having merely a point forecast and subsequent
updates, from the point of view of an individual that needs to make life cycle
saving and labor supply decisions.

Our results suggest that the individuals need to revise their work and sav-
ing plans as new information regarding longevity becomes available. Failing
to use updated forecasts about future mortality leads to non-trivial welfare
losses.

On the other hand, it appears that at least in our setting the individuals
need not fully understand the uncertainty related to mortality, as long as
frequent forecast updates are available. The welfare loss that is related to
using only the updated point forecasts, rather than the stochastic forecast, is
small. Moreover, the optimal savings and labor supply paths that stem from
using updated forecasts appear to be close to those optimally chosen based
on a full stochastic forecast.

One implication of our results is that the solution that is based on up-
dated point forecasts may usually be considered as a good proxy for ratio-
nal expectations solution in similar life cycle problems. This is of practical
interest since, as discussed in the Introduction, incorporating demographic
uncertainty into general equilibrium OLG models with rational expectations
leads to very di�cult computational challenges. Assuming that consumers
make their decisions based on updated point forecasts instead of rational ex-
pectations simplify the computations drastically because one can then solve
the model separately for each simulated demographic path as a sequence of
perfect foresight problems.

The presence of a tontine is highly bene�cial for the decision maker. Thus,
from an individual's point of view it seems relevant that those designing such
schemes understand the risk characteristics of the various processes involved.

Another issue is that the economic environment in our model is resilient
to changes in mortality. Moderate changes in mortality do not lead to abrupt
changes in individual budget constraints. This is because the tontine we con-
sidered is essentially a fully funded pension system. Non-funded pay-as-you-
go pension schemes, in contrast, are likely be more vulnerable to demographic
changes - although they may have other bene�ts not discussed here, such as
protection against in�ation. Even in non-funded system the mortality risks
can probably be mitigated by having transparent rules that specify how the
bene�ts and contributions are adjusted with changes in demographics. This
is an other example in which stochastic demographic forecasts can be useful.
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Figure 2: Relative di�erence in savings under rational expectations vs. up-
dated forecasts (solid), use of a single forecast (dashed), and perfect foresight
(dotted), as a proportion of savings under rational expectations.
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Figure 3: Relative di�erence in labor supply under rational expectations vs.
updated forecasts (solid), use of a single forecast (dashed), and perfect fore-
sight (dotted), as a proportion of labor supply under rational expectations.
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